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Abstract. As software organisations mature, their repositories of reusable software
components from previous projects will also grow considerably. Remaining conversant
with all components in such a repository presents a significant challenge to develop-
ers. Indeed the retrieval of a particular component in this large search space may prove
problematic. Further to this, the reuse of components developed in an Agile environ-
ment is likely to be hampered by the existence of little or no support materials. We
propose to infer the need for a component and proactively recommend that compo-
nent to the developer using a technique which is consistent with the principles of Agile
methodologies. Our RASCAL recommender agent tracks usage histories of a group of
developers to recommend to an individual developer components that are expected to
be needed by that developer. Unlike many traditional recommender systems, we may
recommend items that the developer has actually employed previously. We introduce a
content-based filtering technique for ordering the set of recommended software com-
ponents and present a comparative analysis of applying this technique to a number
of collaborative filtering algorithms. We also investigate the relationship between the
number of usage histories collected and recommendation accuracy. Our overall results
indicate that RASCAL is a very promising tool for allowing developers discover reus-
able components at no additional cost.

Keywords: Agile processes, Agile reuse, recommender agent, content-based filtering,
collaborative filtering, software reuse

1. Introduction

Reuse of software components has been proven to be an effective
means of reducing development time and costs whilst benefiting the
overall quality of the software (Hooper and Chester, 1991; Yongbeom
and Stohr 1998). A mature software development organisation is likely
to possess a large, growing repository of components from previous
projects. As this repository increases in size, so too does the challenge
for developers to remain conversant with all components. Various
component retrieval techniques have been developed to allow a devel-
oper to discover or locate components in which they are interested
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(Inoue et al., 2003; Sugumaran and Storey, 2003). In our work, we
shift the attention from component retrieval to component recommen-
dation. RASCAL, a recommender agent for software components in
an Agile environment, has been developed for two purposes. First we
wish to recommend software components that the developer is inter-
ested in. Second, and more importantly, we wish to recommend useful
components which the developer may not be familiar with or aware of.

Developers are not always eager to use reusable components even
if these components may be useful and improve productivity. A pro-
ductivity paradox (Carrol and Rosson, 1987) exists. Although reusable
components for solving problems are available, most developers are
not motivated to learn these reusable components. Yunwen and
Fischer (2002) discuss the reasons behind the lack of motivation.
A developer may give preference to a suboptimal solution as they
perceive the time and effort to locate and learn components to be
too costly. In addition, the current trend of Agile development advo-
cates minimal support documentation for such components and fre-
quent system releases. Little support documentation coupled with time
constraints makes reuse particularly challenging for Agile developers.
Agile development and the challenges surrounding reuse in an Agile
context is described in detail in Section 3. Several other factors have
been documented as to why reuse is often problematic (Frakes and
Terry, 1996; Schmidt, 1999) These challenges facing developers are the
main motivation for our work. We must assist and encourage devel-
opers in making full use of large component repositories by comple-
menting component retrieval with component recommendation. Our
goal is to recommend useful components to a developer in a way
which is consistent with the principles of Agile development; reusable
components currently being developed should not need any additional
documentation and reuse of such components should be appealing,
straightforward and require little additional effort from the developer.

The RASCAL implicitly gathers information about developer usage
histories of components and utilises this information to deduce or
infer the need for a particular component or set of components. Spe-
cifically the components referred to are Java methods. These inferred
methods are then recommended to the developer. The RASCAL con-
tinuously runs in the background, monitoring/updating a developer’s
usage history and frequently makes recommendations as illustrated in
Figure 1. Recommendations are produced primarily using a collabora-
tive filtering approach, however we make use of content-based filtering
to order recommendations. A basic principle of collaborative systems



A RECOMMENDER AGENT FOR AGILE REUSE 255

Figure 1. System overview.

is that users can be clustered into groups. Users in a group share pref-
erences and dislikes for particular items and are likely to agree on
future items. A recommendation for a user is based on the opinions or
ratings of other like-minded users. In Section 5, we demonstrate how
this clustering principle can be extended to software classes.

