
Web Intelligence and Agent Systems: An international journal 6 (2008) 0 1
IOS Press

Knowledge Reuse for Software Reuse

Frank McCarey∗, Mel Ó Cinnéide and Nicholas Kushmerick
School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland.

Abstract. Software reuse can provide significant improvements in software productivity and quality whilst reducing
development costs. Expressing software reuse intentions can be difficult though. A developer may aspire to reuse a
software component but experience difficulty expressing their reuse intentions in a manner that is compatible with,
or understood by, the component retrieval system. Various intelligent retrieval techniques have been developed that
assist a developer in locating or discovering components in an efficient manner. These solutions share a common
shortcoming: the developer must be capable of anticipating all reuse opportunities and initiating the retrieval
process. There is a need for a comprehensive technique that not only assists with retrievals but that can also
identify reuse opportunities.
This paper advocates that component-based reuse can be supported through knowledge collaboration. Often pro-
gramming tasks and solutions are replicated; this characteristic of software can be exploited for the benefit of
future developments. Through the mining of existing source code solutions, knowledge, relating to how components
are used by developers, can be extracted. Based on a developer’s current programming task, this knowledge can
subsequently be filtered and used to recommend a candidate set of reusable components. This novel recommen-
dation approach applies and extends commonly used Information Retrieval and Information Filtering techniques
such as Collaborative Filtering, Content-Based Filtering, and Bayesian Clustering Models, to the software reuse
domain. This recommendation technology is applied to several thousand open-source Java classes. The most
effective recommendation algorithm produces recommendations of a high quality at a low cost.

Keywords: Component-Based Development, Knowledge Collaboration, Recommender Agent, Information Filtering.

1. Introduction

Software reuse has been practised ever since the
advent of programming itself, albeit in a somewhat
ad-hoc manner [15,34]. Reuse enables developers
to leverage past accomplishments and can facili-
tate significant improvements in software quality
[51]. Additionally, reuse has been shown to im-
prove productivity [26], shorten the development
cycle [7], and reduce development costs [43]. These
advantages, combined with smaller development
budgets and the increased availability of reusable
artefacts, are just some of the reasons why soft-
ware reuse has become more prominent of late.

Despite the many benefits, the software reuse
community has failed in its attempts to establish

∗Corresponding author. E-mail:frank.mccarey@ucd.ie
Phone:+353-87-7949237 Fax:+353-1-2697262

reuse as a standard software engineering practice.
This is evident from the lack of standard reuse
practices even though key reuse research dates
back 40 years [34]. This failure can be attributed
to numerous factors such as the lack of a standard-
ised market place for reusable software artefacts
and the inadequacy of reuse support tools.

Candidates for reuse include source code, soft-
ware architectures, and support documentation.
The focus of this research is limited to source
code reuse through software components. In
component-based reuse, new applications are com-
posed of many small reusable software compo-
nents, typically stored in a component library.
Components must be accessible, reliable, and of
high quality; this paper concentrates on improving
component accessibility. We have identified three
underlying related problems that restrict compo-
nent reuse, these are: the inability of support tools

1570-1263/05/$17.00  2008 – IOS Press and the authors. All rights reserved

2 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

to automatically identify reuse opportunities, the
separation of reuse from mainstream development
activities, and the lack of techniques to store and
subsequently distribute task-relevant component
knowledge among developers. Combined, these
act as a major barrier to component reuse and are
the central motivation for this research.

Effective tool support is essential for promoting
software component reuse as component libraries
tend to be large and growing. For example, the
latest version of the Java API library has over 3000
classes while the Java Swing library contains more
than 500 classes. In addition to commercial com-
ponents, a mature software development organi-
sation could maintain a large library of in-house
components. Conversancy with all components in
a large library is practically impossible. As a re-
sult, there are many stored components that devel-
opers are unaware of and, accordingly, that they
never make any attempt to reuse.

Typical component support techniques include
library browsing agents [6], web-based search ap-
proaches [16], and component ranking tools [17].
These are described in section 7. Each solution
attempts to assist developers in discovering and
locating components in which they are interested.
A common shortcoming of these solutions is that
reuse is viewed as a separate activity from software
development; a developer must halt their current
programming task, initiate the component search
process, and on completion, return to their pro-
gram task. As previously noted, developers are not
aware of all available methods in a library or may
be unable to express their reuse intentions clearly.
If they believe a reusable component for a partic-
ular task does not exist then it is less likely that
they will initiate a component search. Reuse sup-
port tools that focus solely on search techniques
are insufficient as they are only useful when a de-
veloper makes a reuse attempt.

When such retrieval tools prove inadequate, a
developer will attempt to acquire knowledge relat-
ing to components from peers. Typically a soft-
ware component is used by many developers in
many applications. When a developer is attempt-
ing to solve a problem or make a reuse attempt,
they seek the assistance of developers who have
solved this or a similar problem previously through
the use of software components. This could involve
direct meetings, email, or telephone exchanges be-
tween colleagues. Such approaches may be effec-

tive but are clearly an unreliable and inefficient
means of sharing knowledge [23].

This research shifts the focus from component
retrieval tools to a component recommendation
technique that simplifies knowledge collaboration.
A methodology is presented in this paper that can
automatically identify reuse opportunities and, ac-
cordingly, recommend a candidate set of reusable
components to a developer. Recommendations are
intelligent, relevant, and of value to individual de-
velopers. This methodology capitalises on the sim-
ilarities that exist between different source code
solutions. Programming tasks, and consequently
solutions, are often mirrored inside an organisa-
tion, across a community, or within a specific do-
main. This explains the phenomenon of source
code clones and code duplication [35]. From min-
ing existing source code repositories, a collective
collaborative knowledge-base can be established
that can be used to support and predict future
component reuse. At present, much of the knowl-
edge ingrained in source code is never captured.

For each reusable component, information re-
lating to where that component is used, how it
is used, and how it integrates with other compo-
nents, can all be collected through mining source
code repositories. The methodology presented
in this work uses an intelligent software agent
that employs this collaborative knowledge-base,
along with advance filtering algorithms, to iden-
tify and to recommend component reuse opportu-
nities for a developer. Such recommendations are
based on a developer’s current programming task.
Knowledge-based component recommendation im-
proves and complements traditional search-based
component retrieval schemes. Our methodology is
proactive, requires no additional effort from devel-
opers, and easily allows component knowledge to
be shared among developers.

The following are the principal contributions of
this research:

– The application, mergence, and extension of
several Information Retrieval and Informa-
tion Filtering schemes to a software reuse do-
main. Information Retrieval models are used
with both conventional and novel filtering al-
gorithms to generate component recommen-
dations. Using customary and specialised
retrieval metrics, extensive evaluations have
concluded that highly relevant component
recommendations can be produced, for a pro-

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 3

grammer, using these algorithms. In partic-
ular, the new algorithms, that consider or-
dering information, produce encouraging re-
sults. Generally, these positive results affirm
the information-rich characteristic of source
code.

– A lightweight knowledge-acquisition and know-
ledge-sharing methodology that increases the
accessibility of software components. The va-
lidity of this agent-based knowledge sharing
methodology is demonstrated using a proto-
type software implementation that is applied
with full rigour to thousands of Java methods.

– A novel, proactive approach to software reuse
support. Unlike previous approaches to this
problem, our approach is intelligent, proac-
tive, and autonomous. Additionally, this eco-
nomical solution can easily be adopted: the
only prerequisite is the availability of a source
code repository.

The remainder of this paper is organised as
follows. The next section presents an overview
of software reuse and Component-Based Develop-
ment. This is followed by a discussion on compo-
nent reuse from a developer’s perspective in sec-
tion 3. Section 4 describes our prototype compo-
nent recommender tool, named RASCAL, which
employs intelligent agent technology. Component
recommendation algorithms are fully explained in
section 5 and recommendation results are reported
in section 6. Related works are reviewed in section
7 and, finally, conclusions are drawn in section 8.

2. Software Reuse and Component-Based
Development

Software reuse is an umbrella concept that has
been around for many years. The term was orig-
inally coined by McIlroy [34] at the NATO con-
ference on Software Engineering in 1968. Gener-
ally software reuse can be defined as the process
of creating software systems from existing software
rather than building software systems from scratch
[21]. In addition, it can also be defined as reusing
existing software artefacts during the process of
building a new software system. A software arte-
fact may be a tangible item such as source code or
a test case. An artefact can also refer to a piece of
formalised knowledge that can contribute, and be

applied, to the software development process [8].
Typical reusable artefacts include product fami-
lies, design architectures, and documentation.

This research is limited to source code reuse
through software components. Component-Based
Development (CBD) is an emerging software de-
velopment paradigm, promising many benefits in-
cluding reduced development and maintenance
costs, and increased productivity. CBD involves
building applications using prefabricated software
components. No standard definition exists of soft-
ware components, however, one widely accepted
definition is: “A software component is a unit of
composition with contractually specified interfaces
and explicit context dependencies. An interface is
a set of named operations that can be invoked by
clients. Context dependencies are specifications of
what the deployment environment needs to pro-
vide, such that the components can function.” [53]

Components help to reduce the time required to
design, implement, and debug new software while
the cost of developing reusable components is off-
set by repeated use. Popular examples of reusable
component libraries include the Sun Swing library
and the Visual Numerics International Mathemat-
ical and Statistical Libraries (IMSL).

Creating reusable components and component
libraries can be difficult, time-consuming, and ex-
pensive. However, positive progress has been made
in recent years; for example components can be
sourced commercially off-the-shelf, from reposito-
ries of open-source software, or built in-house as
part of product families. As noted in the intro-
duction, the principal focus of this research is on
increasing the accessability of stored components
rather than populating component libraries.

2.1. Component Retrieval Techniques

This subsection describes several general classes
of retrieval schemes; a complete review of principal
related works in this area is provided in section 7.

Information Retrieval (IR) These approaches
typically rely on class or method names,
source code comments, and documentation
[28]. The reuse query must be expressed in
a natural language; this is desirable but it is
often difficult to formulate queries in a way
that ensures irrelevant components are not re-
trieved. Such techniques also fail to take into
account a developer’s current programming
context, and thus, often prove inadequate.

