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SUMMARY

Object-oriented systems that undergo repeated addition of functionality commonly suffer
a loss of quality in their underlying design. This problem must often be remedied in
a costly refactoring phase before further maintenance programming can take place.
Recently search-based approaches to automating the task of software refactoring, based
on the concept of treating object-oriented design as a combinatorial optimisation
problem, have been proposed. However, because search-based refactoring is a novel
approach it has yet to be established which search techniques are most suitable
for the task. In this article we report the results of an empirical comparison of
simulated annealing, genetic algorithms and multiple ascent hill-climbing in search-based
refactoring. A prototype automated refactoring tool is employed, capable of making
radical changes to the design of an existing program in order that it conform more
closely to a contemporary quality model. Results show multiple-ascent hill climbing to
outperform both simulated annealing and genetic algorithm over a set of five input
programs. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

Object-oriented systems that undergo repeated addition of functionality commonly suffer a
loss of quality in their underlying design. This problem, known as software decay [9] or design
erosion [26], occurs when changes are made to a program without due consideration to its
overall structure and design rationale. Design erosion can be combatted by refactoring, or
improving the design of a program without changing its behaviour, but even with the use of
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2 M. O’KEEFFE AND MEL 0́ CINNÉIDE

contemporary programming tools this requires significant effort on the part of the maintenance
programmer.

Recently, search-based approaches to automating the task of software refactoring have been
proposed by the authors [26] and Seng et al [29]. These approaches are based on the concept
of object-oriented design as a combinatorial optimisation problem, where a fitness function
defining design quality is constructed from a weighted sum of object-oriented metrics, and are
inspired by the successful application of search-based approaches in other areas of software
engineering such as subsystem clustering and test-data generation.

Once formulated suitably as a solution representation, change-effecting operator and fitness
function, the problem of automated refactoring can be tackled using a wide variety of
search techniques. As is the case with other search-based software engineering applications,
however, the effectiveness of the various techniques may vary considerably. Because search-
based refactoring is a novel approach it remains to be established which search techniques are
most suitable in the general case; while the authors have compared the differing performance of
hill-climbing and simulated annealing searches in two case studies [26], no thorough comparison
of the effectiveness of local and evolutionary search techniques for this problem has yet been
carried out†.

In this paper we report the results of an empirical comparison of simulated annealing, genetic
algorithm and multiple ascent hill-climbing searches. We have extended the CODe-Imp search-
based refactoring tool [26] to employ a genetic algorithm search with a similar representation,
crossover operator and mutation operator to that described by Seng et al [29], as well as
increasing the power of the tool by adding to the number of different refactorings available for
use in searching for a superior design.

The remainder of this paper is structured as follows: in section 2 we outline related work in
search-based software engineering, such as module clustering, as well as discussing the state
of the art in search-based refactoring. In section 3 we describe the experimental methodology
for the study reported here, including the CODe-Imp tool, solution representation, change
operators, fitness function, search techniques and input programs. Section 4 contains the
results of the study, comprised of comparisons of various parameter sets for each of the search
techniques employed, and a comparison of the relative performance of these techniques. We
conclude and suggest some directions for future work in section 5.

2. Related Work

Search-Based Software Engineering (SBSE) can be defined as the application of search-based
approaches to solving optimisation problems in software engineering [11]. Such problems
include module clustering, where a software system is reorganised into loosely coupled clusters
of highly cohesive modules to aid reengineering [8, 12, 18, 23], test data generation [16, 20],

†This article expands on the GECCO 2007 paper Getting the Most from Search-Based Refactoring [27]. A
larger set of input programs, greater number of data points in each experiment and more detailed discussion
of results and conclusions are the primary contributions of this article over the previous paper.
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SEARCH-BASED REFACTORING: AN EMPIRICAL STUDY 3

automated testing [31] and project management problems such as requirements scheduling
[1, 33] and project cost estimation [3, 6, 7]. Clarke et al [5] and Harman et al [10, 11] provide
thorough reviews of work in the field.

The great strength of search-based software engineering is that it can address problems
where it is unclear how exactly an optimal solution can be reached; all that is required is that
alternative candidate solutions can be examined and ranked by means of an evaluation/fitness
function [5]. This is a particularly useful trait in problem domains with conflicting or competing
goals, the expectation that there is no perfect solution, and many potential solutions to consider
– a common situation in software engineering [14]. In this context the equivalence of software
metrics and fitness functions has been pointed out [11], an idea that leads one to consider the
possibility that any software property that can be measured can, in turn, be optimised.

