An Eclipse Plugin to Support Agile Reuse*

Frank McCarey, Mel o) Cinnéide, and Nicholas Kushmerick

Department of Computer Science, University College Dublin,
Belfield, Dublin 4, Ireland

{frank.mccarey,mel.ocinneide,nick}@ucd.ie

Abstract. Reuse in an Agile context is largely an unexplored research
topic. On the surface, these two software engineering techniques would
appear to be incompatible due to contradictory principles. For example,
Agile components are usually accompanied with little or no support ma-
terials, which is likely to hamper their reuse. However we propose that
Agile Reuse is possible and indeed advantageous.

We have developed an Eclipse plug-in, named RASCAL, to support Ag-
ile Reuse. RASCAL is a recommender agent that infers the need for a
reusable component and proactively recommends that component to the
developer using a technique consistent with Agile principles. We present
the benefits and the challenges encountered when implementing an Agile
Reuse tool, paying particular to attention to the XP methodology, and
detail our recommendation technique. Our overall results suggest RAS-
CAL is a promising approach for enabling reuse in an Agile environment.

1 Introduction

The demand for organisations to produce new or enhanced software implemen-
tations quickly in response to an ever-changing environment has fuelled the use
of Agile processes, with Extreme Programming (XP) [1] perhaps the best known
and most widely-used Agile methodology. Reuse of software components is an-
other popular software engineering practice. Software reuse has proven to be an
effective means of reducing development time and costs whilst benefiting the
overall quality of the software [2, 3]. It is not clear however how Reuse and Agile
engineering approaches can be carried out in tandem and very little literature
exists on this specific issue. It would be desirable to employ Agile principles to
produce simple clear software which is easily adaptable to changing requirements
while also employing reuse techniques to improve the software quality and re-
duce development effort, time and cost. We introduce the term Agile Reuse to
describe such an approach. In practice several inherent difficulties arise when
considering the compatibility of Agile and reuse techniques due to differences,
often contradictory, in their fundamental principles. For example Agile software
tends to be simple and domain specific accompanied with minimal support doc-
umentation. Reuse relies on support documentation and favors more generalised
components.

* Funding for this research was provided by IRCSET under grant RS/2003/127

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 162-170, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Eclipse Plugin to Support Agile Reuse 163

In addition to the above challenges, several other factors hamper reuse in-
dependent of the development process used. A mature software development
organisation is likely to possess a large, growing repository of components from
previous projects. As this repository increases in size, so too does the challenge
for developers to remain conversant with all components. Often the effort and
time taken to locate and integrate reusable components will be perceived to be
costly and to outweigh any potential reuse benefits. Indeed, the reality of strict
schedules and tight deadlines may mean a developer has simply not the time to
search for components; Frakes et al. [1] document other barriers to reuse.

In response to these challenges, various intelligent component retrieval tech-
niques have been developed to assist a developer discover or locate components
in an efficient manner [5]. These techniques share a common shortcoming though;
the developer must initiate the retrieval process. In our work, we shift the atten-
tion from component retrieval to component recommendation. We have devel-
oped a recommender tool, named RASCAL, for software components. RASCAL
has been developed for two purposes. Firstly we wish to recommend software
components that the developer is interested in. Secondly, and more importantly,
we wish to recommend useful components which the developer may not be fa-
miliar with or aware of. We believe recommendations will assist and encourage
developers in making full use of large component repositories in an efficient
manner and in turn will help to promote software reuse. Our work is geared
towards supporting Agile Reuse, paying particular attention to XP. The goal
of RASCAL then is to recommend useful components to a developer in a way
which is consistent with the principles of XP development; reusable components
currently being developed should not need any additional documentation and
reuse of such components should be appealing, straightforward and require little
additional effort from the developer.

In this paper we introduce Agile Reuse, present our support tool RASCAL
and explain the AI recommendation technique employed. An overview of RAS-
CAL’s implementation is given in the following section. In section 3 we detail
Agile Reuse; we discuss the benefits of such reuse in an XP context and identify
the difficulties of providing an XP tool to support this concept. Two recommen-
dation techniques are discussed in section 4; we then present our hybrid approach
followed by a short analysis of the experimental results. In section 5 we review
related work in the area of component search, retrieval and recommendation.
Finally we discuss how RASCAL can be extended and draw general conclusions
in section 6.

2 System Overview

RASCAL is implemented as a plug-in for the Eclipse IDE, as illustrated in fig-
ure 1. As a developer is writing code, RASCAL monitors the methods currently
invoked and uses this information to recommend a candidate set of methods
to this developer. Recommendations are then presented to the developer in the
recommendations view at the bottom right hand corner of the IDE window.
Currently, RASCAL recommends methods from the Swing and AWT toolkits.