4 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

Descriptive Whereas IR techniques represent com-
ponents by their source text, descriptive
methods rely on abstract descriptions of com-
ponents. Examples include sets of keywords
and facets. A limitation of this approach
is that it is difficult to implement retrospec-
tively, requiring greater upfront planning.

Syntactical The most common syntactical re-
trievals are based on signature matching [27,
58]. This approach is useful for quickly ruling
out components that do not match a devel-
oper’s reuse query. Syntactical approaches are
more formal than IR and descriptive meth-
ods, and thus, are often challenging for a de-
veloper to use. Additionally, signature alone
does not guarantee the expected behaviour of
a component.

Formal Methods In this approach, a component
is represented using a formal specification lan-
guage. Likewise, queries are also submitted in
a formal language. Correctness proving sys-
tems [61,19] or specification refinement sys-
tems [38] are then used to compare stored
components with the user query. Typically,
formal methods are highly accurate at retriev-
ing relevant components but often prove dif-
ficult for developers to use.

Artificial Intelligence (AI) AI [47] schemes at-
tempt to be smarter than the above tradi-
tional methods, in that they endeavor to un-
derstand both the library components and the
reuse query. These approaches tend to be con-
text and environment aware, and generate re-
trievals based on this. AI techniques typically
require a knowledge-base but this cost is coun-
terbalanced against effective retrievals.

Web Technologies Search and retrieval tech-
niques usually applied to web-based searches
can also be applied to component retrieval.
The advantages of such approaches include
scalability and efficiency while problems in-
cluding security and legal concerns [16].

The goal of this research is to develop a new
component retrieval methodology that builds and
improves on existing techniques. The limitations
of traditional IR, descriptive, and syntactical ap-
proaches have been noted: each technique is unre-
liable, require up-front planning, and lack context
information. Formal methods are beneficial for
proving retrieval correctness but are often difficult

Fig. 1. How Developers Reuse

for developers to use; perhaps the lack of recent re-
search in this area can be attributed to this. More
promising are web-based and knowledge-based AI
retrieval approaches. Retrieval alone, though, is
not sufficient to assist a developer with component
reuse.

3. Component Reuse: The Developer’s
Perspective

The previous section presented several different
retrieval techniques. The principal goal of such
techniques is to facilitate and encourage reuse.
However, any competent component reuse support
tool that employs these retrieval methods must
also consider reuse from the developer’s perspec-
tive. If a developer is to reuse a component, they
must be able to locate that component with max-
imum ease, in minimal time. Frakes and Fox [10,
11] discovered that no-attempt-to-reuse accounted
for 24% of software reuse failures. This strength-
ens the argument that a reuse programme cannot
succeed without the backing of the development
team, and thus, the human factors that hamper
reuse need to be addressed.

3.1. Reuse: A Problem Solving Activity

Mili et al. [36] describe reuse-based development
as a problem solving activity, the problem being
that of finding a software component that satis-
fies a set of user requirements. From a component
reuse perspective, Ye [57] categorises this activity
into three separate tasks: reuse-by-memory, reuse-
by-recall, and reuse-by-anticipation as is shown in
figure 1.

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 5

Reuse-by-Memory Developers recognise simi-
larities between their current development
and programs that they have previously cre-
ated or with components that they have used.
This simplifies reuse as the developer can ex-
press their reuse intentions clearly.

Reuse-by-Recall Developers vaguely remember
components in the library that they believe
loosely matches their requirements. They
may not be exactly sure which components
they are or where they are located and thus
retrieval tools are important.

Reuse-by-Anticipation Developers are not aware
of any components that match their reuse
needs. However, based on their knowledge of
the component library, they anticipate that
a component exists that satisfies their reuse
requirements.

Reuse-by-memory and reuse-by-recall are rea-
sonably straightforward and can be supported
well through the component library browsing and
retrieval tools previously described. Reuse-by-
anticipation is somewhat more complicated:

1. A developer may incorrectly anticipate a
component that does not exist.

2. It is difficult for a developer to clearly express
their reuse intentions.

3. A developer cannot easily evaluate retrieved
components due to their limited knowledge.

Assuming a retrieval technology is in place that
overcomes these challenges, there still remains one
major barrier to reuse: a developer may not antic-
ipate the availability of a component which they
can reuse in their current development. Hence,
no-attempt-to-reuse is made. In such a situation,
the available retrieval tools are merely passive de-
vices because they become only useful when a de-
veloper decides to make a reuse attempt by antic-
ipating the existence of certain components. The
problem is further exacerbated by the likelihood of
the component library increasing in size over time.
Therefore, an intelligent support tool is required
that can notify a developer of what components
exist and when it is appropriate to reuse them.

3.2. From Development-with-Reuse to
Reuse-within-Development

This subsection shifts the focus from the cogni-
tive barriers to reuse, to the technical challenges

Fig. 2. Development-With-Reuse

Fig. 3. Reuse-Within-Development

that impair reuse in practice. Traditional com-
ponent library tools make little effort to address
the no-attempt-to-reuse problem. They explicitly
assume that a developer will, at the very least,
search for a component even if they are unsure that
a component exists that fits their requirements.
Such component library systems are designed to
support development-with-reuse [45].

The development-with-reuse paradigm, as shown
in figure 2, views reuse as a stand-alone activity,
independent of traditional programming activities
and development tools. It supposes that develop-
ers want to reuse, and that they can easily express
their reuse intentions and correctly formulate reuse
queries. By distinguishing between normal devel-
opment tasks and reuse tasks, there is an overhead
of task switching between the two. Further to this,
the tools used by developers in normal develop-
ment typically differ from those used in the reuse
process. Reuse must be well planned in advance
for development-with-reuse to be successful. How-
ever, reuse can not be completely planned before-
hand, it happens within the context and process of
development [49]. Additionally, the Li et al. [25]

6 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

study has shown that reuse is often opportunistic,
with components frequently not being selected un-
til the detailed design and coding stage. Thus, a
development paradigm shift is needed.

Reuse-within-development is a user-centered ap-
proach where the focus is on the behaviour
and actions of developers, and the aim is to
merge Component-Based Development activities
with the existing practices of developers [18,37,
58]. This is illustrated in figure 3. Reuse-
within-development differs from the methodology-
centered approach of development-with-reuse which
attempts to change and adapt a programmer’s ac-
tions to fit the reuse model. In the user-centered
approach, the development environment must pro-
vide support that: can automatically identify and
retrieve relevant reusable components; assists with
component understanding and integration; does
not interfere with a developer’s regular program-
ming activities; and reduces the cost of component
reuse.

By assisting with component understanding and
integration, the development environment is not
simply providing a component reminder service
but rather it is facilitating component reuse with
minimal ease. For example, a set of relevant code
examples could be presented to a developer that
quickly allows her to understand and integrate a
component [58]. In addition, automatically locat-
ing relevant software components and delivering
these to a developer ensures that developers need
only be aware of a much smaller set of compo-
nents. This enables greater component compre-
hension. In the next section, we describe RAS-
CAL, a prototype tool that supports reuse-within-
development in practice.

4. Knowledge Reuse: The RASCAL
Component Recommender

This section introduces a knowledge-based agent
that can automatically identify component reuse
opportunities. After this, we describe our proto-
type component recommender tool, named RAS-
CAL, that employs this agent technology.

4.1. Knowledge Reuse with Software Agents

Software development is a knowledge-intensive
activity. Often, developers lack the specific knowl-

edge that is required for a particular development
task. In this scenario, developers typically seek
assistance from their peers. LaToza et al. [23]
have completed a study at Microsoft to accurately
asses the impact of this knowledge deficiency prob-
lem; it was discovered that 62% of developers
had serious problems due to switching tasks be-
cause their team-mates requested assistance, and
50% had serious problems having to switch tasks
because they were unable to solve their current
task without seeking assistance from team-mates
or additional resources. This problem will extend
to a Component-Based Development environment
where component libraries are large and integra-
tion is difficult.

The tools and techniques used to share knowl-
edge within organisations can vary greatly. As
noted previously, colleagues can hold informal
meetings, telephone or email each other, or per-
haps rely on extensive support materials. These
techniques are often effective, but lack efficiency
and reliability. Therefore, we propose an intelli-
gent software agent that can automatically share
knowledge among software developers. This is
similar to the work of Lodi et al. [4] where agents
are employed, in a distributed environment, to dis-
cover and share knowledge. In the context of our
work, the agent will shared knowledge relating to
software components by identifying opportunities
for component reuse.

Software Agents [1,47], like software compo-
nents, are loosely defined. Agents differ from
conventional software in that they are long-lived,
semi-autonomous, proactive, and adaptive. Agents
carry out some set of operations on behalf of a user,
or another program, with a certain degree of in-
dependence. In so doing, the agent employs some
knowledge or representation of the user’s goals and
desires. This work is concerned with the use of
intelligent agent technology in the CBD domain;
such agents will assist a developer to complete
their development and component reuse activities
in a way that is consistent with the fundamen-
tal principles of the reuse-within-development con-
cept. To do this, the agent must first learn knowl-
edge pertaining to software components.

4.1.1. Learning Knowledge from Source Code
Repositories

When undertaking a development task, pro-
grammers often have a sense of déjà vu [35]. They

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 7

feel that they have solved this problem before or
know of an existing solution. In general, medium
and low level programming tasks are repeated: ei-
ther within a project, an organisation, a domain,
or within a community. Similarly, solutions often
mimic each other. This explains the phenomenon
of source code clones and code duplication. De-
velopers recognise that a solution exists to their
problem and decide to copy existing source code.

Instead of simply copying source code, embed-
ded knowledge can be extracted or learned from
the source code and reused in new projects. The
knowledge collected will relate to how components
are used by developers in practice, and will act as
knowledge-base for the intelligent software agent.
Subsequently, the agent will be capable of advis-
ing a developer, based on previous developers so-
lutions, on how best to complete their current pro-
gramming task using software components.

