
Case Study on Analogical Reasoning to Provide Conceptual Support
for Software Reuse

Rushikesh Amin, Mel �O Cinn�eide and Tony Veale
Department of Computer Science, University College Dublin,

Bel�eld, Dublin 4, Ireland.
frushikesh.amin, mel.ocinneide, tony.vealeg@ucd.ie

Abstract. Analogical Reasoning is a widely-used technique for thepurpose of transferring knowledge from one domain or system to an-other. Existing research has already proven analogical reasoning to bevaluable in the context of software reuse. In LASER (Lexical Analogyfor Software-Engineering Reuse), we use analogical reasoning to �ndreusable software components by associating a class name with its con-ceptual representation in an English-language lexical-ontology such asWordNet. This enables us to provide support for software reuse withoutrequesting any special information from the user, and without requiringthat the reusable components have been tagged with any special anno-tations. Components are proposed for reuse by identifying the distancebetween them in a semantic net built on WordNet. In this paper wepresent the results of experiments to determine the applicability of thistechnique to recently-developed software.

1 Introduction
Software reuse involves the creation a software system using existing software
components rather than the more expensive and time-consuming creation of a
system ab initio. Reuse, in its broadest sense then, can be viewed as the reapplica-
tion of knowledge from one system to another [2]. In particular, reuse of software
components can enhance programmer productivity and increase the quality of a
software system while reducing its cost and development time. However, there
are some downsides to the reuse philosophy. Firstly, developers are not always
eager to use reusable components. Secondly, in order to promote reuse, it is nec-
essary to locate, understand, evaluate, and adapt existing software components.
The provision of intelligent support for these reuse tasks is not a trivial matter.

One approach to the provision of reuse support is the creation of a software
component library. A major di�culty in designing software libraries is in the
selection of a component representation that will facilitate the classi�cation and
retrieval processes. Another possibility is the use of UML-level reuse techniques
[7, 8], but in this case developers have to annotate and index their software
designs for future reuse. When viewed in the context of the current popularity
of Agile Processes [11], where little up-front design is performed and even code
commenting is kept to a minimum, the weaknesses of this approach become
apparent.

Arti�cial Intelligence has contributed to overcoming these problems in past
research and it has even been stated that \software reuse is the common ground



2
where AI and software engineering will meet" [13]. In recent years various AI
techniques including analogy, collaborative �ltering and fuzzy logic have proven
useful in the area of software reuse [3]. In our approach, called LASER (Lexical
Analogy for Software-Engineering Reuse), we use code-level analogical reasoning
to suggest the conceptually most relevant reuse component to the developer by
using WordNet, a knowledge base of the English lexicon [5].

Analogical reasoning is a widely-used problem solving technique to trans-
fer knowledge from one system to another [9].Carbonell introduce the concept
of derivational analogy to integrate complete derivational traces to previously
solved problems. Analogy involves a structural comparison of two concepts that
appear substantially di�erent on the surface but which exhibit important causal
or semantic symmetries. Indeed, computational models of analogy have already
shown themselves to be valuable in the development of UML level reuse tech-
niques, e.g., the ReBuilder project [7, 8]. The linguistic and conceptual ability of
analogy allows words and their meanings to play an important role in the e�ec-
tiveness and comprehension of analogies. In modern OOP languages like Java,
which encourages the use of meaningful naming for entities with conceptual cor-
relates, like classes (categories), variables (attributes) and methods (behaviours),
names and their lexico-semantic connotations can be used to obtain a greater
degree of understanding of a program in terms of the concepts it is designed to
model. For example, if class and variable names can be parsed to reveal concep-
tual categories from WordNet, LASER can use common-sense knowledge about
how these categories combine to derive a conceptual representation of the soft-
ware being developed. Furthermore, this conceptual level of understanding can
supplement the analogical reasoning needed to retrieve 'conceptually similar'
components from the source code repository.

In this paper we present our ongoing work on the application of analogy to
the software reuse domain. We have completed a preliminary study by analysing
the source code of JRefactory [6], an open source refactoring tool, to determine if
class and method names follow their natural language meanings and to determine
if the extension relationship between a class and its associated superclass re
ects
the lexico-conceptual relationship between the name of the class and the name
of its parent. As a basis for our work we are using WordNet, a lexical database
that provides, in addition to basic thesaurus capabilities, a form of conceptual
structure that can be exploited for reasoning.