Once a software engineering task is framed as a search problem, by defining it in terms of
solution representation, fitness function and change operator, there are numerous approaches
that can be applied to solving that problem, from local searches such as exhaustive search
and hill-climbing to meta-heuristic searches such as genetic algorithms (GA) and ant colony
optimisation. Module clustering, for example, has been addressed using exhaustive search [19],
hill-climbing [12, 17, 19, 22], genetic algorithms [8, 12, 19, 22] and simulated annealing (SA)
[22]. In those studies that compared search techniques, hill-climbing was, perhaps surprisingly,
found to produce better results than meta-heuristic GA searches [12, 21]. These results were
echoed in search-based auto-parallelisation [32], where local searches also out-performed GA.
In software clustering the meta-heuristic simulated annealing search was found by Mitchell et
al. [22] to perform similarly to hill-climbing in terms of solution quality, but better in terms
of search efficiency.

The concept of treating object-oriented design as a combinatorial optimisation problem that
can be solved using a search-based approach was introduced by the authors [25], and later small
case studies based on the QMOOD quality model [2] were conducted which suggested that both
simulated annealing and hill-climbing are effective in solving this problem [26]. Seng et al [29]
describe a similar approach but use a genetic algorithm to solve the combinatorial optimisation
problem. The evaluation function employed by Seng is novel rather than previously validated,
but is based on well-known metrics such as Response For a Class (RFC) and Weighted Methods
per Class (WMC) from the Chidamber & Kemerer [4] object-oriented metrics suite, among
others. The authors report success in automatically repositioning displaced methods in the
class structure using a GA search. However, as only the Move Method refactoring ([9], p.142)
is considered the extent of change within the class structure is limited. Harman & Tratt
[13] propose an alternative basis for search-based refactoring, using the concept of Pareto
optimality, where one design is considered superior to an alternative only if all its metric
values are at least as good, and at least one metric value is better. This approach can help
avoid some practical and measurement-theoretical problems with evaluation functions based
on a weighted sum of metrics, but to date has been implemented only in a refactoring tool
limited to the Move Method refactoring.

By its very nature the search-based approach to solving software engineering problems
involves the reuse of existing knowledge. Solution representations can be reused for different
problems, existing change operators can be the basis for change operators in a new domain,
and well-known search algorithms can be used to seek superior solutions. For this reason,
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4 M. O’KEEFFE AND MEL 0́ CINNÉIDE

experience gained in addressing one SBSE problem can often be of benefit to the field as a
whole. The work described in this article provides a thorough comparison of the strengths and
weaknesses of several search techniques in the domain of search-based refactoring, and also
an illustration of the application of search-based techniques to a software engineering problem
characterised by a highly complex solution representation and a change operator of limited
and varying applicability. This will be discussed further in the following sections.

3. Experimental Methodology

In this section we describe CODe-Imp, a prototype search-based refactoring tool designed
to facilitate experimentation in automatically improving the design of existing programs. In
common with other search-based software engineering applications, search-based refactoring
requires a solution representation, a change operator that allows for movement in the space
of alternative solutions and a fitness or evaluation function that allows solutions to be ranked
in terms of desirability. With these three elements in place, various search techniques can be
applied in solving the problem. In sections 3.1, 3.2 and 3.3 respectively we describe the solution
representation, change operator and fitness function employed in this study. In section 3.4
we briefly discuss the four search techniques employed, while in section 3.5 we describe the
input programs used. Due to space constraints, precise details of quality metrics, automated
refactorings and search algorithms are omitted from this report. We refer the interested reader
to “Search-Based Refactoring for Software Maintenance” [24] which contains a more detailed
description of our experimental methodology than can be provided here.

3.1. Solution Representation

In search–based refactoring, the solution representation can be a program itself, its Abstract
Syntax Tree (AST) or a more abstract model. The key requirements are that it must be possible
to determine what transformations can be made to the representation in order to move through
the space of alternative solutions, and it must be possible to apply corresponding refactorings
to the program in question in order to implement the solution.

This study employs the tool CODe-Imp (Combinatorial Optimisation Design-Improvement),
developed by the authors in order to test the thesis that the maintainability of object-oriented
programs can be improved by automatically refactoring them to adhere more closely to a
pre-defined quality model. CODe-Imp takes Java 1.4 source code as input and extracts design
metric information via a Java Program Model (JPM), calculates quality values according to an
evaluation or fitness function and effects change in the current solution by applying refactorings
to the AST as required by a given search technique. Output consists of the refactored input
code as well as a design improvement report including quality change and metric information
[26].

The CODe-Imp JPM is a comprehensive model, with 57 different node types, but
nevertheless is a cleaner and more abstract view of a Java program than the AST used,
which features 90 different node types. The two main differences between a JPM node and
the AST node (or subtree) that it represents are: the JPM node does not contain the list of
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tokens forming the code it models, whereas the AST does, and the JPM node contains lists of
the attributes, methods and constructors that are accessed/called by that node.