This paper describes the challenges faced by developers when
implementing a reuse program in an Agile environment. We also detail
an agent for recommending software methods which allows develop-
ers discover reusable methods for the purpose of improving devel-
oper productivity/quality and promoting software reuse. Repositories
of open-source Java code, available from SourceForge (OSTG, 2004),
are data mined and usage histories of components are automatically
collected and stored in a developer-preference database. Based on a
number of collaborative filtering approaches, with an extended con-
tent-based filtering ordering algorithm, we use the collected compo-
nent usage histories (user profiles) to recommend to a developer a set
of candidate Java methods that may be useful. A comparative analysis
of the results from each approach is given along with an investigation
into the relationship between the number of usage histories collected
and recommendation accuracy.

Several obstacles to reuse have been mentioned. In the following
section, we review related work in the area of component search,
retrieval and recommendation. In Section 3, we introduce Agile
Reuse; we discuss the likely benefits of such an approach and identify
the likely implementation difficulties. A brief overview of our system
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can be found in Section 4 followed by a description of the extended
collaborative filtering technique used to produce recommendation sets.
Section 6 details experiments and results. Finally in Section 7, we dis-
cuss how RASCAL can be extended and draw general conclusions.

2. Related Work

The development of reusable components and component libraries
has been an active research area for some time but this alone will
not encourage reuse. “A classified collection is not useful if it does
not provide a search-and-retrieval mechanism to use it” (Prieto-Diaz
and Freeman, 1987). Mili et al. (1998) classify traditional search and
retrieval methodologies into four categories, namely Keyword Search,
Faceted Classification, Signature Matching and Behavioural Matching.
Each of these retrieval schemes has a number of limitations that result
in less than adequate retrievals. The last two schemes, for example,
have been found to be cumbersome and inefficient (Sugumaran and
Storey, 2003). A common shortcoming of all these schemes is the fail-
ure to take into account the developer or relevant domain information
when querying the component repository.

More recently, several Semantic-Based retrieval schemes have been
proposed; typically while querying the repository the developer
specifies component requirements using natural languages which are
interpreted using a language ontology as a knowledge base. Compo-
nents in the repository will also have a natural language description.
Both the developer query and component descriptions are formalised
and closeness is computed. A set of candidate components can be
ranked based on their closeness value. Unlike the approaches men-
tioned above, domain information, developer context and component
relationships are all considered. Empirical results indicate that such
schemes are superior to traditional approaches (Girardi and Ibrahim,
1995; Sugumaran and Storey, 2003; Yao and Etzkorn, 2004).

Sourceforge (OSTG, 2004) is a large software repository where
various development projects take place using an open-source devel-
opment model (Raymond, 2004). Developers can search this site
to find real development projects, but no support is provided for
the retrieval of program components, portions of code, algorithms
and many others items which could potentially be reused. Compo-
nentRank (Inoue et al., 2003) is a promising component retrieval
technique which addresses this issue and is useful for locating reusable
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components. Similar to Google (Page et al., 1998), this approach ranks
components based on analysing use relations among the components
and propagating the significance of a component through the use rela-
tions. Preliminary results indicate that this technique is effective in giv-
ing a high rank to stable general components which are likely to be
highly reusable and a lower rank to non-standard specialised compo-
nents.

Drummond et al. (2000) present the use of a learning software
agent to support the browsing of software libraries. The active agent
attempts to learn the component the developer is looking for by mon-
itoring the developer’s normal browsing actions. Based on experimen-
tal results, 40% of the time the agent identified the developer’s search
goal before the developer reached the goal. By providing non-intru-
sive advice that accelerates the search, this work is intended to com-
plement rather than replace browsing.

A major disadvantage with all of the retrieval techniques above is
that the developer must initiate the search process. However, in reality
developers are not aware of all available components. If they believe
a reusable component for a particular task does not exist then they
are unlikely to search the component repository; none of the above
schemes attempts to address this important issue. Thus to effectively
and realistically support component reuse it is tremendously impor-
tant that component retrieval be complemented with component deliv-
ery/recommendation.

CodeBroker (Yunwen and Fischer, 2002) infers the need for com-
ponents and proactively recommends components, with examples, that
match the inferred needs. The need for a component is inferred
by monitoring developer activities, in particular developer comments
and method signature. This solution greatly improves on previous
approaches however the technique is not ideal. The reusable com-
ponents in the repository must be sufficiently commented to allow
matching. Developers must actively and correctly comment their code
which currently they may not do. Active commenting is an additional
strain placed on developers which may make the use of CodeBroker
less appealing and particularly unsuitable for Agile development where
emphasis is placed on understandable code as opposed to code com-
menting. A detailed explanation of Agile development is provided in
Section 3.

