
Search-Based Software Maintenance

Mark O’Keeffe, MelÓ Cinńeide
School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 14, Ireland

mark.okeeffe@ucd.ie, mel.ocinneide@ucd.ie

Abstract

The high cost of software maintenance could poten-
tially be greatly reduced by the automatic refactoring of
object-oriented programs to increase their understandabil-
ity, adaptability and extensibility. This paper describes a
novel approach in providing automated refactoring support
for software maintenance; the formulation of the task as a
search problem in the space of alternative designs. Such a
search is guided by a quality evaluation function that must
accurately reflect refactoring goals. We have constructed a
search-based software maintenance tool and report here the
results of experimental refactoring of two Java programs,
which yielded improvements in terms of the quality func-
tions used. We also discuss the comparative merits of the
three quality functions employed and the actual effect on
program design that resulted from their use.

1. Introduction

One measure of the quality of an object-oriented design
is the level of difficulty encountered in carrying out main-
tenance programming. This is because the object-oriented
approach is geared towards producing designs which are un-
derstandable, modular, and model the real world as closely
as possible. However, it is not uncommon to encounter de-
signs that have become weakened as a side-effect of the
repeated addition of functionality during development (a
problem referred to asdesign erosion), or have not been
properly maintained in the past. Such designs can require
significant refactoring in order to increase their maintain-
ability to an acceptable level, thus increasing the cost of
carrying out maintenance tasks.

The ideal solution to this problem would be the automa-
tion of some portion of the refactoring step by the applica-
tion of an automated design improvement tool. Such a tool
would take the current set of classes as input and output a
set with the same external behaviour, but having a design

that is more easily comprehended, adapted and extended.
In this context, the application of refactorings can be con-
sidered movement in the space of alternative designs.

Our novel approach to automated design improvement is
the formulation of the refactoring task as a search problem;
given a design quality function we apply automated refac-
torings to a program in order to move through the space of
alternative designs and search for those of highest quality.
The effectiveness of the search can be measured in terms
of the change in quality function, but the effectiveness of
the approach itself can only be judged in terms of the actual
changes made to the program and to what extend it is more
maintainable than the original. For this reason, choice of
design quality function is a key facet of this work.

While there exists a large body of work dealing with the
measurement of design quality in terms of a set of metrics
(see section 2.3), there are few examples of attempts to cap-
ture complex properties such as maintainability as a single
value, as required for an evaluation function. This is per-
haps not surprising, given that comparison of the design of
unrelated programs with different purposes has little mean-
ing. However, for the purpose of search-based software
maintenance the evaluation function need only give mean-
ingful quality values for alternative designs of the same pro-
gram.

One model of software quality that incorporates suit-
able evaluation functions is Bansiya’s ‘Hierarchical Model
for Object-Oriented Design Quality Assessment’ [2], or
QMOOD, which defines evaluation functions for such qual-
ity attributes as reusability, flexibility and understandabil-
ity, based on eleven object-oriented design metrics. We
have examined this model through experimentation, and de-
termined that it partially meets our requirements. In the
process we have demonstrated a secondary function of the
search-based software maintenance approach; that by refac-
toring programs to comply with a given quality model we
gain an additional mechanism for validation of that model.

While our ultimate goal is to determine the extent to
which the refactoring step of software maintenance can be



automated, the specific goals of the work reported in this
paper are:

• To determine whether a small set of automatable refac-
torings are sufficient to explore the suitability of pro-
posed evaluation functions in general and QMOOD
evaluation functions in particular.

• To assess the relative performance of a small set of
search techniques in the context of automated refactor-
ing of Java programs guided by QMOOD evaluation
functions.

• To subjectively assess the performance of a prototype
automated refactoring tool employing QMOOD evalu-
ation functions.

2. Related Work

2.1. Search-Based Software Engineering

Search-Based Software Engineering (SBSE) can be de-
fined as the application of search-based approaches in solv-
ing optimisation problems in software engineering [13].
Such problems includemodule clustering, where a software
system is reorganised into loosely coupled clusters of highly
cohesive modules to aid reengineering [11, 14, 15, 17], test
data generation [16], automated testing [20] and project
management problems such as requirements scheduling [1]
and project cost estimation [5, 9, 10]. An overview of such
work and comprehensive recent references can be found in
[8] and [13] respectively. Of particular relevance to this
work is [13], in which Harman proposes ‘Metrics as Fit-
ness Functions’ (MAFF). Harman states that a metric can
be used as the evaluation function driving a search-based
software optimisation; our approach involves using a com-
bination of asetof metric values to guide a search for opti-
mal design.

