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We rederive the main result in [1] in a shorter way, without combinatorics.
If we have m independent and identically distributed (i.i.d.) random variables
(rv.’s) Xq,..., X, with X; = X having cumulative distribution function (cdf)
Fx(z) = Pr(X <), then the r.v. X(,,,) = max; X; has cdf

Fx ., (x) =Pr(Xn <o) =1L, Pr(X; <o) = (Pr(X < x))" = F¢(x).

Let X be a uniform r.v. with support X = {1,2,...,k} modelling a fair die
with k faces. For z € X the cdf of X is

If Y{,,) is the maximum of the i.i.d. r.v.’s ¥1,...,Y, with ¥; = X and indepen-
dent of X1,..., X,,, then

Pr(X(m) > Yim) = Y Pr(X(my = a, Yy = )
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