4.1.2. Sharing Knowledge with Developers
Just as it is important for the agent to mine and

learn knowledge, it is also important that the agent
can distribute and share this knowledge with the
relevant parties. The agent must initially deter-
mine when knowledge is deemed relevant to a de-
veloper, and accordingly, must present this knowl-
edge in a manner that is effective yet unobtru-
sive. Often the agent is offering unsolicited advice.
This research concentrates on supplying develop-
ers with knowledge that assists component reuse;
this typically involves recommending a set of com-
ponents for reuse to a developer. The agent must:
be easy to use, anticipate reuse opportunities, al-
low a developer to quickly assess retrieved compo-
nents, and bridge the gap between a developer’s
reuse requirements and their actual reuse levels.
The following section describes RASCAL, a com-
ponent reuse support tool that employs an intelli-
gent agent to produce recommendations.

4.2. RASCAL

RASCAL, as shown in figure 4, is a CBD proto-
type tool that is designed to support reuse-within-
development. This tool incorporates intelligent
agent technology and supplies a developer with
task relevant component recommendations. The
main components of RASCAL are now detailed.

4.2.1. Recommender Agent
The recommender agent is responsible for ac-

tively monitoring the current developer’s actions.
Based on this, the recommender agent formulates
a reuse intention and proactively recommends a
candidate set of ordered library components to
the active developer. Recommendations are pro-
duced using the information filtering techniques
explained in section 5.

The agent does not attempt to understand the
functionality of the source code that a developer is
coding or the developer’s ultimate goals. Rather,
the agent is intended to provide short-term and
immediate assistance to developers. Likewise, the
agent does not understand the functionality of the
components that it recommends; a component is
recommended simply because the agent believes
that it is appropriate for a particular developer to
use this component now. An agent learns such
knowledge from mining source code repositories as
discussed shortly.

4.2.2. Knowledge-intensive IDE (KIDE)
An Integrated Development Environment is used

by developers on a daily basis to complete their
programming tasks. RASCAL extends a devel-
oper’s current IDE to incorporate the recom-
mender agent, so that the agent and the IDE ap-
pear as a single entity to the developer. This is re-
ferred to as a Knowledge-intensive Integrated De-
velopment Environment (KIDE), and supports a
reuse-within-development paradigm.

An example of the RASCAL KIDE is shown in
figure 5. The screenshot of the Eclipse IDE resem-
bles the standard Eclipse Java Perspective with
the exception of the, unobtrusive, recommender
agent that is visible at the bottom right corner of
the window. As a developer is writing code, RAS-
CAL monitors the developer’s source code and em-
ploys this information to recommend a set of li-
brary components. The developer does not need
to explicitly accept nor reject recommendations.

4.2.3. Source Code Repository
The source code repository can contain source

code from: existing work, previous projects, and
external software. Additionally, it is beneficial if
the code repository contains the work of a het-
erogeneous set of developers, who are likely to
have made use of the majority of library compo-
nents. The open-source development paradigm is

8 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

Fig. 4. The Main Components of RASCAL

well suited in this context with significant amounts
of code available; accordingly, we make use of
the Sourceforge [40] repository. The code repos-
itory must be sufficiently populated to allow ef-
fective learning. A large source code repository
will likely contain information about many com-
ponents, which in turn increases the number of
components for which recommendation is possible,
but could result in components which have a high
density-of-use being recommend more frequently.
With regard to the effectiveness of RASCAL, our
previous research has shown that a small popu-
lated repository of source code that uses software
components frequently is more desirable than a
large populated repository of source code that in-
frequently employs components [33]. Ideally, the
code in the repository will be of a high quality,
having been thoroughly tested.

4.2.4. Information Retrieval (IR) Model
An IR model is populated from mining the

source code repository. This represents a lot of
the information contained in the code repository
in a useful manner. Possible IR models are dis-
cussed further in the next section. The recom-
mender agent queries this model and, resultantly,
recommends a set of library components to the de-
veloper. Before the IR model can be built, infor-
mation needs to be extracted from the code repos-
itory. Source code parsers, such as the ByteCode

Engineering Library (BCEL)[5] used in this re-
search, can be employed for this purpose.

4.2.5. Active Developer
For each individual active developer, RASCAL

continuously recommends a relevant set of library
components for reuse. The recommendation set
contains components that a developer may or may
not have anticipated. RASCAL only considers the
content of a developer’s current work and does not
use any historical developer information; for ex-
ample, RASCAL does not examine any programs
that a developer has coded in the past. Although
a developer may have made use of certain compo-
nents in the past, this does not guarantee that the
developer will recall, or identify appropriate op-
portunities to reuse, all such components. There-
fore, RASCAL merely considers the program un-
der development. The developer’s current compo-
nent usage information is stored along with order-
ing details, as shown in table 1. This latter or-
dering information is used by our Content-Based
Filtering algorithm, as explained in section 5.3.

4.2.6. Component Library
Component libraries can be populated through

a variety of sources; for example, from built in-
house components, open-source software, or from
commercial components. This research focuses on

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 9

Fig. 5. RASCAL Eclipse Plugin

Table 1
Active Developer’s Component Vector

Component Method User: U1
JLabel:setBorder(Border) 1
JFrame:setDefaultCloseOperation(int) 1
JPanel:add(JLabel) 1
JPanel:add(JLabel) 1
JPanel:add(JLabel) 1
JFrame:setVisible(boolean) 1

improving the accessability of components in a li-
brary rather than populating component libraries.

Two important components of RASCAL are the
recommender agent and the Information Retrieval
model. The next section explains the technical as-
pects of both.

5. Component Recommendation

The previous section introduced a Knowledge-
intensive Integrated Development Environment pro-
totype tool, named RASCAL, that incorporates
intelligent agent recommendation technology. This
section presents the filtering methodology em-
ployed by the recommender agent and, to a lesser
extent, reviews a number of IR models. The IR
models employed in this research are standard
techniques and thus deserve minimal explanation.

5.1. Granularity

This subsection clarifies the granularity at which
RASCAL operates by clearly defining three terms
that are commonly used in recommender litera-
ture.

Item RASCAL recommends an item to a devel-
oper. Specifically, RASCAL recommends a
reusable Java method from a component li-
brary to a developer. Developers are likely
to use several items within their program-
ming solution. When statically comparing
two pieces of source code, the items (meth-
ods) invoked within each source code are com-
pared. During comparison, method signa-
ture is ignored; library methods overloaded
within a particular class are treated as a sin-
gle library item. Typically, overloaded meth-
ods perform similar operations but operate
on different input data. The recommendation
methodology presented here does not distin-
guish between overloaded member methods.
Additionally, an object’s precise type is not
always identifiable; for example, in certain cir-
cumstances the runtime type of a polymor-
phic object may not be known without per-

10 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

forming a runtime analysis, thus the exact
item invoked cannot always be statically de-
termined. In this scenario, the correspond-
ing item in the parent class is recorded as the
invoked item.

Active User A user is a Java method, written for
a previous project, that is stored in the source
code repository and invokes items. By exam-
ining many users, knowledge about the com-
ponent library can be learned. The active user
is the method currently being programmed by
a developer. The developer, actively working
on this method, can also be considered as the
active user. Dependent on the context of use,
it will be apparent when the term active user
refers to a method and when it refers to the
developer of that method.

Vote This represents a user’s preference for a par-
ticular item. In this context, a vote is simply
an invocation count for a library method.

Notably, the term user and item can both re-
fer to Java methods but the distinction should be
clear. Based on the active user’s (developer) vote,
over several items (library methods), a recommen-
dation set of predicted votes can be produced us-
ing the following algorithms.

5.2. Collaborative Filtering (CF)
Recommendations

The goal of a Collaborative Filtering (CF) algo-
rithm is to suggest new items, or to predict the
utility of a certain item, for a particular user based
on the user’s previous preferences and on the opin-
ions of other like-minded users [48]. CF algorithms
are used in mainstream recommender systems like
Movielens [46]. These systems are founded on
the belief that users can be clustered. Users in a
cluster share preferences and dislikes for particu-
lar items, and are likely to agree on future items.
As just noted, a user refers to the developer of a
user-defined Java method and an item refers to a
reusable Java method from the component library
that can be invoked. Breese et al. [2] classified CF
algorithms into two main classes, Memory-based
and Model-based ; both are explained here.

Fig. 6. Illustration of (kNN) Formation: After comparing
the active user with 43 other users, a recommendation is
produced based on the k=8 most similar source codes.

5.2.1. Memory-based Collaborative Filtering
In a Memory-based CF approach, a recommen-

dation for the active user is derived by considering
all other users in the code repository. Vote vaj cor-
responds to the vote by user a for item j. The pre-
dicted vote using Memory-based CF for the active
user a on item j, mem−cf−PVaj , is a weighted
sum of the votes of similar users:

mem−cf−PVaj = N
∑

b∈kNN

sim (a, b) (vbj − vb)

(1)
where vb is user b’s average vote and weight
sim(a, b) represents the correlation or similarity
between the active user a and each user b. kNN
is the set of k Nearest Neighbours to the current
user, as illustrated in figure 6.

A neighbour is a user who has a high similarity
value, sim(a, b), with the active user. The set of
neighbours is sorted in descending order of sim-
ilarity; the technique used to measure similarity
is described shortly. Experiments in the following
chapter use a value of k = 8 neighbours. A large
number of neighbours can translate into a larger
number of items for which recommendation is pos-
sible, although, it might be the case that the iden-
tified neighbours are not of close similarity which
leads to reduced recommendation accuracy. Thus,
a trade-off is required and k = 8 is a reasonable
value. N is the normalising factor such that the
absolute values of the weights sum to unity.