2.2. Automated Design Improvement

Previous approaches to the fully automated restructuring
of software have focussed on improving one particular as-
pect of design, such as method reuse or code factorisation.
However, since object-oriented design involves numerous
trade-offs, this narrow focus could result in overall qual-
ity loss. Examples of such work include that of Casais [6],
who proposed algorithms to restructure class hierarchies in
order to maximise abstraction, and Moore [18], who pro-
posed a system where existing classes are discarded and re-
placed with a new set where methods are optimally factored
– meaning code duplication is minimised.

Our approach has two main advantages over previous
fully automated refactoring work. Firstly, and most signifi-
cantly, the use of evaluation functions consisting of combi-
nations of various metric values allows us to employ much
richer quality models than the single-goal approaches men-
tioned above, which do not take into account the numer-
ous trade-offs involved in object-oriented design. Secondly,
by careful choice and precise definition of the refactorings
employed we can make design-quality affecting changes to
an object-oriented program without loss of domain-specific
information such as class and member names; a particular
disadvantage of [18].

Semi-automated approaches to design improvement
mainly involve the use of metric-based rules to identify ar-
eas in need of improvement, the onus then being on the
programmer to make the necessary changes. Such ‘bad
smell’ detection has been proposed by Van Emden [12], and
by Tahvildari [19], whose system also recommends ‘meta-
pattern transformations’ that can be applied to ameliorate
the defect. The drawback of such tools is, of course, that
they reduce the need for programmer intervention rather
than eliminate it.

2.3. Design Quality Measurement

In order to treat object-oriented design as a search prob-
lem, it is necessary to define a quality evaluation function
that will serve to rank alternative designs. Furthermore, in
order for an effective search to be carried out this qual-
ity function must be automatically computable from the
design model at a minimal computational cost. We have
conducted a survey of current metric-based object-oriented
quality models and selected three of the most prominent,
which are described below and assessed as to their suitabil-
ity for the task in hand.

• MOOD and MOOD2 suites of Fernando Britoé Abreu
et al. [3, 4] – well-established contemporary metric
suite but does not define evaluation functions.

• QMOOD model of Bansiya [2] – hierarchical qual-
ity model including evaluation function definitions, but
does not formally define metrics.

• MOOSE suite of Chidamber and Kemerer [7] and sub-
sequent modifications by Li et al. [21] – well known
metric suite that has been independently validated, but
consists of only six metrics and does not define evalu-
ation functions.

The QMOOD quality model was selected for this exper-
iment because it most closely matches our requirements;
implementation of QMOOD metrics implies their precise
definition in the context of this work.



3. Experimental Methodology

3.1. CODe-Imp

We have constructed a prototype automated design-
improvement tool called CODe-Imp1 in order to facilitate
experimentation with search-based software maintenance.
CODe-Imp takes Java 1.4 source code as input and extracts
metric information via a Java Program Model (JPM), calcu-
lates quality values according to an evaluation function and
applies refactorings to the Abstract Syntax Tree (AST), as
required by the search technique employed. Output consists
of the refactored input code as well as a design improvement
report including quality change and metric information.

3.2. Refactorings

The refactoring configuration of CODe-Imp for the ex-
periments reported here consisted of the six refactorings de-
scribed below. We have selected complementary pairs of
refactorings so that changes made to the input design during
the course of the search could be reversed. This is necessary
for some search techniques (e.g. Simulated Annealing) to
move freely through the space of alternative designs.

Push Down Field moves a field from some class to those
subclasses that require it. This refactoring is intended
to simplify the design by reducing the number of
classes that possess the field.

Pull Up Field moves a field from some class(es) to the im-
mediate superclass. This refactoring is intended to
help eliminate duplicate field declarations in sibling
classes.

Push Down Method moves a method from some class to
those subclasses that require it. This refactoring is in-
tended to simplify the design by reducing the size of
class interfaces.

Pull Up Method moves a method from some class(es) to
the immediate superclass. This refactoring is intended
to help eliminate duplicate methods among sibling
classes, and hence reduce code duplication in general.

Extract Hierarchy adds a new subclass to a non-leaf class
C in an inheritance hierarchy. A subset of the sub-
classes of C will inherit from the new class. This
method is intended to help improve class cohesion and
modularity by increasing abstraction in the class hier-
archy.