The three functions of the solution representation are therefore split between the JPM and
AST. When the evaluation function compares two solutions, it is the JPM which is examined
because it contains information regarding the interdependence of attributes, methods and
constructors as well as structural information such as number of methods per class. Similarly,
it is the JPM which must be queried in order to determine which refactorings can legally be
applied by the change operator. Finally, it must be possible to translate the virtual solution
back into a concrete solution, in this case Java code. This is the responsibility of the AST.

3.2. Change Operator

In the context of search–based refactoring, the change operator is a transformation of the
solution representation that corresponds to a refactoring that can be carried out on the source
code. The refactoring configuration of CODe-Imp, which was extended by the authors for the
experiments reported here, consists of the fourteen refactorings described below. In CODe-
Imp, complementary pairs of refactorings are employed in order that all changes made to the
input design during the course of the search be reversible. This is a requirement of some search
techniques that must move freely through the solution space, such as simulated annealing. All
refactorings employed operate at the method/field level of granularity and higher, in order to
focus on improvement of design rather than implementation issues such as correct factorisation
of methods.

• Push Down Field moves a field from some class to those subclasses that require it.
• Pull Up Field moves a field from some class(es) to the immediate superclass.
• Push Down Method moves a method from some class to those subclasses that require

it.
• Pull Up Method moves a method from some class(es) to the immediate superclass.
• Extract Hierarchy adds a new subclass to a non-leaf class C in an inheritance hierarchy.

A subset of the subclasses of C will inherit from the new class.
• Collapse Hierarchy removes a non-leaf class from an inheritance hierarchy.
• Increase Field Security increases the security of a field from public to protected,

protected to package, or from package to private.
• Decrease Field Security decreases the security of a field from private to package,

package to protected, or from protected to public.
• Increase Method Security increases the security of a method from public to protected,

protected to package, or from package to private.
• Decrease Method Security decreases the security of a method from private to

package, package to protected, or from protected to public.
• Replace Inheritance with Delegation replaces an inheritance relationship between

two classes with a delegation relationship; the former subclass will have a field of the
type of the former superclass.
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6 M. O’KEEFFE AND MEL 0́ CINNÉIDE

• Replace Delegation with Inheritance replaces a delegation relationship between two
classes with an inheritance relationship; the delegating class becomes a subclass of the
former delegate class.

• Make Superclass Abstract declares a constructor-less class explicitly abstract.
• Make Superclass Concrete removes the explicit declaration of an abstract class

without abstract methods.

These refactorings are defined precisely in terms of the preconditions used to test for their
applicability, the actions taken to perform them and the postconditions that apply after they
are performed. Space constraints preclude us from reproducing these definitions here.

In CODe-Imp, behaviour preservation is input/output, meaning that the refactorings
employed do not alter the output of a given program, for any possible input, as long as
the necessary preconditions for the refactoring apply. Preconditions are checked in CODe-Imp
using static program analysis. Static analysis is considered a conservative approximation of the
actual behaviour of a program; for example, when we analyse statically we consider that any
method that could be called, considering the program syntax, is called. In contrast, dynamic
program analysis involves running the program in question and recording which methods are
called, for a certain input. Refactoring using dynamic analysis requires access to the test suite
of the program, and furthermore requires that the test suite defines the required functionality
of that program – otherwise ‘refactorings’ could be applied that would preserve behaviour for
all tests, but cause the program not to meet requirements. Furthermore, because unit tests
can rely on the internal structure of a program, it is possible that refactorings that preserve
input/output behaviour for all possible inputs can invalidate test cases [28], and therefore
could not be applied by a search-based refactoring tool employing dynamic analysis.

3.3. Fitness Function

The fitness function employed here is an implementation of the Understandability function
from Bansiya’s QMOOD‡ hierarchical design quality model [2], consisting of a weighted sum
of metric quotients between two designs. Use of this design quality evaluation function was
previously found by the authors to result in tangible improvements to object-oriented program
design in the context of search-based refactoring [26]. The QMOOD model includes the eleven
metrics described below. The weight for each metric in the Understandability function is listed
beside each metric acronym; metrics are weighted positively where high values are considered
to contribute to understandability and negatively where low values contribute.

• Data Access Metric (DAM, 0.33) The ratio of the number of non-public attributes
to the total number of attributes declared in the class. This metric corresponds to the
property encapsulation.

• Cohesion Among Methods of Class (CAM, 0.33) The relatedness among methods
of a class, computed using the summation of the intersection of parameters of a method

‡Quality Model for Object-Oriented Design
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SEARCH-BASED REFACTORING: AN EMPIRICAL STUDY 7

with the maximum independent set of all parameter types in the class. This metric
corresponds to the property cohesion.

• Number Of Methods (NOM, -0.33) A count of all the methods defined in a class.
This metric corresponds to the property complexity.