From equation 1, a user’s vote can be predicted
for any item. In the context of this work, the like-
lihood of a reuse opportunity for any method in
the component library can be predicted based on
the active developer’s current preferences. An as-
sumption is made that every method in the compo-
nent library has been voted for by at least one user
previously. Library methods are ranked based on

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 11

Table 2
Vector Space Model (VSM) Item-User Matrix for 5 Users

Component Method User Vectors
U1 U2 U3 U4 U5

JL:setBorder(Border) 1 1 0 0 1
JF:setDefaultCloseOp(int) 1 1 0 0 0
JP:add(JLabel) 1 3 1 0 1
JP:setBorder(Border) 1 0 3 4 0
JF:setContentPane(JPanel) 1 0 1 2 0
JF:setSize(int,int) 1 0 1 2 0
JF:setVisible(boolean) 1 1 1 2 0

their predicted vote and the top n methods, with
the highest vote, are recommended to the devel-
oper. Based on informal observation, the experi-
ments in the next section use a maximum value of
n = 7. That is, a recommendation set can contain,
at most, seven components. Cognitive and soft-
ware engineering studies have shown that seven is
an understandable number of options to present to
a developer [39,59].

Comparing Users Central to CF is the ability
to determine a set of users who are most rele-
vant or similar to the active user for whom the
recommendation is being sought. This cor-
responds to function sim(a, b), introduced in
equation 1. In this research, the Vector Space
Model [24] is employed. A user vector sim-
ply records a user’s invocation count (vote)
for all items that can be found in the compo-
nent library. The order of invocations is ig-
nored; ordering information is used later in
the Content-Based Filtering algorithm, as dis-
cussed in section 5.3. Table 2 illustrates an
example of the Vector Space Model. In to-
tal, there are 7 library items and 5 user vec-
tors. Each user vector contains an invoca-
tion count for all library items. A user cor-
responds to a Java method as defined in sec-
tion 5.1. A user’s vector is collected implicitly
by analysing their source code. The similarity
between two vectors, belonging to user a and
user b, is calculated as follows:

sim (a, b) =
∑

j

vaj√∑
k∈Ia

v2
ak

∗ vbj√∑
k∈Ib

v2
bk

(2)
where the squared terms in the denominator
are used to ensure that a user who uses many
components does not appear more similar to
other users. Vote vaj and vbj corresponds to

each user’s vote for item j. Ia and Ib are
the sets of items the user a and user b has
voted on respectively. The cosine of the angle
formed between user a’s vector and user b’s
vector, sim (a, b), will fall in the range [0, 1]1.
A cosine of 1 indicates two users are identi-
cal, whereas 0 denotes no similarities. More
details can be found in [30].

Algorithm Characteristics To determine the
kNN nearest users, the active user must be
compared with each user in the code reposi-
tory. This property of Memory-based CF al-
gorithms has potential implications for scal-
ability and runtime performance. In general
though, Memory-based CF works reasonably
well, is straightforward to implement, and eas-
ily allows new users to be added.

5.2.2. Model-based Collaborative Filtering
Model-based CF algorithms seek to fit a proba-

bilistic model to the user database through unsu-
pervised learning techniques and to subsequently
use this model to quickly make predictions. From a
probabilistic perspective, the task of Model-based
CF is to determine the probability that an active
user has a particular vote value for a specified item.
Breese et al. [2] describe two types of probabilis-
tic models suited to CF: Bayesian clustering and
Bayesian network models. In the first model, like-
minded users are clustered together into classes.
Each item, given the cluster, is treated indepen-
dently. A recommendation for an active user is
based on the cluster of which they are a member.
In the second model, a Bayesian network is em-
ployed. In this case, items are no longer treated
independently, but rather conditional dependen-
cies between items is learned from the data. From
our previous work, it was discovered that Bayesian
networks perform poorly in our domain [32]. In
addition, clustering has been suggested as a natu-
ral preprocessing step for CF [54]. This research
uses a similar version of the Bayesian clustering
Model-based CF algorithm described by Breese et
al. [2].

Clustering Users Initially, a set of source code
clusters C = c1, c2, ..., cm are created where

1Typically in recommender systems, a user can have a
negative vote for an item which results in sim (a, b) falling
in the range of [−1, 1]

12 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

Fig. 7. Illustration of Clustering: The active user must be
compared with 9 other clusters as opposed to 43 users when
using the kNN Memory-based algorithm.

m is the number of unique clusters, as shown
in figure 7. The probability that an active
user, user a, belongs to a particular cluster cx,
Pr(cx, a), is estimated. After establishing the
cluster of which user a is mostly likely to be
a member, a modified version of equation 1 is
used to predict the vote for user a on item j:

mod−cf−PVaj = va + Pr(cx, a)(vcxj) (3)

where cx is the classified cluster and vcxj is the
average vote for item j in cluster cx. To pro-
duce a recommendation set, the top n items
with the highest predicted vote are recom-
mended. Like the Memory-based CF algo-
rithm, a value of n = 7 is used in the experi-
ments in the next section.
The clustering algorithm is implemented us-
ing a simple Näıve-Bayes model [22]. The
probability that user a belongs to cluster cx

is calculated as follows:

Pr(cx|a) = P (cx)
n∏

j

P (vj |cx) (4)

where n is the number of items, j is one li-
brary item and P (cx) is the prior probabil-
ity of this particular cluster cx. P (cx) can be
estimated by counting the training examples
that fall into cluster cx and dividing by the
size of the training set. P (vj |cx) is the proba-
bility of the active user’s vote for item j given
that this user is a member of cluster cx. By
examining all clusters, it can be determined
which cluster has the highest posterior prob-
ability given the active user. That cluster is
then used by the recommendation algorithm
in equation 3. Full implementation details of
this algorithm can be found in [31].

Characteristics A considerable benefit of Model-
based CF is that it only requires the pa-
rameters of the model to be kept in mem-
ory when making predictions. This requires
less space than the entire item-user matrix re-
quired by the Memory-based approach. Un-
like the Memory-based scheme, the Model-
based technique requires an initial learning
phase and it can be difficult to add new users.

5.3. Content-Based Filtering (CBF)
Recommendations

Like Collaborative Filtering, the goal of Content-
Based Filtering (CBF) [50] is to suggest, or to
predict, the utility of certain items for a particu-
lar user. CBF recommendations are based solely
on an analysis of the items for which the current
user has shown preference. Unlike CF, users are
assumed to operate independently. Items which
correlate closely with the user’s preferences are
likely to be recommended. For example, in a news
recommender system, keywords from the current
user’s preference would be analysed to recommend
news stories which contain similar keywords.

We propose that software components are com-
monly used, by developers, in similar patterns and
that by examining these patterns future compo-
nent use can be predicted. In this work, the CBF
algorithm examines the order in which a user em-
ploys a set of methods from a component library.
This novel technique is quite unlike standard CBF
systems. As stated in subsection 4.2.5, the item
invocation order, for each user, is stored in a list.
From this, it can be determined that user a in-
voked item x followed by item y. When making a
Content-Based prediction for item j to the active
user a, the set of all users who voted for item j
needs to be examined. Assuming there is only one
user, user b, in the code repository that has voted
for item j, then the predicted vote for user a on
item j is calculated as follows:

– Firstly, the last item that the active user a
invoked, Preva, is reviewed.

– The item that user b invoked previous to item
j, Prevbj , is also examined.

– If Preva is identical to Prevbj , then intu-
itively, and based on our earlier proposal, it is
likely that the active user will want to invoke
item j next.

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 13

5.3.1. Worked Example
For clarity, the CBF algorithm is explained

with an example based on figure 8. When mak-
ing a recommendation for the active user a on
the item setSize(int,int), which is used by
a randomly selected user b, a check is done to
see if the last item invoked by the active user
(setContentPane(JPanel)) is the same as the
item user b invoked previous to setSize(int,int).
These two items are the same, therefore, it is ex-
pected that setSize(int,int) would be recom-
mended to user a next. Using CF, setSize(int,
int) and setVisible(boolean) would be recom-
mended equally with the same predicted vote,
assuming user b is a close neighbour of user a
or that user a is a member of the same clus-
ter as user b. The CBF technique ensures
setSize(int,int) is recommended first but could
result in setVisible(boolean) not being recom-
mended.

Unlike our previous work that only investigated
the sequence of two method invocations [30], this
technique is extended to look back for the longest
method invocation-order similarities between two
users. A long sequence of invocations, identical to
the active user’s, helps to produce recommenda-
tions with a high confidence value. Analysing the
item preferences of only one other user, user b, the
correlation or similarity between user a and user
b’s invocation lists, sim(a, b), is defined as follows:

sim(a, b) =
|Uab|
|Ia| ∗

indexa

|Ia| (5)

where Ia is the set of items user a has voted on,
Uab is the longest set of items that both user a
and b invoked in identical order. The index vari-
able in this novel algorithm denotes the most re-
cent position where both users invoked the same
item. Consider another example where user a and
user b both invoked 10 methods and the method
setSize(int,int) is invoked twice by each user.
The method setSize(int,int) is the first method
invoked by user a and is subsequently invoked
again, by user a, at position 8 (where position 10
would be the last method invoked). Similarly, user
b invoked the method setSize(int,int) at posi-
tion 2 and position 6. In this example, indexa

would equal 8 and indexb, as introduced shortly,
would equal 6. Ideally, indexa will equal |Ia|, i.e.
the last method invoked by the active user.

In figure 8, there are two users: a and b. The
size of the set of items that user a invoked, Ia, is
5. The size of the set of items that user a and
user b invoked in identical order, Uab, is 4. The
indexa is 5 as setContentPane(JPanel) is the last
identical item that both user a and user b invoked,
and hence sim (a, b) evaluates to 0.8. The index
for user b, indexb, is also stored which is needed in
equation 6; indexb is 6 in this example. The index
value has significance. The aim of this recommen-
dation is to predict the next invocation for user a,
and thus order similarities towards the latter part
of user a are the most important.