1Combinatorial Optimisation Design-Improvement

Collapse Hierarchy removes a non-leaf class from an in-
heritance hierarchy. This refactoring is intended to
reduce design complexity by removing superfluous
classes from the design.

We have deliberately chosen refactorings that operate at
the method/field level of granularity and higher because our
focus is on the automatic improvement of the design encap-
sulated in a program rather than implementation issues such
as correct factorisation of methods.

One of the functions of CODe-Imp’s JPM is to determine
where refactorings can legally be applied – in other words,
where the corresponding code alterations can be made with-
out altering program behaviour. In order to achieve this
we have employed a system of conservative precondition
checking, the details of which are beyond the scope of this
paper.

3.3. Search Techniques

For this experiment two local and one meta-heuristic
search algorithms were selected. The local search algo-
rithms were selected as they are easily implemented and
have low resource requirements. Significant quality in-
creases achieved using such techniques would be evidence
in favour of scalability of the approach. A meta-heuristic
algorithm was also selected since it was expected that local
search techniques would not be sufficient to provide signifi-
cant quality increases. The search techniques selected were
the following:

First-Ascent Hill Climbing (HC1) A local search algo-
rithm where the search moves to the first neighbouring
solution of a higher quality discovered.

Steepest-Ascent Hill Climbing (HC2) A local search al-
gorithm where the search moves to the neighbouring
solution of highest quality.

Low-Temperature Simulated Annealing (SA) A meta-
heuristic search technique described below.

A Simulated Annealing search essentially involves mak-
ing series of tentative changes to some solution of a com-
binatorial optimisation problem. Changes which increase
the quality of the solution are accepted, and the changed
solution becomes the starting point for the next series of
tentative changes. In addition, some changes which re-
duce the quality of the solution are accepted in order to
allow the search to escape from local minima. Such (nega-
tive) changes are accepted with a probability that decreases
steadily during the annealing process (equation 1; wherep
is the probability of accepting a given solution,δq is the
magnitude of quality reduction relative to the current solu-
tion, andT is the temperature value).



p = e−
δq
T (1)

In common with other search techniques simulated an-
nealing requires an evaluation function and a problem rep-
resentation with a means of altering solutions. In addition,
a cooling scheduleis required that determines how quickly
the annealing runs, and hence how likely the solution is to
be of high quality. CODe-Imp currently employs a geomet-
ric cooling schedule, meaning the temperature is reduced by
a constant factor after each step in the annealing process.

The parameters of a geometric cooling schedule are:
Tstart, the starting value for the temperature variable;
Markov chain length (M ), the number of tentative changes
that will be made at each temperature; andf , the geomet-
ric cooling factor. Theoretically,M should tend towards
infinity andf towards one in order to produce the best pos-
sible solution. In practice the cooling schedule should be as
slow as possible within the time available; values ofM=1
andf=0.995 were used in this experiment. It should also
be noted that alow temperaturesimulated annealing was
employed, meaning that the value ofTstartwas adjusted to
give large quality drops a lower than normal chance of being
accepted. Initial acceptance probabilities of approximately
0.2 were observed for large quality drops, whereas a stan-
dard annealing schedule would result in initial probabilities
of approximately 0.8.

3.4. Evaluation Functions

The evaluation functions employed in the CODe-Imp
prototype described here are the Flexibility, Reusability and
Understandability functions defined as part of the QMOOD
hierarchical design quality model [2]. Each evaluation func-
tion in the model is based on a weighted sum of quotients
on the eleven metrics described below. QMOOD evaluation
functions determine the relative quality attributes of two de-
signs, presumed to be similar in purpose. For this reason,
each metric value for designA is divided by the correspond-
ing value for designB to give the metric change quotient.
Metric weights for each evaluation function are show in ta-
bles 1, 2, and 3.

Design Size in Classes (DSC)A count of the total number
of classes in the design. Interpreted as excluding im-
ported library classes.

Number Of Hierarchies (NOH) A count of the number
of class hierarchies in the design. Interpreted as ex-
cluding hierarchies that consist of a generalised class
within the design and a specialised class outside.

Average Number of Ancestors (ANA) The average num-
ber of classes from which each class inherits informa-
tion.