Ohsugi et al. (2002) propose a system to allow users discover use-
ful functions at a low-cost in application software such as MS Word
and MS Excel for the purpose of improving the user’s productivity;
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Convert Text to Table or Insert Picture are examples of MS Word
functions. A set of candidate functions is recommended to the individ-
ual, based on the opinions of like-minded users. The technique used
is an extension of traditional collaborative filtering algorithms used in
mainstream recommender systems such as Amazon (Bezos, 2004) and
Movielens (2004).

Our work is similar to a number of the techniques mentioned
above. We apply the Ohsugi et al. (2002) proposal to a different prob-
lem domain, namely reusable software components. Similar to Code-
Broker (Yunwen and Fischer, 2002) our goal is to recommend a set
of candidate software components to a developer; however our rec-
ommendations are based on the opinions of like-minded developers
and not the developer’s comments/method signature. Like Drummond
et al. (2000) we use an active agent to monitor the current devel-
oper though we are concerned with proactively recommending suit-
able reusable components as opposed to assisting the search process.
Unlike any of the related works our technique is specifically designed
to assist reuse in an Agile environment which can be particularly diffi-
cult as detailed in the following section.

3. Agile Reuse

Current trends place pressure on organisations to produce new
or enhanced software implementations quickly in response to an
ever changing environment (Cusumano and Yoffe, 1999). Agile
or lightweight software development methodologies were developed
primarily to address this problem of producing software in “Inter-
net time” (Turk et al., 2002). Agile methodologies promote early
and quick production of working code and allow for changing user
requirements. This is achieved by structuring the development process
into iterations where the aim of each iteration is to produce work-
ing code and other artifacts that provide value to the customer. In
many cases source code is the only deliverable that truly matters;
the role of analysis, design models, and documentation in the crea-
tion and evolution of the software is often marginalised (Turk et al.,
2002). Agile principles, found in the Agile Manifesto (Beck et al.,
2000), differ greatly from the more traditional rigorous or heavy pro-
cess models where early up-front design is advocated combined with
a strong emphasis on support documentation. Due to their simplistic
non-bureaucratic nature and the emphasis placed upon people versus
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process, Agile methodologies are proving favorable among developers
and customers alike, with Extreme Programming (XP) (Beck, 2000)
perhaps the best known and widely used Agile methodology (Theun-
issen et al., 2003).

Software reuse refers to the use of existing artifacts from previ-
ous projects as part of a new development project. Ad hoc reuse
has always existed. However as enterprises invest in developing and
maintaining large software systems in an increasingly competitive envi-
ronment, there exists the need for an effective and structured reuse
strategy (Sindre et al., 1993). Ten reusable aspects of any given soft-
ware project are presented by Frakes and Terry (1996) in their dis-
cussion of reuse metrics and models, these include requirements and
design reuse. In keeping with Agile principles, we are only concerned
with source code reuse in our present work. Successful reuse has
been shown to improve software quality and developer productivity
while reducing overall costs (Hooper and Chester, 1991). A reduc-
tion in time to market can also be achieved as detailed by Yongbeom
and Stohr (1998); successful industrial examples include (Griss, 1991;
Tirso, 1991).

Despite these desirable advantages several factors hamper reuse
as discussed in the introductory section. Factors vary from technical
difficulties such as support environments to developer attitudes. As
reuse becomes more prominent and accepted in industry, systems and
tools that aid and support reuse become a key aspect in achieving suc-
cessful reuse of software artifacts (Daudjee and Toptsis, 1994) This
notion is reflected by the shift in software reuse research from initially
focusing on techniques to develop reusable components and compo-
nent libraries to a focus on supporting reuse through intelligent stor-
age and retrieval strategies (Inoue et al., 2003; Sugumaran and Storey,
2003; Yao and Etzkorn, 2004).

Previously we mentioned the benefits of both Agile-based and
reuse-based software development. It is not clear however, how these
two engineering approaches can be carried out in tandem and very
little literature exists on this specific issue. It would be desirable to
employ Agile principles to produce simple clear software which is eas-
ily adaptable to changing requirements while also employing reuse
techniques to improve the software quality and reduce development
effort, time and cost. We introduce the term Agile Reuse to describe
such an approach. For the following reasons it is our position that
Agile Reuse is possible and indeed makes sense:
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– The simple nature of Agile software makes its reuse appealing to
developers. Software is produced in small increments and these
small units of software may actually be more reusable than soft-
ware developed under traditional rigorous methodologies.