The previous example only considered one user
in the code repository that invoked item j. A new
recommendation algorithm that considers all users
in the code repository is now presented. The pre-
dicted vote for user a on item j, cbf−PV aj, is
defined as follows:

cbf−PVaj = N
∑

b∈A

sim (a, b) (bjNextInvoked)

(6)
where A is the set of all users in the code repository
who voted for item j, N is the normalising factor
such that the absolute values of the weights sum
to unity, and sim(a, b) is calculated using equa-
tion 5. bjNextInvoked is a boolean value that
simply denotes whether item j is invoked directly
after user b’s index (indexb). Referring back to
figure 8, and assuming user b is the only user in
the code repository, if a prediction is being made
for user a’s vote on the item setSize(int,int)
then bjNextInvoked would equal 1. If, however,
a prediction is being made for user a’s vote on the
item setVisible(boolean) then bjNextInvoked
would equal 0, and this method would not be rec-
ommended. From equation 6, the vote for any item
using CBF can now be predicted.

Characteristics Compared with regular Collab-
orative Filtering, it would appear that CBF is
computationally expensive; for example, the
CBF algorithm must find the longest sequence
of invocation similarities. Notably though,
the number of item invocations for each user
is typically quite small; based on the dataset
used in this work, we found each user invokes
an average of 11 items. Additionally, unlike
the CF technique where all users are exam-

14 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

Fig. 8. Using Collaborative Filtering, RASCAL will recommend that the active developer, user a, should invoke JFrame
methods setSize() and setVisible(). However, it is desirable that setSize() is invoked before setVisible().

ined, a CBF recommendation for an item j
only considers user who have invoked that
item previously; this is likely to increase per-
formance.
The ability of this CBF algorithm to predict
component usage, based on component order-
ing, is an important advantage over the CF al-
gorithms explained earlier. Though, it could
be argued that the CBF recommendations are
short-sighted, whereas CF recommendations
allow a developer to better anticipate future
component use. Additionally, it can be stated
that developers do not invoke methods in or-
der; in such circumstances CF algorithms are
more appropriate.
When making a recommendation, the Content-
Based Filtering algorithm previously described
examines several users to determine the or-
der in which they invoke particular methods.
Some practitioners may argue that this filter-
ing algorithm does not strictly confirm with
the standard definition of CBF, as users are
not treated independently. The validity of
these concerns is recognised and we acknowl-
edge that our algorithm widely differs from
standard CBF techniques. However, it is still
believed that the term CBF adequately de-
scribes this approach. Currently when the
predicted vote of an item is calculated, each

user of that item is examined. With little
modification, knowledge relating to the invo-
cation order of items could be initially learned
by analysing the source code repository. For
example, it could be learned that setX() is
typically invoked prior to setY(). Subse-
quently, this knowledge could be reused in fu-
ture recommendations, eliminating the need
to examine other users. This corresponds
with the idea of learning information pertain-
ing to genre in a movie or music CBF recom-
mender system. Additionally, this modifica-
tion would improve the performance of equa-
tion 6.

5.4. Hybrid Recommendations

This subsection describes how the previous two
filtering techniques can be merged. By merging
these filtering algorithms, it is anticipated that a
recommendation set will contain a broad set of
useful recommendations in a meaningful order.

5.4.1. Memory-based Collaborative
Content-Based Filtering

The similarity measure, sim(a, b), defined in
equation 2, and used in the Memory-based CF
equation 1, can be extended to include the invoca-
tion order similarity defined in equation 5. Each

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 15

similarity value is given an arbitrary weighting of
ws = 0.5, where ws is the predefined weight given
to the CF measure. Similarity is now determined
as follows:

sim (a, b) =
(|Uab|
|Ia| ∗

indexa

|Ia| ∗ (1− ws)
)

+


ws ∗

∑

j

vaj√∑
k∈Ia

v2
ak

∗ vbj√∑
k∈Ib

v2
bk




(7)

The CBF algorithm also needs to be modified.
Currently using CBF, a predicted vote for an item
is based on every user, in the code repository, of
that item. This is updated so that only the near-
est neighbours are examined, as determined using
equation 7. Equation 6 is modified as follows:

mem−cbf−PVaj =

N
∑

b∈kNN

sim (a, b) (bjNextInvoked) (8)

where kNN is the set of nearest neighbours. The
final equation for calculating the predicted vote for
active user a on item j using Memory-based Collab-
orative Content-Based Filtering, mem−ccbf−PVaj ,
is as follows:

mem−ccbf−PVaj = (mem−cf−PVaj) (w)+

(mem−cbf−PVaj) (1− w)
(9)

where w is the predefined weight given to the
CF prediction value. Initially, the predicted vote
for an item, using standard Memory-based CF,
mem−cf−PVaj , is calculated using equation 1.
This examines each neighbour’s vote for this item.
The predicted vote is then weighted. The result
is added to the Content-Based Filtering predicted
vote. Equation 8 is used to calculate the CBF vote,
mem−cbf−PVaj . This also examines each neigh-
bour to determine if item j is directly called after
the neighbour’s indexb variable. The index vari-
able denotes the most recent position where both
the active user and its neighbour invoked the same
item. The CBF vote is also weighted. The exper-
iments in the next section use a arbitrary value of
w = 0.5.

5.4.2. Model-based Collaborative Content-Based
Filtering

This subsection again presents a new algorithm
for producing recommendations. The probability
measure, Pr(cx, a), is the probability that user a
belongs to cluster x. Using the probability equa-
tion 4, it can be determined which cluster that user
a has the highest posterior probability of belong-
ing to. Assuming this is determined, then the CBF
algorithm defined in equation 6 can be modified as
follows:

mod−cbf−PVaj =

N
∑

b∈cx

sim (a, b) (bjNextInvoked)

(10)

where cx is the cluster that user a is most similar
too. This cluster is likely to contain several unique
users. Using the CBF technique, a vote is only
predicted for all the items which the users in clus-
ter cx have invoked at code-writing time. Our final
equation for calculating the predicted vote for the
active user a on item j using Model-based Collab-
orative Content-Based Filtering, mod−ccbf−PVaj ,
is as follows:

mod−ccbf−PVaj = (mod−cf−PVaj) (w)+

(mod−cbf−PVaj) (1− w)
(11)

where w is the predefined weight given to the CF
prediction value. Initially the predicted vote for
an item is calculated using the standard Model-
based CF equation 3, mod−cf−PVaj . This is
then weighted. The result is added to the CBF
predicted vote. To calculate the CBF vote,
mod−cbf−PVaj , equation 10 is used. The CBF
vote is also weighted. The experiments in the next
section use a arbitrary value of w = 0.5.

5.4.3. Characteristics
Referring back to figure 8, the hybrid Memory-

based equation 9 and Model-based equation 11 are
designed to ensure both setSize(int,int) and
setVisible(boolean) are recommended. How-
ever, setSize(int,int) will have a higher pre-
dicted vote and will appear before setVisible(
boolean) in the recommendation set. The next
section evaluates these algorithms.

16 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

6. Evaluation

6.1. Dataset

Over 35,000 recommendations were produced
for 3481 methods mined from Sourceforge [40].
Each method invoked an average of 11 items from
the component library. Recommendations were
made for both the SWING and AWT libraries; in
total there was 2090 library methods that were in-
voked at least once in our code repository. Since
we have the complete source code, a recommen-
dation for a piece of code can be automatically
evaluated by checking whether the recommended
method was in fact called subsequently.

For each user method, several recommendations
were made. For clarity, an example is given. One
user, a fully developed Java method, is taken from
the code repository. This user is now the active
user and will not be used by any of the filtering al-
gorithms when making a recommendation. In to-
tal, this active user calls ten Swing library meth-
ods (items) at the code-writing stage, as opposed
to runtime. The tenth invocation is automatically
removed from the active user’s invocation list and
a recommendation set is produced for the active
user based on the preceding nine invocations. The
aim is to verify if the proposed recommendation
methodology can predict the missing method. Fol-
lowing this recommendation, the ninth invocation
is also removed from the active user’s invocation
list and a new recommendation set is formed based
on the preceding eight invocations. This process
is continued until all-but-one invocation remains.

6.2. Evaluation

Precision and Recall are the most popular met-
rics for evaluating information retrieval systems.
Precision is defined as the ratio of relevant recom-
mended items to the total number of items rec-
ommended; P = nrs/ns, where nrs is the number
of relevant items selected and ns is the number
of items selected. This represents the probability
that a recommended library method is relevant.
A library method is deemed relevant if it is used
by the developer for whom the recommendation is
being sought. Recall is defined as the ratio of rel-
evant items selected to the total number of rele-
vant items; R = nrs/nr, where nrs is the number
of relevant items selected and nr is the number

of relevant items. This represents the probabil-
ity that a relevant library method will be recom-
mended. Several approaches have been taken to
combine precision and recall into a single metric.
The F1 measure, initially introduced by van Rijs-
bergen [55], combines both with an equal weight
in the following form: F1 = 2PR/ (P + R).

It is particularly important that RASCAL rec-
ommends methods in a relevant order i.e. the invo-
cation order. We will evaluate this using a simple
binary Next Recommended (NR) metric; NR = 1
if we successfully predict or recommend the next
method a developer will use, otherwise NR = 0.
The time taken to query a library can strongly im-
pact a developer’s perception of that library. A
developer will become frustrated if retrieval times
are long and thus we also evaluate this.

These automated experiments cannot evaluate
the impact of incorrect or irrelevant recommenda-
tions. There is also an assumption that the devel-
opers of the original source code made optimal use
of the available component libraries, and thus rel-
evancy or irrelevancy can be precisely defined. We
acknowledge this limitation of our existing work
and the need for practical experimentation to fully
evaluate RASCAL.

6.3. Results

Figure 9 displays the results for each of the
aforementioned algorithms. Result values are sim-
ilar, and so for clarity, the average result of each
technique is listed in table 3. For both the pure
and hybrid model-based CF algorithms, the num-
ber of cluster is 850. This is a significant reduc-
tion from the original 3481 users used in the other
algorithms. A baseline result is also presented.
Baseline recommendations were produced by rec-
ommending, at each recommendation stage, the
seven most commonly invoked library methods.