In the next section we introduce related work while in section 3 we describe
the system components, including analogy modules, of LASER. In section 4 we
then describe how we use WordNet as a knowledge base. Various case studies
are presented in section 5 and �nally, in section 6, conclusions are presented and
some directions for future research are outlined.

2 Related Work
Several research e�orts have aimed to provide support for software reuse through
the use of analogical reasoning. Most of them provide some form of support for



3
the software developer in retrieving and tailoring selected reusable components.
From these we have selected those that are similar to our work and discuss them
further here.

ReBuilder [7, 8], a software tool being developed in the AI Lab of the Univer-
sity of Coimbra, uses WordNet to index and retrieve software cases. ReBuilder
allows analogical retrieval and mapping between UML descriptions of software
systems, and uses analogical transfer to 
esh out a new software design based
on structural parallels with a pre-existing design. However, the bene�ts of this
reuse scheme can only be reaped by those developers who take the time to tell
ReBuilder how to appropriately annotate and index their software for future
retrieval.

Ira, a prototype tool, uses analogical reasoning to reuse software speci�ca-
tion [14]. Ira supports the software designer by obtaining customization guid-
ance from the software designer to retrieve candidate speci�cation from software
repositories to tailor the retrieved candidate speci�cations to the target domain.

An interactive environment to help the software designer reuse requirement
speci�cations is described by Spanoudakis and Constantopoulos [10]. The inter-
active environment deals with the object oriented speci�cation and retrieves the
reuse candidates by identifying their level of similarity.

Reuse of OOram (Object-oriented role analysis modelling) using analogical
reasoning is described in [12]. They explore WordNet for �nding similarities
among OOram components. Retrieval phase in this case supports both structural
and semantic similarities. The ranking of base models after retrieval decides what
models are passed to the mapping phase.

3 Analogical Reasoning in LASER
Analogical reasoning in LASER is applied at the code level rather than at the
UML level in order to develop a conceptual understanding of software being
developed. The system architecture of LASER comprises the following modules
as shown in �gure 1.

Fig. 1. System architecture of LASER



4
3.1 Knowledge Base
The Knowledge base in LASER comprises two main modules:
1. Source code from the open source code repository
2. WordNet
Source Code Repository: The object-oriented paradigm facilitates reuse of
code by packaging the most reusable structure and behaviors into distinct classes.
The programmer can extend the basic functionality of these classes and/or mod-
ify it to obtain the desired functionality. Our research currently focuses on soft-
ware written in the Java programming language. In LASER, the source code
repository contains a valuable wealth of Java classes. As new classes are added
to the system being developed, LASER automatically updates the code reposi-
tory.
WordNet: LASER uses WordNet [5],a broad coverage knowledge base of En-
glish Lexicon, to retrieve semantically similar components from the code reposi-
tory. WordNet supports conceptual search rather than merely alphabetical, and
is an interesting system in this respect. WordNet is built around the notion
of a synset, a set of synonyms (or near-synonyms) that can each denote the
same underlying concept. For our initial experiments with LASER we exploit
the large number of noun-synsets provided by WordNet (over 70,000), as well
as two semantic relations, is-a and part-of, that WordNet uses to connect these
synsets into a taxonomy and a partonymy respectively. For example, Student
is-a Person and Classroom is part-of School. The is-a hierarchy of the noun
person is shown in �gure 2. LASER suggests a component for reuse by �rst
considering the lexico-semantic meaning of the target class T under construc-
tion. identifying the distance, and by then exploring similar source concepts S
in WordNet whose synsets name a corresponding classes in the software reposi-
tory. WordNet also allows LASER to predict potential parent classes using the
same lexico-conceptual knowledge. For example, WordNet can be used to look
up all synsets containing the word Person to �nd synonyms and hypernyms like
Individual and Entity. This will allow LASER to propose reuse-connections
between a new class called Person and classes called Individual or Entity if
these already exist in the repository.
3.2 Analogy module
Analogy has been considered to be the process of transferring knowledge from
a base case to the target case. In LASER, we apply lexically-driven analogy
at code-level rather than at abstract component-level to retrieve semantically
similar components from the source code repository. The computational model
for analogical problem solving can be described in 5 parts [9], as depicted in
�gure 3. We now expand further on Retrieval, Expansion and Mapping in the
context of LASER. Justi�cation and Learning are omitted as these are issues we
have not yet addressed.