• Number of Polymorphic Methods (NOP, -0.33) A count of the number of methods
that can exhibit polymorphic behaviour. This metric corresponds to the property
polymorphism.

• Direct Class Coupling (DCC, -0.33) A count of the different number of classes
that a class is directly related to. The metric includes classes that are directly related
by attribute declarations and message passing (parameters) in methods. This metric
corresponds to the property coupling.

• Design Size in Classes (DSC, -0.33) A count of the total number of classes in the
design, including inner classes. This metric corresponds to the property design size.

• Average Number of Ancestors (ANA, -0.33) The average number of classes
from which each class inherits information. This metric corresponds to the property
abstraction.

In addition, metrics for the design properties messaging, inheritance, aggregation and
hierarchies are included in the QMOOD model but unweighted in the Understandability
function. The form of QMOOD evaluation functions is shown in equation 1, where p1 and
p2 are object-oriented programs, wm is the weight on the metric m for that evaluation
function, and metricm(p) is the value for metric m on program p. In this study, the QMOOD
Understandability function is used to give a relative quality value between some refactored
program and the same program as it existed before refactoring.

qp =
n∑

m=1

wmmetricm(p) (1)

3.4. Search Techniques

3.4.1. Multiple Ascent Hill-Climbing

A variation on the standard first ascent hill-climbing algorithm, shown below, multiple ascent
hill-climbing (HCM) is capable of achieving improved results due to its ability to escape from
local optima. HCM initially acts identically to a first ascent hill-climbing search, but when
a local optimum is reached a pre–defined number of random refactorings are carried out in
order to move away from that point in the solution space. The search is then restarted from
the randomly chosen solution. This procedure is repeated a set number of times, depending
on the number of descents parameter. The number of random refactorings made each time
is the descent depth parameter. This search technique is considered a primary candidate for
search-based refactoring because local searches have been shown to be effective in the similar
domain of module clustering [12, 21], as well as in previous exploratory work [26].
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8 M. O’KEEFFE AND MEL 0́ CINNÉIDE

Algorithm 1 Multiple (First) Ascent Hill-Climbing
1: currentNode = startNode;
2: bestNode = currentNode;
3: for all d such that 0 ≤ d ≤ numDescents do
4: madeAscent = TRUE;{First ascent hill climbing begins}
5: while madeAscent do
6: madeAscent = FALSE;
7: L = NEIGHBOURS(currentNode);
8: for all x in L do
9: if EVAL(x) > EVAL(currentNode) then

10: currentNode = x;
11: madeAscent = TRUE;
12: break for
13: end if
14: end for
15: end while{First ascent hill climbing ends}
16: if EVAL(currentNode) > EVAL(bestNode) then
17: bestNode = currentNode;
18: end if
19: if d < numDescents then
20: for all p such that 1 ≤ p ≤ descentDepth do
21: L = NEIGHBOURS(currentNode);
22: currentNode = some x in L;
23: end for
24: end if
25: end for
26: return bestNode;

3.4.2. Simulated Annealing

Simulated Annealing (SA) is a meta-heuristic search technique inspired by the metallurgic
process of annealing, where a molten metal is cooled slowly in order to produce or preserve
certain characteristics in the solid form [15]. SA has been applied to a wide range of search-
based software engineering problems, and has been found to be effective in the context of
software clustering [22]. SA has the advantage that it is very robust against local optima in
the search space, but the disadvantage that its many parameters can make it hard to configure
for any given problem.

A simulated annealing search essentially involves making series of tentative changes to some
solution of a combinatorial optimisation problem. Changes which increase the quality of the
solution are accepted, and the changed solution becomes the starting point for the next series
of tentative changes. In addition, some changes which reduce the quality of the solution are
accepted in order to allow the search to escape from local minima. Such (negative) changes
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SEARCH-BASED REFACTORING: AN EMPIRICAL STUDY 9

are accepted with a probability that decreases steadily during the annealing process (equation
2; where p is the probability of accepting a given solution, δq is the magnitude of quality
reduction relative to the current solution, and T is the temperature value).

p = e−
δq
T (2)

Algorithm 2 Simulated Annealing, exponential cooling schedule
1: T = Tstart;
2: currentNode = startNode;
3: bestNode = currentNode;
4: tentativeNode = NULL;
5: while T > 1− Tstart do
6: for m = 1 to M do
7: L = NEIGHBOURS(currentNode);
8: tentativeNode = some x in L;
9: if EVAL(tentativeNode) > EVAL(currentNode) then

10: currentNode = tentativeNode;
11: if EVAL(currentNode) > EVAL(bestNode) then
12: bestNode = currentNode;
13: end if
14: else
15: δq = EVAL(tentativeNode) − EVAL(currentNode);
16: r = RANDOM(0 to 1);
17: if r < e−