Number of Polymorphic Methods (NOP) A count of the
number of the methods that can exhibit polymorhic be-
haviour. Interpreted as the average across all classes,
where a method can exhibit polymorphic behaviour if
it is overridden by one or more descendent classes.

Class Interface Size (CIS)A count of the number of pub-
lic methods in a class. Interpreted as the average across
all classes in a design.

Number Of Methods (NOM) A count of all the methods
defined in a class. Interpreted as the average across all
classes in a design.

Data Access Metric (DAM) The ratio of the number of
private (protected) attributes to the total number of at-
tributes declared in the class. Interpreted as the average
across all design classeswith at least one attribute, of
the ratio of non-public to total attributes in a class.

Direct Class Coupling (DCC) A count of the different
number of classes that a class is directly related to. The
metric includes classes that are directly related by at-
tribute declarations and message passing (parameters)
in methods. Interpreted as an average over all classes
when applied to a design as a whole; a count of the
number of distinct user-defined classes a class is cou-
pled to by method parameter or attribute type. We ex-
clude standard Java library classes from the computa-
tion.

Cohesion Among Methods of Class (CAM)The related-
ness among methods of a class, computed using the
summation of the intersection of parameters of a
method with the maximum independent set of all pa-
rameter types in the class. We have excluded construc-
tors and implicit ‘this’ parameters from the computa-
tion.

Measure Of Aggregation (MOA) A count of the num-
ber of data declarations whose types are user-defined
classes. Interpreted as the average value across all de-
sign classes. We define ‘user defined classes’ as non-
primitive types that are not included in the Java stan-
dard libraries.

Measure of Functional Abstraction (MFA) The ratio of
the number of methods inherited by a class to the num-
ber of methods accessible by member methods of the
class. Interpreted as the average across all classes in a
design of the ratio of the number of methods inherited
by a class to the total number of methods available to
that class, i.e. inherited and defined methods.



3.5. Input

Input consisted in both cases of one package from
the spec.benchmarks 2 standard performance evalua-
tion framework. The packages selected were those to which
the greatest number of refactorings could be applied. In-
put A (spec.benchmarks.200 check) consisted of 16 classes
to which 14 distinct refactorings could initially be applied,
while input B (spec.benchmarks.205 raytrace) consisted
of 25 classes to which 53 distinct refactorings could initially
be applied.

4. Case Studies

4.1. Overview

The results described in this section are mean values of
ten replications of each run, the only variation being in ran-
dom decisions required by the search algorithms. Figures
show standard deviation ‘error’ bars; where these are absent
no deviation from the mean value was observed. Statistical
significance was established in all cases by performing stu-
dent’s t-test for unpaired data assuming unequal variance,
with a confidence interval of 95%.

Experiments were carried out on a 2.2GHz AMD Athlon
powered PC with 1GB RAM. Mean processing time per so-
lution examined was approximately five seconds, including
model building, metric extraction, quality assessment, dis-
covery of legal refactorings, and actual (AST) refactoring.

In the remainder of this section we discuss two aspects
of the results of the experiment; firstly, in section 4.2 we
present the overall quality changes observed as measured by
the three evaluation functions for each of the three search
techniques. These results indicate the level of success
achieved in refactoring the input programs to improve de-
sign as measured by the evaluation functions. Secondly, in
section 4.3 we present the observed changes in metric value
for each of the three evaluation functions, in the case of
the most consistent search technique. These results demon-
strate the differing effects of the various evaluation func-
tions, and along with an inspection of the output code, allow
us to discuss the effectiveness of the evaluation functions in
actually increasing design quality.

4.2. Overall Quality Changes

4.2.1 Input A

Figure 1 shows the mean overall quality changes observed
for each search technique and evaluation function for input
A. A significant increase in evaluation function value was
observed with all three search techniques for the evaluation

2http://www.spec.org/

Figure 1. Mean quality change – Input A

Figure 2. Mean solutions examined – Input A

functions Flexibility and Understandability. No increase
in Reusability evaluation function value was observed with
any search technique for this input - either no improvement
was possible using the refactorings employed or the search
failed to escape from a local maximum in each case.

The three search techniques yielded similar results in
terms of mean solution quality increase, with HC1 per-
forming a small but statistically significant amount better
than HC2 on both Flexibility and Understandability, while
SA performed better than either on Understandability. SA
search showed greatest standard deviation in solution qual-
ity for both Flexibility and Understandability, while HC2
showed no deviation at all.