– Agile development advocates quick frequent releases of working
code. Reuse will help to achieve this.

– Agile developers refactor their code on a regular basis and these
very skills are ideal for integrating and tailoring reusable compo-
nents to match specific needs.

However, implementing an Agile Reuse program is likely to be
problematic due to the contradictory principles of both approaches.
Table 1 displays a sample of the difficulties that may be encountered.

As a viable solution to the Agile Reuse challenges discussed in
Table 1, we propose the use of AI techniques. Based on experimenta-
tion, as detailed in Section 6, we have demonstrated that Java classes
can be clustered based on their usage of particular software compo-
nents. We employ collaborative and content-based filtering techniques,
as described in Section 5.3, to recommend a set of candidate reusable
components to a developer for a particular active class under develop-
ment. Recommendations for the active class are based on examining
similar classes to this class from within the active class’ cluster. The
use of a recommender agent, RASCAL, which continuously looks
for reusable components that the developer may be interested in, is
advantageous for a number of reasons as detailed below. These points
address the issues raised in Table 1

1. As the developer writes code our agent is always searching for
reusable components. Newly developed Agile components do not
need support documentation or commenting for our agent to
locate or recommend them. These components just need to have
been employed at some stage. Based on the context of such
employment, our agent will be able to determine when this com-
ponent is suitable for recommendation. No additional developer
effort is required, which is extremely important in an Agile envi-
ronment.

2. Developers need not initiate the process of component search and
retrieval. Instead our agent technology automatically recommends
or delivers a suitable component to reuse. We believe component
delivery will enhance, promote, and increase the feasibility of reuse
to Agile developers as they can quickly and easily employ reusable
components and thus produce working code quickly.
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Table 1. Agile reuse challenges

No. Technique Principle/Belief Challenge

1 Agile Working software is the
primary measure of success.
Less emphasis is placed on
design or support docu-
mentation and quite often
the source code is the only
available documentation

Reuse relies on support doc-
umentation. Locating an
undocumented component is
problematic; attempting to
reuse this component can be
daunting and unappealing to
a developer

2 Agile Customer satisfaction is
the main priority. This
is achieved through early
and continuous delivery of
working code.

The developer is focused on
producing small working units
of software as early as possi-
ble. If effective reuse support
tools do not exist then a
developer will perceive the
time taken to locate a reusable
component as too costly and
a burden to achieving their
overall goal

3 Agile Simplicity is essential Software developed with sim-
plicity in mind will often tend
to be very domain specific
and perhaps not as reusable
as software developed for a
more general or abstract task

4 Reuse Reuse should be planned This involves planning the
design of highly reusable
components. This is time con-
suming and goes against the
grain of Agile development,
in particular the principle of
simplicity

3. Intuitively, the authors believe that small simplistic units of soft-
ware developed under Agile methodologies may in fact be more
reusable or at least more appealing to reuse than software devel-
oped under more traditional heavy processes. The simplicity of
Agile components will foster their reuse. Agent technologies will
help to support and encourage such reuse which otherwise may
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not have occurred. Despite their simplicity, some components may
still be initially challenging to understand and integrate with exist-
ing work. Our recommender agent produces a recommendation for
a component to the active class by examining similar classes which
employ this component. Code snippets taken from the similar clas-
ses would be a very effective replacement for support documenta-
tion which often does not exist with Agile components. Research
has shown that developers prefer code examples of components as
opposed to descriptive texts (Yunwen and Fischer, 2002).

4. The use of agent technology will not directly produce more highly
reusable components. However reuse is intuitive and developer
willingness to reuse is evident by the fact that reuse has always
existed in software development to some degree, even with insuffi-
cient tool support. We believe our RASCAL agent will help
encourage high reuse of existing components and as a spin off will
help encourage developers to develop new components with reuse
in mind.

The potential benefits of an Agile Reuse strategy should be clear.
We have listed certain challenges which hamper such reuse and how
the use of automatic retrieval technologies can help to overcome
such challenges. In the following sections, we will describe in greater
detail the overall working of our recommender system and explain the
implementation algorithms used.

4. System Overview

As illustrated in Figure 2 our system consists of four components: the
active user, the code repository, the usage history collector and the
recommender agent. A description of each component is given below.
Our current implementation language is Java, but RASCAL is easily
adaptable to any OO programming domain.