Two universal trends quickly become apparent
in the following results: precision typically de-
creases as more information is known regarding
the active user, while recall increases. Consider an
active user who uses a total of ten library meth-
ods. When a recommendation is made for this
user, when only one library method is simulated as
being used, then there is a set of nine possible re-
maining methods to recall. The chances of recall-
ing all relevant methods is quite low and hence the
recall result is lower in earlier recommendations.

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 17

However, when this user has called 9 methods and
there is only 1 possible method left to recall, then
the chances of this method being in the recommen-
dation set is quite high. In contrast, the more invo-
cations mimicked as being invoked, the fewer there
are to correctly recommend, and hence, there is a
greater probability of recommending an irrelevant
library method. Thus, precision decreases in lat-
ter recommendations. The results of all techniques
are compared below.

Precision The superior recommendation tech-
nique, based on precision, is a hybrid of
Memory-based CF and CBF. The average
precision is 43.2% when using this algorithm.
This compares with 41.8% when using only
the Memory-based CF algorithm and 41.4%
when using the CBF algorithm. Notably, all
three algorithms produce similar results. The
hybrid Model-based technique does not per-
form as well, only achieving a precision value
of 35.7%. Though, this is an improvement on
the pure Model-based CF precision of 33.5%.
The poor performance of the Model-based
technique suggests that it is difficult to de-
velop a cluster model that fits the data well.
As a result, the accuracy of recommendations
suffer. It is believed that members in a clus-
ter agree on many items (based on the recall
results that follow) but that there is wide dis-
agreement among cluster members on other
items, thus reducing precision.

Recall Memory-based CF, at 57%, produces the
best recall value of all algorithms. When ei-
ther of the CF algorithms is merged with the
CBF algorithm, the recall value drops. From
a CBF perspective though, merging a CF al-
gorithm with a CBF algorithm improves re-
call. The hybrid Memory-based algorithm
achieves an average recall value of 53.8%,
while the Model-based hybrid approach has
an average recall value of 51.3%. In terms
of supporting software reuse, all algorithms
are very effective at recalling relevant com-
ponents. Pure CF examines a general set
of neighbours when making a recommenda-
tion, based on all of the current user’s in-
vocations. Contrarily, CBF only examines
users that have invoked the particular item
for which recommendation is sought. There-
fore, it is understandable that the CF algo-

rithm produces a broad recommendation set
that recalls more relevant components while
CBF technique is short sighted and only re-
calls immediately relevant components.

Next Recommended A hybrid of Memory-based
CF and CBF is the most effective technique
for predicting the next method that a devel-
oper uses. Using this approach, the average
NR value is 64.1%. This compares with 60.6%
when only the Memory-based CF algorithm is
used and with 62.3% when only the CBF algo-
rithm is used. The Model-based CF algorithm
significantly improves when merged with the
CBF technique. Originally, the average NR
value was 54.9%, but this now increases to
59.6%. It is expected that the hybrid algo-
rithm and the pure CBF algorithm perform
best as these are the only techniques to con-
sider the order of invocations, and thus the
most likely to identify the next useful item.

F1 The pure Memory-based CF algorithm pro-
duces the best F1 result, with an average
of 47.2%. This is followed closely by the
Memory-based hybrid algorithm which has an
F1 value of 47%. Again, the efficient Model-
based CF algorithm improves when merged
with the CBF technique. The F1 value in-
creases from 40.4% to 41.2% when using the
latter hybrid approach.

Time Memory-based CF recommendations take
an average of 1.2 seconds, the Model-based
CF algorithm usually produces a recommen-
dation within 0.2 seconds, and CBF recom-
mendations typically take 0.72 seconds. The
hybrid Memory-based Collaborative Content-
Based Filtering algorithm produces recom-
mendations, on average, in 1.5 seconds. The
Model-based Collaborative Content-Based Fil-
tering algorithm takes an average of 0.31 sec-
onds to produce a recommendation. With
the Memory-based hybrid approach, each user
in the code repository needs to be examined
to determine the active user’s set of near-
est neighbours. Additionally, a CBF sim-
ilarity measure must also be calculated for
all users, this decreases recommendation ef-
ficiency. However, using the Model-based
hybrid technique, only each user in the se-
lected cluster needs to be examined to deter-
mine CBF similarity. Therefore, the efficiency
of the Model-based CF algorithm is not ad-
versely effected when it is merged with CBF.

18 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

(a) (b)

(c) (d)

Fig. 9. Recommendation Results: (a) Precision (b) Recall (c) Next Recommended (d) F1

Table 3
Results Summary: Average Precision, Recall, Next Recommended, F1, and Time

Filter Pr Rc NR F1 Time Comment
CF: Memory-based VSM 41.8% 57.0% 60.6% 47.2% 1.20s Great results in reasonable time.
CF: Model-based Näıve-Bayes 33.5% 52.9% 54.9% 40.4% 0.20s Reasonable results in excellent time.
CBF 41.4% 50.2% 62.3% 44.2% 0.72s Great NR result.
Hybrid: Memory CF and CBF 43.2% 53.8% 64.1% 47.0% 1.50s Great results in reasonable time.
Hybrid: Model CF and CBF 35.7% 51.3% 59.6% 41.2% 0.31s Reasonable results in excellent time.
Baseline 19.4% 35.2% 33.7% 24.68% 0.09s Poor Results.

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 19

6.4. Results Conclusions

If a relatively small dataset is used, as in these
experiments, then the hybrid Memory-based Col-
laborative Content-Based Filtering algorithm is
ideal. Recommendations are of a good quality and
can be produced within a reasonable time. Out
previous research, when compared with these re-
sults, has shown that increasing the size of the
code repository does not actually improve recom-
mendations [33]. Rather, this can be achieved by
populating the code repository with users who fre-
quently use the component library. For example,
in these experiments, each user had a minimum of
eight library method invocations.

If the number of library components increases
dramatically, then it may be necessary to add
many new users to the code repository. In such a
situation, the hybrid Memory-based algorithm be-
comes inefficient, as each user in the code repos-
itory must be examined. Instead, the Model-
based hybrid technique should be used, as this can
produce good quality recommendations efficiently.
This efficiency is due to the number of clusters
not growing linearly with the number of users. In
comparison with the Memory-based hybrid algo-
rithm, this technique results in a small decrease in
recommendation accuracy.

The results presented here are heartening. Sig-
nificant values of precision, recall, NR, and F1 can
all be achieved. Further, recommendations can
be produced very quickly. As a means of sup-
porting component reuse, these recommendation
algorithms prove highly effective. Average recall,
for all algorithms is over 50% while the average
NR result is as high as 64% when using the hy-
brid memory algorithm. An interesting future di-
rection would be to compare the success of RAS-
CAL across different domains; for example, cur-
rent experiments are based on the Swing and AWT
Graphic User Interface (GUI) libraries. It is pos-
sible that such libraries encourage a linear style of
programming and thus improve RASCALs perfor-
mance. Further analysis is merited

Based on the current results, a reuse support
tool, such as RASCAL, will greatly assist a devel-
oper. In particular, RASCAL is capable of identi-
fying reuse opportunities that may not be obvious
to the developer. Depending on an individual’s
environment or circumstances, the importance of
each of the evaluation criteria described earlier will

differ. Therefore, the RASCAL tool can be con-
figured to use either of the five variations of the
recommendation algorithm.

7. Related Work

This section reviews related work in the area
of component retrieval and software reuse sup-
port. For background purposes, traditional re-
trieval techniques are detailed. These rely heavily
on primitive IR and descriptive techniques. Fol-
lowing this, more sophisticated retrieval and rec-
ommendation techniques are presented that typi-
cally employ intelligent IR approaches.

7.1. Traditional Component Retrieval

Traditional retrieval schemes focused generally
on basic IR techniques [9], and on descriptive
methods such as keyword search [29] and faceted
classification [44]. Other syntactic-based ap-
proaches such as signature matching have been
used by Zaremski and Wing [60] for retrieval.
Many of these techniques are not ideal. When us-
ing a keyword search, too many or too few compo-
nents may be returned because only keywords are
used in the search. Signature matching queries are
strict and formal. Additionally, signature alone
does not guarantee the expected behaviour of the
component. With faceted classification, the tax-
onomy must be well defined and each component
must explicitly fit the classification scheme.

Many of these techniques have been extended
to include semantic-based retrieval features. Typ-
ically while querying the component library, the
developer specifies component requirements using
natural languages which are then interpreted using
a language ontology as a knowledge-base. Com-
ponents in the repository also have a natural lan-
guage description. Both the developer query and
component descriptions are formalised and close-
ness is computed. A set of potentially reusable
components are then ranked based on their close-
ness value. Unlike the earlier retrieval schemes,
domain information and component relationships
are generally considered. Empirical results indi-
cate that semantic-based retrieval schemes are su-
perior to traditional approaches [52].

20 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

7.2. Intelligent Component Retrieval

More recently, several intelligent component re-
trieval tools have been proposed. Gu et al. [13]
present a Conversational Case-based component
Retrieval Model (CCRM) that helps developers lo-
cate reusable components. The previous retrieval
techniques assume that a developer can clearly and
accurately formulate queries. In this approach,
software components are represented as cases. A
knowledge-intensive case-based reasoning method
is adopted to explore context-based semantic sim-
ilarities, between a developer’s query and stored
components. A conversational approach is used
to collect developer requirements interactively and
incrementally. Like our work, the authors recog-
nise that developers find it difficult to express their
reuse intentions and use discriminative questions
to extract further information from a developer
and to more clearly define the query. This tool is
useful but lacks the ability to proactively infer a
developer’s reuse requirements.

Just as we employ a software agent to deliver
component recommendations to a developer, a
software agent has been developed by Drummond
et al. to assist library browsing [6]. The authors
describe active browsing: an active browser sug-
gests to the developer components it estimates to
be close to the target search. A developer uses
the library browsing system for retrieving compo-
nents in a normal manner. In addition, the active
agent attempts to recognise the developer’s intent
and subsequently provides guidance that acceler-
ates the search. Based on experimental results, the
agent identified the developer’s search goal 40%
of the time before the developer reached the goal.
This work is intended to complement, rather than
replace, browsing.