δq
T then

18: currentNode = tentativeNode;
19: end if
20: end if
21: end for
22: T = T∗ coolingFactor;
23: end while
24: return bestNode;

3.4.3. Genetic Algorithm

For this study we have extended the set of search techniques available to CODe-Imp by
including a Genetic Algorithm (GA) implementation similar to that of Seng et al. [29]. For
the purpose of genetic algorithm implementation, the standard solution representation (the
AST) can be considered the phenotype, while the sequence of refactorings carried out in order
to reach that solution can be considered the genotype. The mutation operator employed here
is identical to that described by Seng, and simply consists of adding one random refactoring
to the genotype. Our crossover operator is similar to Seng’s, and consists of ‘cut and splice’
crossover of two genotypes, so the length of the offspring genotypes can differ from that of
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10 M. O’KEEFFE AND MEL 0́ CINNÉIDE

Figure 1. Crossover step one – two genotypes are selected for mating. Each box containing a letter or
number represents one refactoring applied to the starting solution.

Figure 2. Crossover step two – random crossover points are independently selected in the two
genotypes.

Figure 3. Crossover step three – the end of the blue genotype is added to the start of the red genotype
and vice versa. Two new genotypes are formed, but may not represent valid solutions.

the parents. It is of course likely that in the process of splicing genotypes we will encounter a
situation where the necessary preconditions for some refactoring are not met. In such a case
we discard the refactoring in question, rather than discard the entire genotype. The operation
of the crossover operator is illustrated in figures 1 to 4.

3.4.4. Steepest Ascent Hill-Climbing

Although not considered a primary candidate for use in search-based refactoring due to its long
run-times and inability to escape local optima, the performance of steepest ascent hill-climbing
was used as a reference point in this study in order to carry out normalisation of results across
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Figure 4. Crossover step four – the new genotypes are made valid by discarding refactorings whose
preconditions are not met at the point where they are applied to the solution.

different input programs. Because the extent to which a design can be improved varies greatly
depending on such factors as how many refactorings can legally be applied, this normalisation
was vital in order to establish relative performance of the search techniques mentioned above
in the general case. Steepest ascent hill-climbing provided an ideal reference point due to its
deterministic nature, as the same quality gain is obtained from each run on a given input
program.

Algorithm 3 Genetic Algorithm
1: Generation number (g) = 0
2: Population consists of populationSize identical (starting) solutions.
3: The genotype of each solution is empty.
4: while g < gmax do
5: g = g + 1
6: With chance mutChance, apply mutation operator to each member of the population.
7: Re-order population according to fitness.
8: for populationSize ∗mateProportion offspring do
9: Select first parent starting with fittest solution; each solution has chance mateChance

to be accepted.
10: Select second parent starting with next-fittest solution to first parent; each solution

has chance mateChance to be accepted.
11: Apply crossover operator to parents and add offspring to population.
12: end for
13: Re-order population according to fitness.
14: Eliminate least fit solutions in order to maintain population size populationSize.
15: end while
16: return fittest solution discovered
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12 M. O’KEEFFE AND MEL 0́ CINNÉIDE

program classes SLOC hierarchies refactorings
SpecCheck 41 4836 5 351
Beaver 93 4999 9 177
EAOP 27 1164 3 200
Mango 51 1131 0 28
Grammatica 75 7000 7 761

Table I.

3.5. Input

Input consisted of five Java 1.4 programs; four randomly selected from java-source.net (hosted
on SourceForge§), and a self-contained subset of the Spec-Benchmarks¶ standard performance
evaluation framework, to which it was known a large number of refactorings could be applied.
The programs selected were as follows:

A SpecCheck, a benchmarking program
B Beaver, a parser generator
C EAOP, an aspect-oriented programming library
D Mango, a collections library
E Grammatica, a Java parser generator

and are described in table I, where ‘classes’, ‘SLOC’ and ‘hierarchies’ indicate the size of the
input program in classes, Source Lines Of Code, and inheritance hierarchies respectively, and
‘refactorings’ indicates the number of refactorings that can initially be applied to the input
program in its original form.

4. Results

Experiments were carried out on a 2.2GHz AMD Athlon powered PC with 2GB CL2 RAM.
Mean processing time per solution examined was less than one second, including model
building, metric extraction, quality assessment, discovery of legal refactorings, and actual
(AST) refactoring. Total run-time varied between six minutes and eighteen hours as discussed
below, depending on the search technique employed, number of refactorings possible for the
input program and the number of refactorings applied. However, CODe-Imp was designed for
robustness rather than speed and makes no use of concurrent processes, so there is potential
to greatly decrease these run-times.