4.1. Active user

The active user can be defined as the developer of the current active
class or the current active class itself; the distinction will be clear from
the context of the discussion. A class is active if it is currently under
development, we assume there to be only one active class at a time.
When monitoring user preferences we only consider the usage history
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Figure 2. System overview.

of the current active class and not any other classes this developer
may have previously written. A user rating or preference for a soft-
ware component is based on frequency of use of that particular com-
ponent (item).

4.2. Code repository

Many organisations will maintain a repository of code from previ-
ous projects, external libraries, open-source projects, etc. This reposi-
tory will be continually updated as new classes/systems are developed.
All classes developed by the active user are added to the code reposi-
tory. Code repositories contain a wealth of valuable information. The
repository is effectively a user preference database, where a user is a
Java class and the components employed by a class are items. In our
work, we used the open-source Sourceforge (OSTG, 2004) repository.

4.3. Usage history collector

The usage history collector automatically mines the code repository
to extract usage histories for all users, which are actually Java classes.
This will need to be done once initially for each class and sub-
sequently when a class is added to the repository. We extract this
information using the Bytecode Engineering Library (Apache, 2003).
Component usage histories for all the users are then transformed into
a user-item preference database, as shown in Figure 3. We can use
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Figure 3. Sample user-item database.

this database for various tasks such as establishing similarities between
users and inferring relationships between components such as order of
use. Currently our database contains a user-item preference matrix for
all users. Also for each individual user we store a list of components
based on their actual usage order. The latter information will be used
in Equation (5) in Section 5.2.

4.4. Recommender agent

The agent actively monitors the active user and is constantly updat-
ing the user preferences. The agent attempts to establish a set of users
who are similar to the active user by searching the user-item matrix
produced by the usage history collector. The agent then recommends
a set of ordered components to the current user. The actual recom-
mendation technique and the technique for measuring the similarity of
two users is described in the following section.

5. Recommending Components

A distinction between our recommender system and most mainstream
recommenders is that we are trying to predict, in order, the next likely
items a developer will employ. Many typical recommender systems
only predict a vote for items which the user has not yet tried. Our
aim is to predict the next software components to use and it is quite
likely that the developer will have used or voted on many of these
items in the past. In our approach a recommendation set is produced
primarily using collaborative filtering. We also make use of a content-
based filtering approach to order this recommendation set. The com-
ponent which we believe to be most useful to the current developer at
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this time will appear first in the recommendation set. Below we detail
collaborative filtering and the algorithms used to produce our initial
recommendation set. We follow this with an overview of the princi-
ples of content-based filtering and the algorithm used. We conclude
by explaining how we have integrated collaborative and content-based
filtering.

5.1. Collaborative Filtering

The goal of a collaborative filtering (CF) algorithm is to suggest new
items or predict the utility of a certain item for a particular user
based on the user’s previous preference and the opinions of other like-
minded users (Sarwar et al., 2001). The CF systems are founded on
the belief that users can be clustered. Users in a cluster share prefer-
ences and dislikes for particular items and are likely to agree on future
items. In the context of this paper, a user can be considered a Java
class and an item refers to a software component and more specifi-
cally a Java method.

The CF systems are often distinguished by whether they operate
over explicit versus implicit votes. GroupLens (Resnick et al., 1994),
the first recommender system based on CF to automate predictions,
is an example of an explicit voting system. The user consciously votes
for items on a scale of one (bad) to five (good). Our developed system
uses implicit voting; we automatically deduce the user vote for an item
by monitoring the user’s frequency of usage of that item.

Breese et al. (1998) classified CF algorithms into two main classes,
Memory-Based algorithms and Model-Based algorithms. Memory-
based algorithms operate over the entire user database to make pre-
dictions. In contrast, model-based algorithms use the user database
to learn a model which is then used for recommendations. Memory-
based methods are simpler, seem to work reasonably well in prac-
tice and new data can be added easily. For these reasons we decided
to use a memory-based algorithm. The following section details the
recommendation algorithm developed by Breese et al. (1998); we will
extended this algorithm in Section 5.3.