5

Fig. 2. is-a hierarchy for di�erent senses of the noun person"

Fig. 3. Analogy Modules in LASER

Retrieval: This involves the retrieval of most relevant cases from the knowledge
base. For example consider the following context:

public class School extends
By using analogical reasoning we can implement di�erent strategies to suggest
new superclass for the class School. Using WordNet as a knowledge base, we can
suggest a superclass that has more general meaning than School, for example
Institution, Organization etc.

Expansion: Expansion involves the suggestion of new ideas to the software
developer. Consider a context in which a developer begins to create an appli-
cation for a school, starting with the creation of a class called Student. This
may allow LASER to retrieve an existing software design for a hospital, based
on the similarity of the Student and Patient classes. Structure-mapping be-
tween the nascent elements of the school system and the existing case for a
hospital might then suggest that the school system needs classes for Desk, Room,
Class, Teacher, Principal and TeachingAssistant. LASER may create stubs
for these classes automatically and add them to the current project speci�cation.



6
Mapping: Mapping refers to the transfer of knowledge from the base case to the
target case. In LASER, we intend to conceptually ground the transfer process
by making it lexically-driven. We use a similarity metric for mapping the target
object synset and base object synset (see section 4 for more detail). The analogy
module then suggests the best reuse component to the developer amongst all
possible base components.

4 A Similarity Metric for WordNet

LASER therefore selects a component to be reused by identifying the conceptual
distance between the target case under construction by the user and a source
case from the repository. Given a new class named T by the user, this analogical
target can be matched with an existing source class S from the repository if the
WordNet concept (or synset) underlying both S and T are su�ciently similar
according to some metric. In designing this metric we consider the three factors
discussed by Gomes [7].

Consider a target class (the class under development) whose name can be
mapped to a synset T, and a source class whose name is associated with synset
S. Then MSCA(S, T) is the Most Speci�c Common Abstraction synset between
S and T. For example MSCA(cat, dog) will be carnivore.

Taxonomical distance similarity: This measures the similarity between
synset S and synset T in the WordNet ontology. The higher the value, the more
similar are the synsets, and hence the closer they are.

Ts = 1� D(S;MSCA(S; T )) +D(T;MSCA(S; T ))
2 �MaximumDepth (1)

Where D(S, MSCA(S, T)) is the distance between S and MSCA(S, T), and
MaximumDepth corresponds to the longest is-a path in the WordNet taxonomy.

Equilibrium measure: This relates to the equilibrium degree of the tree com-
posed of all synsets between S and MSCA(S, T), and all synsets between T and
MSCA(S, T). The closer the value is to 1.0, then the more balanced are the
distances between S-MSCA(S, T), and T-MSCA(S, T).

Em = 1� jD(S;MSCA(S; T ))�D(T;MSCA(S; T ))jp(D(S;MSCA(S; T )))2 + (D(T;MSCA(S; T )))2 (2)



7
Absolute depth measure: This is related to the taxonomical depth of
MSCA(S, T). The closer this value is to 1.0, then the deeper the MSCA(S,
T) is located.

Ad = Depth(MSCA(S; T ))
MaximumDepth (3)

Here Depth(MSCA(S, T)) is the minimal distance from MSCA(S, T) to a taxo-
nomical root synset.

The analogical algorithm uses these three measures in a weighted sum to
select the best mapping object from a list of candidates.

Similarity metric: We use following similarity metric between synset S and
synset T.

if MSCA(S; T ) not exists) �1: (4)

if MSCA(S; T ) exists) w1 � Ts + w2 � Em + w3 �Ad: (5)

Where w1, w2 and w3 are the weights associated with each factor. The values
selected for this case study are: 0.55, 0.3 and 0.15 respectively (see [8]). The
closer this value is to 1.0 the more similar the synsets are perceived to be.