§http://sourceforge.net/
¶http://www.spec.org/
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Statistical analyses were carried out using Graphpad Prism‖. A confidence interval of 95%
was used in all statistical tests. Error bars on all figures indicate standard deviation from the
mean. In the following three sections, experiments aimed at discovering suitable parameters
for multiple ascent hill-climbing, simulated annealing and genetic algorithm searches in search-
based refactoring are reported. We compare the performance of these three search techniques,
and the straightforward steepest ascent hill climbing search, in section 4.4.

4.1. Multiple Ascent Hill-Climbing

In order to determine suitable parameters for multiple ascent hill-climbing (HCM) with the
QMOOD Understandability function, the set of input programs were automatically refactored
using CODe-Imp under the sixteen permutations of number of descents 1, 2, 3 or 4 and descent
depth 5, 10, 15 or 20.

Figure 5 shows the mean normalised quality gain over the set of input programs with sixteen
different multiple ascent hill-climbing configurations. Three replications were performed for
each configuration, for each input. The mean quality gain value for each input/configuration
pair was taken as a single n, so variance seen in figure 5 is due solely to the differing
results between input programs. Results were normalised against the constant quality gain
obtained from steepest ascent hill-climbing (HCS); a normalised quality gain of one for a HCM
configuration corresponds to equal performance with HCS over the set of input programs.

Analysis of these data using Kruskal-Wallis tests revealed a statistically significant variation
in median quality gain for the number of descents parameter (p=0.0186). Dunn’s post-tests
revealed a statistically significant difference between HCM search configurations including
number of descents parameter values of 1 and 3, with the latter producing greater quality
gains. HCM was determined to produce smaller quality gains than HCS for all configurations
including a number of descents of one, by a statistically significant margin, using Wilcoxon
signed rank tests. No significant difference was observed between the performance of HCS and
HCM for any configuration including a number of descents of two or more.

These results support the recommendation of multiple ascent hill-climbing configurations
including a number of descents parameter value of two, giving a total of three ascents,
for search-based refactoring under the QMOOD Understandability evaluation function.
Configurations including only one descent are seen to perform poorly compared to steepest
ascent hill-climbing. Increasing the number of descents above two does not result in greater
mean quality gains, though it may result in greater variation and therefore greater quality
gains in individual runs.

The descent depth parameter does not appear to have a predictable effect on mean quality
gain within the range examined. A value of approximately five can therefore be recommended
for this parameter in search-based refactoring under the QMOOD Understandability evaluation
function, based on the higher computational cost of the other parameter values examined.

‖GraphPad Software, Inc., 2005
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Figure 5. Mean normalised quality gain over the set of input programs with multiple ascent hill-
climbing. A graphed value of 1 is equivalent to equal performance with steepest-ascent hill-climbing.

4.2. Simulated Annealing

In order to determine a suitable simulated annealing cooling schedule for use with the QMOOD
Understandability function, the set of input programs were automatically refactored using
CODe-Imp under all sixteen permutations of cooling factor 0.990, 0.9925, 0.9950 or 0.9975
and initial minimum change acceptance probability (pi) of 1%, 5%, 10% or 25%. The Markov
chain length parameter was constant at a value of 1.

The starting temperature of a simulated annealing cooling schedule is determined by pi,
which represents the chance that a move in the solution space with a very large quality drop
will be accepted in the initial stages of the SA search. Normally, a pi value of approximately
80% is used in simulated annealing applications. However, this is based on the assumption
that the starting solution is of extremely low quality – a randomly-generated solution to the
traveling salesman problem, for example. When we consider the size of the space of all possible
designs for a given object-oriented program, including those with any number of featureless
classes, those with a class for every method, and so on, it seems likely that any program
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Figure 6. Mean normalised quality gain over the set of input programs with simulated annealing. A
graphed value of 1 is equivalent to equal performance with steepest-ascent hill-climbing.

designed with some thought to quality is in fact in the top few percent of designs, even if it
has suffered design erosion. Because of this uncertainty, pi was used as an independent variable
in this study, while Markov chain length was fixed at a value of one.

Figure 6 shows the mean normalised quality gain over the set of input programs with sixteen
different simulated annealing cooling schedules. Three replications were performed for each
cooling schedule, for each input. The mean quality gain value for each input/schedule pair was
taken as a single n, so variance seen in figure 6 is due solely to the differing results between input
programs. Results were normalised against the constant quality gain obtained from steepest
ascent hill-climbing; a normalised quality gain of one for a cooling schedule corresponds to
equal performance with HCS over the set of input programs.