7.3. Web-based Retrieval

Several web-based commercial and open-source
component retrieval techniques have been devel-
oped such as ComponentSource [3], and Planet-
Sourcecode [42]. Similar to the Google search en-
gine [41], ComponentRank [17] is one such tech-
nique that harnesses web-based search approaches.
Components are ranked based on analysing use
relations among the components and propagating
the significance of a component through the use
relations; this is similar to our technique which

examines how components are used in practice.
This technique is effective at giving a high rank to
stable general components, which are likely to be
highly reusable, and a lower rank to non-standard
specialised components.

Hummel and Atkinson [16] have carried out a
study on using the web as a reuse repository. They
evaluated several specialised source code search en-
gines such as PlanetSourceCode and Koders [20],
and more general search engines such as Google
and Yahoo. They discovered that there is a magni-
tude of accessible code resources on the web. Many
of these specialised search engines offer features
for choosing language, selecting syntactic require-
ments such as a method name or parameter type,
and accessing API information. However, they
discovered that the non-specialised search engines
produced comparable results. They also identified
some of the advantages of web-based approaches
such as scalability and efficiency, and noted limi-
tations such as security and legal concerns. Such
resources could potentially be used by RASCAL
to learn new component information.

7.4. Component Retrieval by Example

Reuse support through code examples is a pop-
ular research theme. Grabert and Bridge [12]
present a software tool for examplet reuse. They
define examplets as consisting of two parts. The
first is a snippet of source code, Java in their ex-
ample, which shows how to accomplish a task us-
ing library components. The second part of the
examplet is a statement of the source code goal
in free text. They have developed a tool that al-
lows developers to specify their reuse goal in nat-
ural text. Like RASCAL, this tool automatically
takes into account the source code that the devel-
oper is working on. The system combines text re-
trieval with a semantic net representation of the
source code to retrieve relevant examplets. While
it is feasible that example source code is available
which uses library components, it is less likely that
all source code will have an associated examplet
description.

Another notable tool for finding code examples
is Strathcona [14]. This tool is used to find rele-
vant source code in an example repository of many
projects by matching the code a developer is cur-
rently writing with all code in the example repos-
itory. Similarity is based on multiple structural

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 21

matching heuristics, such as examining inheritance
relationships, method calls, and class instantia-
tions. These measures are applied to the code cur-
rently being written by the developer and, subse-
quently, matched examples from the repository are
retrieved and recommended to the developer. Un-
like the work of Grabert and Bridge [12], queries
are automatically created by Strathcona once a de-
veloper requests an example piece of code. Like
our work, this tool benefits from being able to pop-
ulate its example code repository from any code or
framework irrespective of coding conventions, as
all code incorporates structure.

7.5. Proactive Recommendation: CodeBroker

A common shortcoming of the above solutions
is that they are developer dependent. A developer
must be capable of anticipating all reuse oppor-
tunities and initiating the retrieval process. How-
ever, if a developer believes a reusable compo-
nent for a particular task does not exist then they
are less likely to search the component repository.
Thus, no-attempt-to-reuse is made.

Ye et al. [57,58] present a proactive recom-
mender tool named CodeBroker that addresses
this key problem. CodeBroker infers a developer’s
need, or opportunity, to reuse a set of software
components, and then proactively recommends
these. The need for a component is inferred by
monitoring the comments a developer writes along
with method signatures. Based on this, a set of
matching components is retrieved and presented
to the developer for reuse. This solution greatly
improves on previous approaches. Nevertheless,
the technique used to implement this approach is
not ideal. Reusable components in the component
library must be sufficiently commented to allow
matching; this may, in effect, exclude the possible
recommendation of many existing components. In
addition, developers must also actively and cor-
rectly comment their code. These pragmatic con-
cerns restrict the applicability of CodeBroker in an
industrial setting.

This work is strongly related to CodeBroker,
and to a lesser extent with Strathcona [14]. Like
Rascal, CodeBroker recommends a set of meth-
ods from the component library that a developer
should consider invoking. This differs from the
Strathcona tool which delivers a set of code exam-
ples to a developer. At present, our experiments

are automated and reasonably large, use source
code from a variety of open-source projects, and
recommend methods from the Swing and AWT
GUI component libraries. Contrarily, CodeBro-
ker is evaluated manually using five programmers
and a small number of programming tasks, re-
quires HTML-based online documentation that is
generated by running Javadoc over Java source
programs, and produces recommendations for the
Java 1.1.8 Core API library and Java General Li-
brary (JGL) [56]. As CodeBroker is a fully de-
veloped tool, previous CodeBroker experiments
tended to focus on the cognitive aspects of the re-
search whereas in this work the focus is largely on
the accuracy of the recommendation algorithms.
This makes a direct comparison difficult; nonethe-
less, it is believed that our technique is the easi-
est to adopt and the most effective recommender
in terms of correct ordering, while CodeBroker is
a more mature system having been evaluated in
practical setting.

7.6. Review

Modern research on component retrieval tends
to take a more comprehensive approach than its
traditional counterparts. Gu et al. [13] and Drum-
mond et al. [6] focus on developers. They advo-
cate the need for an iterative approach to query
formulation as it is often difficult for a developer
to initially express their reuse intentions clearly.
Inoue et al. [17] consider component quality.
They assess how components are used in prac-
tice, and rank components based on this. Web-
based retrieval techniques focus on scalability, per-
formance, and availability. Component retrieval
by example techniques [12,14] acknowledge the im-
portance of program context and the development
environment. Queries using this approach consider
the source code that the developer is currently
working on. The CodeBroker tool [58] recognises
developer cognitive challenges and aims to address
these through proactive component recommenda-
tion.

Our work is similar to a number of the areas
mentioned above but several key differences ex-
ist that distinguish this work from others. We
have presented an autonomous software agent
that can automatically identify reuse opportuni-
ties and, based on this, recommends a set of rele-
vant reusable components to an active developer.

22 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

Unlike existing component retrieval tools, the de-
veloper does not need to initiate retrieval or per-
form any additional tasks. The RASCAL agent
learns knowledge from existing source repositories
and uses this knowledge to automatically identify
reuse opportunities.

Component recommendation techniques vastly
improve on passive component retrieval tools.
Tools, such as CodeBroker and Strathcona, have
important advantages over our work. For example,
these tools are fully developed, provide source code
examples that assist developers to understand the
rationale behind recommendations, and have been
evaluated in user trials. Similarly, RASCAL has
several distinct advantages. Our tool places a
strong emphasis on the order of component recom-
mendations and this is evaluated using the Next
Recommended metric. In addition, our tool is not
dependent on any particular coding styles or con-
ventions, does not record developer coding histo-
ries, and does not place additional requirements on
developers. This, combined with our efficient al-
gorithms, ensures recommendations are performed
quickly. Incorporated within the popular Eclipse
IDE, RASCAL is an effective, efficient, and easy-
to-use component support tool.

8. Conclusion

Software reuse and Component-Based Develop-
ment is difficult, hampered by the inadequacy of
existing component reuse support strategies and
tools. Key concerns are the inability of support
tools to automatically identify reuse opportuni-
ties and formulate reuse queries; the separation of
reuse from development tasks; and the lack of tech-
niques to store and distribute task-relevant com-
ponent knowledge among developers. We have ar-
gued that knowledge collaboration tools can be
employed to effectively support Component-Based
Development by identifying unanticipated reuse
opportunities. Such tools capitalise on the simi-
larities that frequently exist between programming
solutions; through the mining of source code repos-
itories, knowledge can be extracted pertaining to
the use of software components and a collaborative
knowledge-base can be established. This is then
be used to produce component recommendations.

From extensive experiments, we have concluded
that our filtering algorithms can efficiently pro-

duce reliable recommendations. Each proposed
algorithm significantly outperformed the baseline
experiment, and each has unique characteristics
that will determine their suitability based on a de-
veloper’s priorities. For instance, a recommenda-
tion set, produced using a hybrid of Memory-based
Collaborative Filtering and Content-Based Filter-
ing, can recall, on average, 54% of the reusable
components that a developer is interested in, while
there is a 64% likelihood that the set will contain
the next component a developer invokes.

Sophisticated knowledge-based component re-
trieval and recommendation schemes are no silver
bullets, and these alone will not elevate component
reuse to a standard software engineering practice.
Other non-technical impediments need to be ad-
dressed, for example, reuse needs to be nurtured
and developers need to be rewarded for their reuse
efforts. Nonetheless, this paper has described an
intelligent agent solution that will encourage com-
ponent reuse by utilising knowledge collaboration
and component recommendation techniques. This
developer-centric methodology is both lightweight
and easily adopted. In addition, the support tool
described in this research is an important step to-
wards systematic component reuse.

9. Acknowledgements

Funding for this research was provided by
the Irish Research Council for Science, Engi-
neering and Technology (IRCSET) under grant
RCS/2003/127.

References

[1] Jeffrey M. Bradshaw. Software Agents. AAAI Press,
1997.

[2] John S. Breese, David Heckerman, and Carl Kadie.
Empirical analysis of predictive algorithms for col-
laborative filtering. In 14th Annual Conference on
Uncertainty in Artificial Intelligence, pages 43–52,
Madison, Wisconsin, USA, 1998.

[3] ComponentSource. www.componentsource.com. 2007.
[4] Josenildo Costa da Silva, Matthias Klusch, Stefano

Lodi, and Gianluca Moro. Privacy-preserving agent-
based distributed data clustering. Web Intelli. and
Agent Sys., 4(2):221–238, 2006.

[5] M. Dahm. Byte code engineering with the bcel api.
Technical Report B-17-98, 2001.

[6] Christopher G. Drummond, Dan Ionescu, and
Robert C. Holte. A learning agent that assists the
browsing of software libraries. IEEE Transactions on
Software Engineering, 26(12):1179–1196, 2000.

F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse 23

[7] R. Due. The economics of component based develop-
ment. Information Systems Management, 17(1):92–
95, 2000.