The similarity metric we have just described will be used in section 5.3 to
attempt to predict the superclass of class that is currently being developed.

5 Case Study
In this section we describe a number of di�erent case studies intended to assess
the performance of LASER. We analysed JRefactory, an open source refactory
tool written in Java that contains 1259 classes and 6966 methods. The �rst case
study simply tested if class and method names used in JRefactory were to be
found in WordNet. The remaining two case studies focussed on the inheritance
relationship between classes and whether correct superclass prediction is possi-
ble.

5.1 Linguistic ability of class names and method names
Our fundamental hypothesis is that most programmers follow natural language
conventions in naming classes, methods and variables, even if most names are
in fact compound terms. A programmer name can be mapped to a synset in
WordNet if the name actually occurs in a synset (e.g., consider a class named
Client or Server), of if the linguistic head of a compound name appears in a synset



8
(e.g., consider a class named WebClient, where the capitalization convention in
Java allows LASER to isolate the head Client in the compound).

One way to test this hypothesis is to determine the percentage of programmer
names that can be mapped to WordNet in this way [1]. Once this is done, we also
need to determine whether the names so mapped actually re
ect their conceptual
interpretations. To do this, we consider how many extension class and parent
class pairings have names that can be mapped to WordNet synsets that in turn
partake in a taxonomic is-a relationship.

As we discussed in [1], LASER decomposes a given class name using the cap-
italization standard conventionally used in Java programs. Acknowledging that
there are frequent lexemes used by programmers that do not occur in Word-
Net (like API, int, etc.) we include the most common of these as an extra form
of lexical knowledge. An example of how LASER interprets a class name is as
follows:

Class Name Match after decomposition Average match

MyBeerCase My=100% Beer=100% Case=100% 100%

MyBeerPZK My=100% Beer=100% PZK=0% 66.66%

Table 1: Average accuracy match for each class with WordNet
The �nal result is calculated as follows.

Ravg =
NX
i=1

(Pavg=N) (6)

Where Ravg is the average accuracy of percentage match with WordNet.
Pavg is Accuracy of match per class and N is Total number of classes, 1259 in
this case. Results of experiment are shown in table2.

Accuracy of match with WordNet

100% Match 0% Match Average Match

Class Names 66% 0.6% 85%

Method Names 61% 3% 75%

Table 2: Class and method names match with WordNet
Although this is as yet only a pilot study, the results are very promising as
regards the goals the LASER project. The vast majority of class names and
their lexical components, and a strong majority of method name components,
are amenable to conceptual annotation using linguistic techniques.

5.2 IS-A relationship between class and superclass name
The second part of our case study concerns not whether class names can be
mapped to WordNet synsets, but whether class names that can be so mapped
actually conform to the conceptual meaning given to them by the mapping. For
example, if the name of a class and the name of its parent class can both be
mapped to WordNet synsets, we should expect that the extension relationship in



9
Java should be mirrored by a taxonomic relationship between the corresponding
synsets.

1259 pairs of class and superclass names can be found in the JRefactory
repository. Perhaps surprisingly, but pleasantly so, over 84% of these pairings can
be mapped to WordNet to �nd a corresponding is-a relationship. This strongly
vindicates the somewhat speculative hypothesis that LASER is founded upon,
namely that a linguistic analysis of program elements can yield a conceptual
insight into the modelling intentions of the programmer and the actions of the
software itself.

5.3 Prediction of superclass using similarity metric

We build on this result to demonstrate that the linguistic interpretation of a
class name can be used to suggest an appropriate parent class from which to
inherit and reuse behaviour. Suppose a developer is about to implement class
named Customer. Based on the conceptual meaning of this class name Customer
in WordNet, LASER can suggest the most suitable existing classes to extend,
such as Borrower, Agent, Client, and so on.

If we consider Customer as synset S and Borrower as synset T as described
in section 4, then the MSCA(S, T) is Person. D(S, MSCA(S, T)) value of 3
is the distance measured in is-a links between Customer and Person, while
D(T, MSCA(S, T)) also yields a value of 3 with MaximumDepth = 17 and
Depth(MSCA(S, T)) = 4. Likewise, for Customer and Agent these values are 7,
2, 9 and 17 respectively. The following table shows the value of all three factors
that are used in the similarity metric of section 4.