Analysis of these data using Kruskal-Wallis tests revealed no statistically significant variation
in median quality gain for either cooling factor or pi parameters. No significant difference was
observed between the performance of SA and HCS for any cooling schedule, using Wilcoxon
signed rank tests.
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The most striking aspect of these results is the extremely large variation in mean quality
gain for different input programs. This is present for all cooling schedules examined, but
is particularly large for the higher cooling factor values – for a cooling factor of 0.9975
results ranged from approximately half the quality gain of HCS, in the case of input E, to
approximately double the quality gain of HCS, in the case of input B. This variation has two
important consequences: firstly, it hinders analysis of the relationship between mean quality
gain and cooling factor, which was found to be significant for three of the five input programs:
statistical analysis using 2-way ANOVA revealed a significant correlation (p = 0.0476) for
input A, an extremely significant correlation (p < 0.0001) for input B and a very significant
correlation (p = 0.0022) for input E between these variables. Secondly, the large variation in
quality gain for each cooling schedule over the set of input programs means that none of these
cooling schedules can be recommended for use in search-based refactoring under the QMOOD
Understandability function for an arbitrary input. As a result, use of SA in a search-based
refactoring tool would likely require experimentation with different cooling schedules for each
input in order to be confident that high-quality solutions were obtained, thus increasing the
computational cost of applying the tool.

4.3. Genetic Algorithm

In order to determine suitable parameters for a genetic algorithm in search-based refactoring
under the QMOOD Understandability function, the set of input programs were automatically
refactored under all nine permutations of mutation proportion 0.8, 0.5 or 0.2 and mating
chance 0.8, 0.5 or 0.2. Population size was fixed at ten, and number of generations was limited
to one hundred. Although these are low values for these parameters, the long run-time of
the GA implementation made them suitable for comparison with the other search techniques
employed, as will be discussed in section 4.4.

Figure 7 shows the mean normalised quality gain over the set of input programs with
nine different genetic algorithm configurations. Three replications were performed for each
configuration, for each input. The mean quality gain value for each input/configuration pair
was taken as a single n, so variance seen in figure 7 is due solely to the differing results
between input programs. Results were normalised against the constant quality gain obtained
from steepest ascent hill-climbing; a normalised quality gain of one for a HCM configuration
corresponds to equal performance with HCS over the set of input programs.

Analysis of these data using Kruskal-Wallis tests and Dunn’s multiple comparison post-tests
revealed a statistically significant variation (p = 0.002) in median quality gain for the mutation
proportion parameter, where values of both 0.5 and 0.8 performed significantly better than a
value of 0.2. The variation in median quality gain was not found to be significant in the case
of the mate chance parameter.

Because quality gain varied depending on mutation proportion values, and mean gains
are greatest for mutation proportion of 0.8, high values can be recommended for this
parameter. Mate chance did not significantly affect results in this study, so less computationally
expensive values of approximately 0.2 can be recommended for this parameter. However, for
all configurations GA was found to produce significantly smaller quality gains than HCS, using
Wilcoxon signed rank tests. It should be noted that in many cases the application of a single
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Figure 7. Mean normalised quality gain over the set of input programs with a genetic algorithm. A
graphed value of 1 is equivalent to equal performance with steepest-ascent hill-climbing.

refactoring did not affect the QMOOD Understandability function value, so the mutation
operator employed did not always produce a change in solution quality. This is likely a factor
in the observed ineffectiveness of low mutation probabilities in this study.

4.4. Comparison of Searches

Figure 8 shows the mean quality increase for each search technique for the entire set of input
programs. For each program/search pair the highest mean quality gain for any set of parameters
was taken as the performance of that search technique for that program. These values were
then normalised against the performance of steepest ascent hill-climbing (HCS) for each input
program, before mean quality gain over the set of input programs was calculated. Statistical
analyses using the (non-parametric) Wilcoxon matched pairs test revealed no significant
difference in median quality gain between any of the four search techniques. However, two
other criteria are pertinent in comparing their performance.

Copyright c© 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–7
Prepared using smrauth.cls



18 M. O’KEEFFE AND MEL 0́ CINNÉIDE
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Figure 8. Mean normalised quality gain over the set of input programs for each search technique in
most effective configuration.

Firstly, a search technique upon which a search-based refactoring tool is based must be
capable of producing good results for any input, as the user will not wish to run the tool several
times with different search techniques in order to obtain high–quality results. It is therefore
important that quality gain is consistently high across the set of possible input programs. As
can be seen from figure 8, the standard deviation of normalised quality gain is largest for
simulated annealing, smaller for multiple ascent hill-climbing and genetic algorithm searches
and, of course, zero for steepest-ascent hill climbing. Because the performance of SA varied
greatly in this study, depending on the characteristics of the input program, the indications
are that a search-based refactoring tool should not rely on this search technique alone.

Secondly, the computational cost of performing the various searches is of course a factor
in choosing between them. Figures 9 and 10 show the maximum values for mean normalised
quality gain for each input with each search technique, and the run-times required to obtain
them, respectively. It can be seen that:

• GA was the slowest search by a wide margin for most inputs, and performed relatively
poorly in terms of quality gain where it was not.