[8] Liesbeth Dusink and Jan van Katwijk. Reuse dimen-
sions. In Symposium on Software Reusability, pages
137–149, Seattle, Washington, United States, 1995.
ACM Press.

[9] W B Frakes and B A Nejmeh. Software reuse through
information retrieval. SIGIR Forum, 21(1-2):30–36,
1987.

[10] William B. Frakes and Christopher J. Fox. Sixteen
questions about software reuse. Communications of
the ACM, 38(6):75–ff., 1995.

[11] William B. Frakes and Christopher J. Fox. Qual-
ity improvement using a software reuse failure modes
model. IEEE Transactions on Software Engineering,
22(4):274–279, 1996.

[12] Markus Grabert and Derek Bridge. Case-based reuse
of software examplets. Journal of Universal Com-
puter Science, 9:627–640, 2003.

[13] Mingyang Gu, Agnar Aamodt, and Xin Tong. Com-
ponent retrieval using knowledge-intensive conver-
sational cbr. In 19th International Conference on
Industrial, Engineering and Other Applications of
Applied Intelligent Systems, pages 27–30, Annecy,
France, 2006.

[14] Reid Holmes and Gail C. Murphy. Using structural
context to recommend source code examples. In 27th
International Conference on Software Engineering,
pages 117–125, St. Louis, MO, USA, 2005.

[15] Grace Murray Hopper. The education of a com-
puter. In 1952 ACM National Meeting, pages 243–
249. ACM Press, 1952.

[16] Oliver Hummel and Colin Atkinson. Using the web
as a reuse repository. In 9th International Conference
on Software Reuse, pages 298–311, Turin, Italy, 2006.

[17] Katsuro Inoue, Reishi Yokomori, Tetsuo Yamamoto,
Shinji Kusumoto, and Makoto Matsushita. Ranking
significance of software components based on use re-
lations. IEEE Transactions on Software Engineering,
31(3):213–225, 2005.

[18] Stan Jarzabek and Riri Huang. The case for user-
centered case tools. Communications of the ACM,
41(8):93–99, 1998.

[19] Tetsuro Kakeshita and Miyuki Murata. Specification-
based component retrieval by means of examples. In
Proceedings of the 1999 International Symposium on
Database Applications in Non-Traditional Environ-
ments, page 411, Washington, DC, USA, 1999. IEEE
Computer Society.

[20] Koders. www.koders.com. 2007.
[21] Charles W. Krueger. Software reuse. ACM Comput-

ing Survey, 24(2):131–183, 1992.
[22] Pat Langley, Wayne Iba, and Kevin Thompson. An

analysis of bayesian classifiers. In 10th National Con-
ference on Artificial Intelligence, pages 223–228, San
Jose, California, USA, 1992. AAAI Press.

[23] Thomas D. LaToza, Gina Venolia, and Robert De-
Line. Maintaining mental models: a study of devel-
oper work habits. In 28th International Conference
on Software Engineering, pages 492–501, Shanghai,
China, 2006. ACM Press.

[24] Todd A. Letsche and Michael W. Berry. Large-scale
information retrieval with latent semantic indexing.
Information Science, 100(1-4):105–137, 1997.

[25] Jingyue Li, Marco Torchiano, Reidar Conradi, Odd
Petter N. Slyngstad, and Christian Bunse. A state-of-
the-practice survey of off-the-shelf component-based
development processes. In 9th International Confer-
ence on Software Reuse ICSR, pages 16–28, Torino,
Italy, 2006. Springer-Verlag.

[26] Wayne C. Lim. Strategy-driven reuse: Bringing reuse
from the engineering department to the executive
boardroom. Annals of Software Engineering, 5:85–
103, 1998.

[27] Luqi and Jiang Guo. Toward automated retrieval
for a software component repository. In IEEE Con-
ference and Workshop on Engineering of Computer-
based Systems, pages 99–105, USA, 1999.

[28] Yoelle S. Maarek, Daniel M. Berry, and Gail E.
Kaiser. An information retrieval approach for au-
tomatically constructing software libraries. IEEE
Transactions on Software Engineering, 17(8):800–
813, 1991.

[29] Y. Matsumoto. A software factory: An overall ap-
proach to software production. In ITT Workshop on
Reusability in Programming, Newport, USA, 1993.
IEEE Computer Society Press.

[30] Frank McCarey, Mel Ó Cinnéide, and Nicholas
Kuskmerick. Rascal: A recommender agent for agile
reuse. Artificial Intelligence Review, 24(3-4):253–276,
November 2005.

[31] Frank McCarey, Mel Ó Cinnéide, and Nicholas
Kuskmerick. A recommender agent for software li-
braries: An evaluation of memory-based and model-
based collaborative filtering. In International Con-
ference on Intelligent Agent Technology, Honk Kong,
December 2006.

[32] Frank McCarey, Mel Ó Cinnéide, and Nicholas
Kuskmerick. Recommending library methods: An
evaluation of bayesian network classifiers. In 2nd In-
ternational Workshop on Supporting Knowledge Col-
laboration in Software Development, Tokyo, Japan,
September 2006.

[33] Frank McCarey, Mel Ó Cinnéide, and Nicholas
Kuskmerick. Recommending library methods: An
evaluation of the vector space model (vsm) and latent
semantic indexing (lsi). In 8th International Confer-
ence on Software Reuse, Torino, Italy, June 2006.

[34] M. D. McIlroy. Mass produced software compo-
nents. In NATO Software Engineering Conference,
volume 1, pages 138–150, Germany, October 1968.

[35] Bertrand Meyer. Object-Oriented Software Construc-
tion (2nd ed.). Prentice-Hall, Inc., NJ, USA, 1997.

[36] Hafedh Mili, Fatma Mili, and Ali Mili. Reusing soft-
ware: Issues and research directions. Software Engi-
neering, 21(6):528–562, 1995.

[37] Hefedh Mili, Ali Mili, Sherif Yacoub, and Ed-
ward Addy. Reuse-based Software Engineering:
Techniques, Organization, and Controls. Wiley-
Interscience, New York, USA, 2001.

[38] Rym Mili, Ali Mili, and Roland T. Mittermeir. Stor-
ing and retrieving software components: A refinement
based system. IEEE Transactions on Software Engi-
neering, 23(7):445–460, 1997.

[39] George A. Miller. The magical number seven, plus
or minus two. The Psychological Review, 63:81–97,
1956.

24 F. McCarey, M. Ó Cinnéide and N. Kushmerick / Knowledge Reuse for Software Reuse

[40] OSTG. Sourceforge.net is owned by the open source
technology group inc (ostg), a subsidiary of va soft-
ware corporation. http://sourceforge.net. 2004.

[41] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report SIDL-
WP-1999-0120, 1998.

[42] PlanetSourceCode. www.planetsourcecode.com. ’07.
[43] Jeffrey Poulin. The business case for software reuse:

Reuse metrics, economic models, organizational is-
sues, and case studies. In 9th International Con-
ference on Software Reuse, page 439, Italy, 2006.
Springer.

[44] Ruben Prieto-Diaz. Implementing faceted classifica-
tion for software reuse. Communications of the ACM,
34(5):88–97, 1991.

[45] R. Rada. Software Reuse: Principles, Methodologies
and Practices. Ablex Publishing, NJ, USA, 1995.

[46] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm,
and J. Riedl. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In ACM Con-
ference on Computer Supported Cooperative Work,
pages 175–186, Chapel Hill, North Carolina, 1994.

[47] Stuart Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall, Engle-
wood Cliffs, NJ, 1995.

[48] Badrul M. Sarwar, George Karypis, Joseph A. Kon-
stan, and John Reidl. Item-based collaborative fil-
tering recommendation algorithms. In World Wide
Web, pages 285–295, Hong Kong, 2001.

[49] Arun Sen. The role of opportunism in the software
design reuse process. IEEE Transactions on Software
Engineering, 23(7):418–436, 1997.

[50] Upendra Shardanand and Patti Maes. Social infor-
mation filtering: Algorithms for automating “word of
mouth”. In Proceedings of ACM CHI’95 Conference
on Human Factors in Computing Systems, volume 1,
pages 210–217, 1995.

[51] David Sprott. Enterprise resource planning: Compo-
nentizing the enterprise application packages. Com-
munications of the ACM, 43(4):63–69, 2000.

[52] Vijayan Sugumaran and Veda C. Storey. A semantic-
based approach to component retrieval. SIGMIS
Database, 34(3):8–24, 2003.

[53] Clemens Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley, New
York, USA, 2002.

[54] L. Ungar and D. Foster. Clustering methods for col-
laborative filtering. In Workshop on Recommenda-
tion Systems at the 15th National Conference on Ar-
tificial Intelligence, Madison, Wisconsin, USA, 1998.
AAAI Press, Menlo Park California.

[55] C.J. van Rijsbergen. Information Retrieval. Butter-
worths, London, 1979.

[56] Yunwen Ye. Supporting Component-Based Software
Development with Active Component Repository Sys-
tems. PhD thesis, University of Colorado, 2001.

[57] Yunwen Ye and Gerhard Fischer. Information deliv-
ery in support of learning reusable software compo-
nents on demand. In 7th International Conference on
Intelligent User Interfaces, pages 159–166, San Fran-
cisco, California, USA, 2002. ACM Press.

[58] Yunwen Ye and Gerhard Fischer. Reuse-conducive
development environments. Automated Software En-
gineering, 12(2):199–235, 2005.

[59] Edward Yourdon. Modern Structured Analysis. Your-
don Press, Upper Saddle River, NJ, USA, 1989.

[60] Amy Moormann Zaremski and Jeannette M. Wing.
Signature matching: A key to reuse. In 1st ACM
SIGSOFT Symposium on Foundations of Software
Engineering, pages 182–190, US, 1993. ACM Press.

[61] Amy Moormann Zaremski and Jeannette M. Wing.
Signature matching: a tool for using software li-
braries. ACM Transactions on Software Engineering
and Methodology, 4(2):146–170, 1995.