5.1.1. Recommendation algorithm
Recommendations are produced from the database of user-item pref-
erences; these preferences are actually a usage count of the item for
each user. The user preference database consists of a set of votes vij

corresponding to the vote by user i for item j . The mean vote for user
i is calculated as follows:
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vi = 1
|Ii |

∑

j∈Ii

vi,j (1)

where Ii is the set of items the user i has voted on. The predicted vote
for the active user a on item j , paj , is a weighted sum of the votes of
the other similar users:

paj =va +N
∑

i∈kNN

wa,i

(
vi,j −vi

)
(2)

where weight wa,i represents the correlation or similarity between the
current user a and each user i. kNN is the set of k nearest–neigh-
bours to the current user. A neighbour is a user who has a high-simi-
larity value, wa,i , with the current user. The set of neighbours is sorted
in descending order of weight. For experiments, we used a value of
k =8. N is the normalising factor such that the absolute values of the
weights sum to unity. From Equation (2) we can now predict a user’s
vote for any item in the user-item preference database. The standard
techniques used to calculate wa,i are briefly discussed below (for fur-
ther explanation see Breese et al., 1998).

Correlation. This is a simplistic technique for calculating similarities
between users. The correlation between users a and i is

wa,i =
∑

j (va,j −va)(vi,j −vi)√∑
j (va,j −va)2

∑
j (vi,j −vi)2

(3)

where the summations over j are over the components that both users
a and i utilised.

Vector similarity. Each user is treated as a vector; the vector holds
a count for all components that a user can invoke. The count will
hold a value of zero if the user has never used the particular method.
The similarity between two users can be computed by determining the
cosine of the angle formed by their vectors. This weight is now

wa,i =
∑

j

va,j√∑
k∈Ia

v2
a,k

vi,j√∑
k∈Ii

v2
i,k

(4)

where the squared terms in the denominator is used to ensure users
who use many components do not appear more similar to other users.
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Inverse user frequency. The purpose of this technique is to reduce
weights for commonly used components such as standard Java meth-
ods toString() or parseInt(). The motivation for this technique
is the belief that items universally liked are less beneficial in capturing
similarity than less liked items. The frequency of use for item i, fi is
defined as log n

ni
where ni is the number of users who voted for item i

and n is the total number of users in the user preference database. We
can apply inverse user frequency to the vector similarity technique in
Equation (4) by simply transforming the user vote to include the item
frequency; for example, va,j is replaced with va,jfj .

5.2. Content-based filtering

Like CF, the goal of content-based filtering (CBF) (Oard and
Marchionini, 1996) is to suggest or to predict the utility of certain
items for a particular user. The CBF recommendations are based
solely on an analysis of the items for which the current user has
shown preference. Unlike CF, users are assumed to operate indepen-
dently. Items which correlate closely with the user’s preferences are
likely to be recommended. For example, in a movie recommender sys-
tem we would analyse the movies that the current user has rated per-
haps analysing movie genre to recommend movies of a similar genre;
(Wasfi, 1999) and (Chesnais et al., 1995) present examples of content-
based recommender systems. In our work instead of analysing genre,
we analyze the order in which components are used.

5.2.1. Recommendation algorithm
Content-based filters usually examine item properties such as keywords
or genre in order to calculate the similarity between this item and the
user’s preferences and hence to determine the predicted vote. In our
recommender system, we examine the order in which the current user
has employed particular items and use this as a basis for calculating a
predicted binary vote. Our CBF technique is not intended to be used
in isolation but rather it is intended to complement the collaborative
approach discussed earlier. The algorithm discussed below is not pure
CBF as we examine the neighbour users established using CF. However
in principle we could learn content information (such as component
ordering) by examining the preferences of random users or all users.
For example, for each component in our repository we could store a
list of components that frequently precede and succeed uses of that
component. Implementing such an approach may be computationally
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Figure 4. Component ordering.

expensive, which is an important consideration when developing a real-
time recommender. We intend to investigate this further.