Figure 2 shows the mean number of solutions examined
in each case graphed in figure 1. The mean number of
solutions examined varied across evaluation functions and



Figure 3. Mean quality change – Input B

search technique, the most notable feature for this input be-
ing that HC2 examined significantly more solutions than the
other two search techniques for the two evaluation functions
where quality increases were observed.

In summation, there is little to choose between search
techniques in terms of efficiency or effectiveness for this in-
put. The only clear conclusion that can be drawn is that HC2
examined more solutions to arrive at comparable results to
the other two algorithms. However, the most significant ob-
servation is that quality increases were obtained for two of
the three evaluation functions.

4.2.2 Input B

Figure 3 shows the mean overall quality changes observed
for each search technique and evaluation function for input
B. A significant increase in evaluation function value was
observed for all three evaluation functions using both hill-
climbing search algorithms, and for Reusability and Under-
standability using SA. Observed increases in the case of the
reusability function were particularly large. The two hill-
climbing search techniques performed similarly in terms
of mean quality increase, and produced larger quality in-
creases for Reusability and Understandability

Figure 4 shows the mean number of solutions examined
in each of the cases graphed in figure 3. The mean number
of solutions examined varied across evaluation functions
and search technique, the most notable feature for this input
being that HC2 examined considerably more solutions than
either of the other search techniques. Simulated Annealing
examined the fewest solutions in each case.

In summation, HC1 produced joint greatest evaluation
function increases with HC2, but examined far fewer solu-
tions. We therefore consider HC1 to have performed best
for this input. SA produced solutions of a reasonable qual-

Figure 4. Mean solutions examined – Input B

ity given the small number of solutions examined. We con-
clude that the parameters of the SA search cooling sched-
ule were not suitable for this particular input. Again, the
most significant observation is that quality increases were
obtained for all three evaluation functions.

4.3. Comparison of Metric Changes by
Evaluation Function

4.3.1 Flexibility

The Flexibility quality attribute in QMOOD is defined as
“The ability of a design to be adapted to provide function-
ally related capabilities”[2]. Metric quotient changes result-
ing from use of the Flexibility function in CODe-Imp are
shown in figure 5. It should be noted that these are metric
quotientchanges; differences from the identity value of 1
are graphed. A graphed value of 1 equates to a doubling
of the metric value from input to output. The actual met-
ric weights comprising the Flexibility function are shown
in table 1.

In the case of input A, use of the QMOOD Flexibility
function resulted in a large increase in the DAM metric,
with no change to any other metric. The metric’s corre-
sponding weight in the function is positive (0.25), so it is
clear how the evaluation function increase has been ob-
tained. In real terms, the DAM metric value increased
by approximately 0.09, so the output solution consisted of
classes with an average ratio of non-public to public at-
tributes increased by 9%. Inspection of the solution code
revealed that this change was effected by the removal of un-
necessary public fields from three classes by the Push Down
Field refactoring. The refactored design was therefore less
complex, and hence slightly more flexible.

In the case of input B, use of the Flexibility func-
tion resulted in a small decrease in the positively-weighted
(0.25) DAM metric, but a greater decrease in the nega-



tively weighted (-0.25) DCC metric. An increase in the un-
weighted CAM metric was also observed. In real terms,
the DCC metric value decreased by approximately 0.05,
so the output solution consisted of classes coupled to, on
average, 5% fewer other classes by attribute declarations
and message passing. Inspection of the solution code re-
vealed that these changes were brought about primarily by
the removal of unnecessary public fields and methods from
solution classes by the Push Down Field and Push Down
Method refactorings. The small decrease in coupling com-
bined with the increase in cohesion indicated a more modu-
lar design that appears to be slightly more flexible.

4.3.2 Reusability

Metric quotient changes resulting from use of the Reusabil-
ity function in CODe-Imp are shown in figure 6. Note
that these are metric quotient changes; differences from the
identity value of 1 are graphed. The actual metric weights
comprising the Reusability function are shown in table 2.

In the case of input A, use of the QMOOD Reusabil-
ity function resulted in increases in the positively weighted
metrics DSC (0.5) and CAM (0.25), and also in the un-
weighted metric ANA. Decreases were observed in the
negatively weighted metric DCC (-0.25), the unweighted
metrics DAM, MOA, NOP and NOM, and the positively
weighted (0.5) metric CIS. The most prominent changes are
the increase in DSC, which reached the imposed solution
size limit of 200% original size, and the 605% increase in
ANA (truncated on graph) which corresponded to a jump
in the average number of ancestors per class from less than
0.45 to approximately 2.8.