Target Class-Base Class Three Factors Match using similarity metric

Customer-Borrower Ts=0.83 Em=1.0 Ad=0.23 0.791

Customer-Agent Ts=0.736 Em=0.32 Ad=0.0 0.50

Table 3: Calculation using similarity metric
The similarity metric in LASER can thus correctly predict Borrower as a

more generic class for the class Customer.
For our current experimental purposes LASER gathers all class names from

the same repository and uses the similarity metric to suggest the most appropri-
ate superclass for that class to extend. We measure the accuracy of this sugges-
tion mechanism by second-guessing every extension relationship in our JRefac-
tory repository, to determine whether LASER would assign the same parent
class as that assigned by the original developer.

Overall, out of the 1259 classes in the repository, LASER correctly predicts
the same superclass as the original developer in 60% of cases. The result suggests
that WordNet can indeed act as the knowledge-based backbone on which an
e�ective software-reuse system can be built.



10
6 Conclusion and Future Work
Analogical Reasoning enables a software environment to provide automated sup-
port for software reuse. In our case study we present some encouraging results
to prove the linguistic applicability of WordNet to reasoning in software domain.
This reasoning can allow LASER to apply lexically-driven analogy at the code
level for better understanding of the developer's conceptual goals.

Future work on LASER will be focus on the use of structure-mapping analogy
to supplement the level of linguistic reasoning described here, We predict that,
given our current results, WordNet can provide a 
exible substrate on which to
build such a model of software analysis.

7 Acknowledgement
The authors would like to acknowledge the �nancial contribution of Faculty of
Science, University College Dublin to this project.

References
1. Amin, R. and �O Cinn�eide , M. and Veale, T. ,LASER: A Lexical Approach to Anal-ogy in Software Reuse, Mining Software Repositories Workshop, Edinburgh,2004.2. Charles W. Krueger,Software Reuse, ACM Computing Surveys (CSUR), Volume 24Issue 2,1992.3. Scott Henninger, An Evolutionary approach to constructing E�ective SoftwareReuse Repositories , ACM Transactions on Software Engineering and Methodol-ogy (TOSEM),1997.4. Tracz, W.J. and Edwards, S, Implementation Working Group Report, Reuse InPractice Workshop, Software Engineering Institute, Pitt, Pa,1989.5. George A. Miller, WordNet,Cognitive Science Laboratory, Princeton University.6. JRefactory, An Open Source Refactoring Tool for Java,http://jrefactory.sourceforge.net.7. Gomes, P. and Pereira, F.C. and Paiva, P. and Ferreira, J.L. and Bento, C., Support-ing Creativity in Software Design, The AISB'02 Symposium, London, UK, April-2002.8. Gomes, P. and Pereira, F.C. and Paiva, P. and Ferreira, J.L. and Bento, C., Ex-periments on Software Design Novelty using Analogy, The European Conference onArti�cial Intelligence ECAI'02 Workshop:, Lyon, France, July-2002.9. S. Kedar-Cabelli, Analogy from a uni�ed perspective, In D.H. Helman (ed.), Ana-logical reasoning, Kluwer Academic, 1988.10. G.Spanoudakis, P.Constantopoulos, "Similarity for Analogical Software Reuse: AConceptual Modelling Approach", inProc. of CAiSE '93, Int. Conf. on AdvancedInformation Systems Engineering, Paris, June 199311. Cockburn A, Agile Software Development? Addison Wesley, Boston, 200212. Solveig ,B.,ROSA-Reuse of Object-Oriented Speci�cations through Analogy: AProject Framework, IFI Report 16, ISSN 0803-6489, 199413. Tracz, W.,Software Reuse Myths Revisited, in the proceedings of 16th InternationalConference on Software Engineering, May 16-21, 1994, Sorrento, Italy, pp 271-272.14. Maiden, N. and A. Sutcli�e, Exploiting Reusable Speci�cations Through Analogy.Communications of the ACM, 1992. 35(4): p. 55-64.