As stated in Section 4.3, for each user we have stored a list of the
actual usage order of items. For example we can determine that user
a used item x followed by item y. When making a content-based pre-
diction for item j to the current user a, we examine the last item
the current user a used by looking at the user’s associated item-usage
list, Preva. We also examine the item previous to item j that user i

employed, we will refer to this is Previ,j . If item Preva is identical
to item Previ,j then intuitively it is likely that the current user will
want to use item j next; indeed it may even be necessary. From Fig-
ure 4, when making a prediction for the current user a on the item
setAlignmentX() which is used by user i, we check to see if the
last item employed by the current user (setText()) is the same as
the previous item user i used before item setAlignmentX(). These
two items are the same so we would expect to recommend set-
AlignmentX() next. Note using pure CF setAlignmentX() and
setAlignmentY() would be recommended equally with the same
predicted vote. Our CBF technique ensures setAlignmentX() is
recommended first. This technique can be extended to look back for
the longest item-usage pattern similarities but for simplicity in our
current system we only look back one item from item j . We now
define ba,i,j which is the predicted vote using CBF:

ba,i,j =
{

1 if Preva = Previ,j

0 if Preva �= Previ,j
(5)

where a is the current user, i is a neighbour user from a user preference
database and j is the item we are currently making a prediction for.
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5.3. Integrating collaborative and content-based filtering

The combining of collaborative and CBF is not a novel idea (Alspector
et al., 1998; Claypool et al., 1999) but it is particularly suited to our
problem domain. Having established the set of k-nearest–neighbours
for an active user using the similarity algorithms discussed earlier we
now calculate the predicted vote for all items that their nearest–neigh-
bours invoked using Equation (2). However, we extend this equation
to take into account the predicted vote determined using CBF. The
content-based predicted vote can be considered a bonus value given
for item-order similarities. Our final equation for calculating the pre-
dicted vote for the active user a on item j , paj , is as follows

paj =va +N
∑

i∈kNN

((
wa,i

) (
vi,j −vi

)+ (
ba,i,j

) (
wcbf

))
(6)

where wcbf is the predefined weight given to the content-based pre-
diction value. In our experiments, we use wcbf =0.50. Referring back
to Figure 4, the above equation ensures both setAlignmentX()
and setAlignmentY() are recommended, however, setAlign-
mentX() will appear before setAlignmentY() in the recommenda-
tion set.

6. Recommendations-Evaluation and Analysis

6.1. Outline of experiment

We have conducted experiments to investigate the similarity algorithm
discussed in Section 5.1.1 for determining similarities between users
and have ascertained which algorithm leads to the most accurate pre-
dictions based on Equation (6).

The component repository used in these experiments contained
761 methods from the standard Java Swing library. Recommendations
were made for a total of 228 Java classes (users) taken from 30 GUI
applications in SourceForge (OSTG, 2004). This included classes that
may have been unique or dissimilar from other classes thus having
a negative, though realistic, effect on overall average recommendation
accuracy.

In each class several sets of recommendations were made. For
example, if a fully developed class used ten Swing methods, then we
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removed the tenth method from the class and a recommendation set
was produced for the developer based on the preceding nine meth-
ods. Following this recommendation the ninth method was removed
from the class and a new recommendation set was formed for this
developer based on the preceding eight methods. This process was
continued until just one method remained. Each recommendation set
contained a maximum of five methods (methods with the highest pre-
dicted vote) as we believe this is a sufficient lookahead for a developer.

6.2. Evaluation

Precision and Recall are the most popular metrics for evaluating infor-
mation retrieval systems. Precision is defined as the ratio of relevant
recommended items to the total number of items recommended, as
shown in Equation (7). This represents the probability that a selected
item is relevant.

p =nrs/ns (7)

where nrs is the number of relevant items selected and ns is the num-
ber of items selected. An item, or component, is deemed relevant if it
is used by the developer. Recall, as shown in Equation (8), is defined
as the ratio of relevant items selected to the total number of rele-
vant items. This represents the probability that a relevant item will be
selected.

r =nrs/nr (8)

where nrs is the number of relevant items selected and nr is the num-
ber of relevant items.

6.3. Analysis

6.3.1. Experiment 1
Figure 5(a) compares the prediction accuracy for each of the three
similarity measure techniques plus a baseline result. The baseline rec-
ommendations were produced by recommending the top five used
methods (ignoring method signature) at each recommendation stage.
The graphed results indicate the likelihood that the next method the
user will actually employ being in the recommendation set. The next
method can be determined by looking back at the original Java class.
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Figure 5. (a) Next component recommended (b) Precision (c) Recall (d) Size of
user-item preference database V recommendation accuracy.