Predictably, inspection of the output code revealed that
the large increases in design size in classes and average
number of ancestors were due to a large number of addi-
tional non-leaf classes in the four inheritance hierarchies,
some entirely devoid of fields or methods. This also ex-
plains the decrease in values for unweighted metrics, as any
metric that is an average over the number of classes can
decrease as the Extract Hierarchy refactoring adds classes.
The dominance of the DSC metric in this evaluation func-
tion indicates a flaw in the QMOOD Reusabilty function,
since the reusability of a design cannot be said to increase
as featureless classes are added.

No change in metric values was observed for input B
with the Reusability evaluation function.

4.3.3 Understandability

Metric quotient changes resulting from use of the Under-
standability function in CODe-Imp are shown in figure
7. Again, these are metric quotient changes; differences
from the identity value of 1 are graphed. The actual met-

ric weights comprising the Understandability function are
shown in table 3.

In the case of input A the Understandability function pro-
duced increases in the positively weighted metrics DAM
(0.33) and CAM (0.33) as well as the unweighted met-
ric MFA, and decreases in the negatively weighted metrics
NOP (-0.33) and NOM (-0.33) as well as the unweighted
CIS. The most prominent metric changes were the 0.09 rise
in DAM, corresponding to an increase in the average ratio
of non-public to public fields in each class of 9%, the 0.04
rise in MFA, corresponding to a 4% increase in the aver-
age ratio of the number of methods inherited by a class to
the total number of methods accessible by the class, and
the 0.36 drop in both CIS and NOM, corresponding to 36%
decreases in the average number of public methods and av-
erage number of methods per class, respectively. Inspec-
tion of the output code revealed that the decreases in CIS
and NOM were due mainly to the removal of methods from
classes where they were not required by the Push Down
Method refactoring, while the increase in DAM was mainly
due to the removal of unrequired public fields by the Push
Down Field refactoring. These results show that under-
standability has increased, since smaller classes and their
interaction via correspondingly smaller public interfaces are
easier to comprehend.

In the case of input B the Understandability function pro-
duced an increase in the positively weighted metric CAM
(0.33), and decreases in the negatively weighted metrics
DCC (-0.33) and NOM (-0.33). A small decrease was also
observed in the positively weighted metric DAM (0.33).
The increase in cohesion and decrease in coupling indicate
a slightly more modular and hence more understandable de-
sign; this slight improvement was confirmed by inspection
of the output code.

5. Conclusion

The results reported above show that some Java 1.4 pro-
grams can be automatically refactored to improve quality
as measured by QMOOD evaluation functions. As such,
they partially validate the search-based software mainte-
nance approach. We have shown that evaluation function
increases can be obtained in most cases examined using
simple search techniques, and that variation in weights on
evaluation function components has a significant effect on
the overall refactoring process.

To address the points of inquiry mentioned in section 1;

• The small set of refactorings employed by the CODe-
Imp prototype gave rise to observed changes in ten
out of eleven QMOOD metrics, the exception being
NOH (Number Of Hierarchies). While this indicates a
solid foundation for the exploration of proposed qual-
ity functions, it is clear that the addition of further



Figure 5. Metric quotient changes, Flexibility function

DSC NOH ANA DAM DCC CAM MOA MFA NOP CIS NOM
0 0 0 0.25 -0.25 0 0.5 0 0.5 0 0

Table 1. Metric weights of QMOOD Flexibility function

Figure 6. Metric quotient changes, Reusability function

DSC NOH ANA DAM DCC CAM MOA MFA NOP CIS NOM
0.5 0 0 0 -0.25 0.25 0 0 0 0.5 0

Table 2. Metric weights of QMOOD Reusability function



Figure 7. Metric quotient changes, Understandability function

DSC NOH ANA DAM DCC CAM MOA MFA NOP CIS NOM
-0.33 0 -0.33 0.33 -0.33 0.33 0 0 -0.33 0 -0.33

Table 3. Metric weights of QMOOD Understandability function

refactorings would add to the depth of such explo-
ration.