• The run-time of effective configurations of SA varied greatly, but a long run-time did not
necessarily equate to a relatively large quality gain.
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Figure 9. Maximum values for mean normalised quality gain for each input, with each search technique.

• The run-time of HCM varied considerably, but where it was long a large quality gain
was also found.

Because run-times may reflect properties of a search technique implementation rather than
the inherent efficiency of the technique, we also examine the number of evaluation function calls
required. Figure 11 shows the mean number of solutions examined in obtaining the maximum
values for mean normalised quality gain that are shown in figure 9. It can be seen that, in
contrast to run-times, HCS examines the largest number of solutions while GA examines
the smallest. GA is extremely inefficient in the number of solutions it examines relative to
its total runtime – partly a result of the complexity of the solution representation in this
domain, which necessitates more intense computation than the binary string representation
used in other GA applications. SA also examines few solutions relative to its run-time, when
compared to hill-climbing searches. In this case, however, the difference is due to the nature of
the search algorithm. In hill-climbing searches it is likely that many, if not all, of a solution’s
neighbours will be assessed for quality before a refactoring is accepted. Hence, each time the
Java Program Model (JPM) is queried for possible refactorings, many evaluation function
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Figure 10. Run-time in obtaining maximum values for mean normalised quality gain for each input,
with each search technique.

calls are made. Because the building of the JPM and analysis of what refactorings are possible
is computationally expensive, this approach results in more solutions examined for a given
runtime.

In summary, simulated annealing has several disadvantages; it is hard to recommend a
cooling schedule that will generally be effective, results varied considerably across input
programs and the search is quite slow. No significant advantage in terms of quality gain was
observed that would make up for these shortcomings over the set of input program, but it
should be noted that SA produced by far the greatest quality gain for one input – a fact
that indicates that SA can be very effective when configured well for a particular search-based
refactoring problem. The genetic algorithm has the advantage that it is easy to establish a set
of parameters that work well in general, but the disadvantages that it is costly to run and,
for several input programs, did not match the quality gains obtained from the much simpler
steepest-ascent hill-climbing search technique in this study. Again, no significant advantage in
terms of quality gain was observed that would make up for these shortcomings. Multiple-ascent
hill climbing was considered the most efficient search technique in this study; it produced high-
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Figure 11. Mean number of evaluation function calls in obtaining maximum values for mean normalised
quality gain for each input, with each search technique.

quality results across all the input programs, is relatively easy to recommend parameters for,
and runs more quickly than any of the other techniques examined. Steepest ascent hill-climbing
produced surprisingly high quality solutions, suggesting that the search space is less complex
than might be expected, but is slow when we consider its known inability to escape local
optima.

5. Conclusions & Future Work

Based on the results reported above, we conclude that multiple-ascent hill climbing is the most
suitable search technique for use in search-based refactoring, at this time. However, the set of
input programs used had certain characteristics that can limit the generality of conclusions that
can be drawn from these results. Firstly, four of the five programs were open-source, so we can
expect that they were created and maintained by enthusiastic programmers working without
hard deadlines [30]. As a result, it is likely that these programs have suffered less design erosion
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than might be present in commercial programs, and therefore less design quality improvement
may be possible. The effect of this factor on search-based refactoring is an area for future
study.

A conclusion that is reenforced by the relatively small size of the input programs used in this
study is the need for a less memory-intensive solution representation for the genetic algorithm.
The current CODe-Imp solution representation is too large for a population of them to be
held simultaneously in memory, so the population is implemented as a representation of the
original input program (the prototype) and a population of genotypes which store the sequence
of refactorings performed. Whenever a mating or mutation operation must be performed on
an individual, the phenotype must first be recreated by applying the sequence of refactorings
to a copy of the prototype. This GA therefore examines very few solutions relative to its
total runtime. Future work should include the development of a more lightweight solution
representation that would allow the efficiency of GA search to be increased.

Another characteristic of the set of input programs that does not reflect industry norms is
size. The input programs used here have an average size of 57 classes and approximately 4k
source lines of code, which would represent a very small program in industry. Multiple ascent
hill-climbing will partially adapt to the size of input program due to the nature of the algorithm;
although the effectiveness of different search configurations may vary, if an arbitrarily large
number of quality-increasing refactorings are possible, a large number of refactorings will be
carried out. It is therefore reasonable to assert that HCM will be less sensitive to inappropriate
search configurations than simulated annealing, where the number of refactorings that will be
(tentatively) performed is predetermined by the cooling schedule. Much larger studies than it
has been possible to perform here will be required to determine whether suitable SA cooling
schedules can be chosen based on input program characteristics such as size and number of
possible refactorings. We therefore conclude that HCM, at this time, should be considered the
search technique of choice for search-based refactoring, unless a great amount of resources are
available with which to calibrate an SA search for each input.
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