For the Vector Similarity technique, on average we will correctly pre-
dict the next method the developer will use 32% of the time when the
developer has only utilised 10% or less of the total methods he/she
will actually employ. This encouraging result improves as the devel-
oper has utilised more methods. For all recommendations based on
Vector Similarity there is a 43% likelihood that we will correctly rec-
ommend the next method the developer would use. Vector Similarity
outperforms all of the other techniques at all stages of recommenda-
tions. Surprisingly, Inverse User Frequency performs poorly compared
with Vector Similarity which suggests universally liked items are actual
useful for establishing user similarities in our examples. Figure 5(b)
and (c) display the precision and recall values for each technique.
Based on the Vector Similarity technique; recall was on average 39.8%
and average precision was 22.7%. When compared to our baseline,
these promising results illustrate RASCAL’s potential as an effective
component recommender.
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6.3.2. Experiment 2
We conducted an experiment to investigate the importance of the
number of user preferences collected. We produced recommendations
for 50 users based on the 228 user-item preferences collected. Fol-
lowing this we then produced recommendations for the same 50
users based on a smaller user-item preference database of 128 users
after removing 100 random user-item preferences. Both recommenda-
tions are based on the Vector Similarity technique. The results are
displayed in Figure 5(d). As shown, recommendations are margin-
ally better when the larger user preference database is used. This
suggests that there is a relationship between the number of user pref-
erences collected and recommendation accuracy. However this rela-
tionship is not significant and it does not warrant having an extremely
large user preference database which would have a negative effect on
recommendation response times. Further experiments are needed to
determine the optimum number of user preferences.

7. Conclusions

In this paper, we have proven that Java classes, like humans, can be
clustered based on their usage of, or preference for, particular items.
We introduced the concept of Agile Reuse and identified specific issues
which hamper such reuse. In addressing these issues, we proposed a
collaborative content-based recommendation technique to recommend
an ordered set of reusable software components to a developer. We
also compared three techniques used in CF to establish the similar-
ity between two Java classes and found vector similarity to be most
effective. Our recommendation scheme addresses various shortcomings
of previous solutions to the component retrieval problem; RASCAL
considers the user context and problem domain but uniquely does not
place any additional requirements on the developer. The RASCAL is
the first recommender system designed specifically to support Agile
Reuse.

From experimental results, we have shown RASCAL to be an
effective reuse support tool. Opportunities exist to expand RASCAL’s
scope though. At present, only Java Swing components are recom-
mended but we believe RASCAL is capable of being developed into
a general recommender; recommending varied types of software com-
ponents. However, the number of reusable components in a repository
is potentially huge and developing such a system would be complex.
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Concept Analysis (CA) (Snelting and Tip, 2000) is one possible solu-
tion to developing such a large scale recommender system. The CA
could be used to categorise users; for example there may be a cate-
gory for database component users and another for GUI component
users. Once categorised, a user-preference database for each type of
user could be established. During the actual recommendation process
CA could be used to categorise the class that the developer is cur-
rently writing and hence determine the most suitable user-preference
database to use for producing recommendations. At this point, a set
of candidate software components can be recommended to the cur-
rent developer using the recommendation techniques discussed in this
paper.

RASCAL offers unsolicited advice and we must be sensitive to
this in our delivery of recommendations. All recommendations to date
have been validated in an automated fashion. If recommendations are
to be presented to a developer for validation in realtime, as in a real
software tool, then user trials will be needed. Factors such as accept-
able recommendation times, component delivery and component inte-
gration should all be considered. It may also be necessary to explain
how recommendations were derived and give a confidence value for
each recommended component. The development of an non-intrusive
Eclipse plug-in could be a feasible approach to implementing a real-
time recommender. Recommended components could complement the
existing context-sensitive list of methods recommended by the Eclipse
IDE.

The AI techniques have proven effective in producing recommen-
dations for a Java class to a developer. Our technique produces a rec-
ommendation based on Java classes similar to the current class under
development. This technique has worked well. It may be beneficial to
considering different granularities of users apart from an entire Java
class. Recommendations could then be based on methods similar to
the current method under development or indeed a hybrid approach
could be implemented which would consider both method and class
level similarities.

Recommender systems are a powerful technology that can cheaply
extract additional knowledge for a software company from its code
repositories and then exploit this knowledge in future developments.
We have demonstrated that RASCAL offers real promise for allowing
developers to discover reusable components with minimal effort. When
relatively little information is known about the user we can make rea-
sonably good predictions and our future work will likely strengthen
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these recommendations. We believe RASCAL will aid developers
whilst improving their productivity, enhancing the quality of their
code and promoting software reuse.
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