• The search techniques employed all demonstrated
strengths in this experiment; first-ascent hill climbing
generally produced quality improvements for the least
computational expenditure, steepest-ascent hill climb-
ing produced the most consistent improvements, and
Simulated Annealing produced the greatest quality im-
provements in certain cases. The most significant ob-
servation here was that quality improvements were ob-
tained using simple search techniques with manage-
able run-times, which bodes well for the scalability of
the approach.

• Inspection of output code and analysis of solution met-
rics provided some evidence in favour of use of the
QMOOD Flexibility function, and strong evidence in
favour of use of the Understandability function. The
QMOOD Reusability function was not found to be
suitable to the requirements of search-based software
maintenance because it resulted in solutions including
a large number of featureless classes.

Future work will include adding to the refactoring capa-
bilities of CODe-Imp , experimentation with a wider variety

of input programs and further exploration of potential qual-
ity evaluation functions in the search-based software main-
tenance approach.

References

[1] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The
next release problem.Information & Software Technology,
43(14):883–890, 2001.

[2] J. Bansiya and C. G. Davis. A hierarchical model for object-
oriented design quality assessment.IEEE Trans. Software
Eng., 28(1):4–17, 2002.

[3] F. Brito e Abreu and W. L. Melo. Evaluating the impact of
object-oriented design on software quality. InIEEE MET-
RICS, pages 90–99, 1996.

[4] F. Brito e Abreu, L. Ochoa, and M. Goulão. The GOODLY
design language for MOOD2 metrics collection. InECOOP
Workshops, pages 328–329, 1999.

[5] C. J. Burgess and M. Lefley. Can genetic programming im-
prove software effort estimation? A comparative evaluation.
Information & Software Technology, 43(14):863–873, 2001.

[6] E. Casais. An incremental class reorganization approach.
In O. L. Madsen, editor,Proceedings of the European Con-
ference on Object-Oriented Programming, pages 114–131,
Utrecht, June 1992. LNCS.



[7] S. Chidamber and C. Kemerer. A metrics suite for object ori-
ented design.IEEE Transactions on Software Engineering,
20:476–493, June 1994.

[8] J. A. Clark, J. J. Dolado, M. Harman, R. M. Hierons,
B. Jones, M. Lumkin, B. S. Mitchell, S. Mancoridis,
K. Rees, M. Roper, and M. J. Shepperd. Formulating soft-
ware engineering as a search problem.IEE Proceedings -
Software, 150(3):161–175, 2003.

[9] J. J. Dolado. A validation of the component-based method
for software size estimation.IEEE Trans. Software Eng.,
26(10):1006–1021, 2000.

[10] J. J. Dolado. On the problem of the software cost function.
Information & Software Technology, 43(1):61–72, 2001.

[11] D. Doval, S. Mancoridis, and B. Mitchell. Automatic clus-
tering of software systems using a genetic algorithm. InIn-
ternational Conference on Software Tools and Engineering
Practice (STEP’99).

[12] E. V. Emden and L. Moonen. Java quality assurance by de-
tecting code smells. InWCRE, pages 97–, 2002.

[13] M. Harman and J. A. Clark. Metrics are fitness functions
too. In IEEE METRICS, pages 58–69, 2004.

[14] M. Harman, R. M. Hierons, and M. Proctor. A new represen-
tation and crossover operator for search-based optimization
of software modularization. InGECCO, pages 1351–1358,
2002.

[15] S. Mancoridis, B. S. Mitchell, Y.-F. Chen, and E. R. Gansner.
Bunch: A clustering tool for the recovery and maintenance
of software system structures. InICSM, pages 50–, 1999.

[16] C. C. Michael, G. McGraw, and M. Schatz. Generating soft-
ware test data by evolution.IEEE Trans. Software Eng.,
27(12):1085–1110, 2001.

[17] B. S. Mitchell, M. Raverso, and S. Mancoridis. An architec-
ture for distributing the computation of software clustering
algorithms. InWICSA, pages 181–190, 2001.

[18] I. Moore. Automatic inheritance hierarchy restructuring and
method refactoring. InOOPSLA, pages 235–250, 1996.

[19] L. Tahvildari and K. Kontogiannis. Improving design qual-
ity using meta-pattern transformations: a metric-based ap-
proach.Journal of Software Maintenance, 16(4-5):331–361,
2004.

[20] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test
environment for automatic structural testing.Information &
Software Technology, 43(14):841–854, 2001.

[21] Wei Li. Another metric suite for object-oriented program-
ming. J. Syst. Softw., 44(2):155–162, 1998.