164 Frank McCarey, Mel 0 Cinnéide, and Nicholas Kushmerick

¢ Resource - Test1.java - Eclipse Platform

File Edt Source Refactor Navigate Search Project Run Window Help
- E&|3-0-Q- || 4B |- -wE-- 15| RoResource
%5 Navigator 82 =R I +resti java X a
@ B% -~ -
= testl package src;
B @& src
1) Test class import javax.swing.JList;
9] Testi.java
[.classpath wpublic class Testl {
5] project - void fool(){
JList list = new JList():
list,setEnabled (true);
list.setFixedCellWidth(10);
] } ‘ .
) - Recommendation
| .
\ View
|
oz 2 =
&% outline £2 =]
AR e v
s
-5 impork declarations
4 javax,swing, JList
=e T:mfucl() PTasks 82 45 3 e w < O|[Invoked Methads view f’Re:nmmandat\nns view 53 =
0items Class | Methoda | Signature
21— 1iDescription Reso.., | In Folder javax,swing, T able getRowHeicht o
favax.swing, JList setFixedCelHeight (w
javax,swing, JTable IsRowSelected (nz
javax.swing, JTable getTablereader ()Ljavas/swingjtable/JTab
javax,swing, JCompanent setFont (LiavajantiFont; v
< il I EI|ES i 3
| | writable Smart Insert | 11:9

Fig. 1. Eclipse Prototype

Figure 2(a) display a general overview of our system which consists of four
components: the active user, the code repository, the usage history collector and
the recommender agent. The active user can be defined as the developer of the
current active class or the current active class itself; the distinction will be clear
from the context of the discussion. When monitoring user preferences we only
consider the usage history of the current active class and not any other classes
this developer may have previously written. The code repository maintains code
from all previous projects and all newly created classes will be added to this
repository. In our work, we built a code repository using open-source software
available from Sourceforge [6].

The usage history collector automatically mines the code repository to ex-
tract component usage histories for all the stored Java classes. This will need
to be done once initially for each class and subsequently when a class is added
to the repository. Component usage histories for all the users are then trans-
formed into a user-item preference database, as shown in figure 2(b), which can
be used to establish similarities between users. Also, for each individual user we
store a list of components based on their actual usage order. The latter informa-
tion is used for Content-Based filtering as discussed in section 4.1. Finally the
recommender agent actively monitors the Java class that the developer is cod-
ing, noting in particular the components used in this class. The agent attempts
to establish a set of neighbouring users who are similar to the active user by
searching the user-item preference database. A set of ordered Java methods is
then recommended to the active user based on the neighbouring users.

An Eclipse Plugin to Support Agile Reuse 165

Watching an 5@{_“\ s USERS ITEMS Hotist
Recommanding
4 : Hiatory Set(} | SetY() | Copy) | Display() gg:xl() 0 llltser-
Agent Isplay| em
M?:;g Hotlist | 2 0 1 3 Display() Order
RemoteD | 1 0 2 1 g:&y(? List
% IDE 2 E CompDlg | 1 1 3 0 Display()
Store Code 3 g
s - User-ltem Preference Matrix
(a) (b)

Fig. 2. (a) System Overview (b) Sample user-item database

3 Agile Reuse

Software reuse refers to the use of existing artifacts from previous projects as
part of a new development project. Ad hoc reuse has always existed. However
as enterprises invest in developing and maintaining large software systems in an
increasingly competitive environment, there exists the need for an effective and
structured reuse strategy. Ten reusable aspects of any given software project are
presented by Frakes et al. [4] in their discussion of reuse metrics and models,
including requirements and design reuse. In keeping with Agile principles, we
are only concerned with source code reuse in our present work. Successful reuse
has been shown to improve software quality and developer productivity while
reducing overall costs [3] and time to market [2].

Despite these desirable advantages several factors hamper reuse as discussed
in the introductory section. Factors vary from technical difficulties such as sup-
port environments to more pragmatic issues such as managerial and developer
attitudes. As reuse becomes more prominent and accepted in industry, systems
and tools that aid and support reuse become key aspects in achieving successful
reuse of software artifacts [7]. This notion is reflected by the shift in software
reuse research from initially focusing on techniques to develop reusable compo-
nents and component libraries to a focus on supporting reuse through intelligent
storage and retrieval strategies [5].

We have mentioned the benefits of reuse-based software development, how-
ever, it is unclear how this software engineering approach can be carried in
tandem with Agile development. There is an absence of literature and tools to
support this concept. It would be desirable to employ Agile principles to produce
simple clear software which is easily adaptable to changing requirements while
also employing reuse techniques to improve the software quality and reduce de-
velopment effort, time and cost. We describe such an approach as Agile Reuse.
Our work focuses on the technical issues involved in implementing this approach;
we pay particular attention to Agile Reuse in an XP environment though the
issues raised are relevant to all Agile processes. For the following reasons it is
the authors position that Agile Reuse using XP is possible and indeed makes
sense:

166 Frank McCarey, Mel 0 Cinnéide, and Nicholas Kushmerick

— The simple nature of XP software makes its reuse appealing to developers.
Software is produced in small increments and these small units of software
may actually be more reusable than software developed under traditional
rigorous methodologies.

— XP development advocates quick frequent releases of working code. Reuse
will help to achieve this.

— XP developers refactor their code on a regular basis and these very skills
are ideal for integrating and tailoring reusable components to match specific
needs.

In practice several inherent difficulties arise when considering the compati-
bility of XP and reuse techniques due to differences, often contradictory, in their
fundamental principles. Table 1 on the following page displays a sample of such
difficulties that may be encountered and illustrates why providing tool support
for reuse in an XP context is difficult. In addition to this we also explain how
our support tool, RASCAL, can be employed to address these issues. In the
next section we describe how RASCAL automatically retrieves and recommends
components, and present experimental results.

4 Recommendations

4.1 Recommendation Technique

Recommendations are produced using a hybrid of two popular filtering tech-
niques, namely collaborative filtering and content-based filtering. The goal of
Collaborative Filtering (CF) algorithms is to suggest new items or predict the
utility of a certain item for a particular user based on the user’s previous pref-
erence and the opinions of other like-minded users [8]. CF systems are founded
on the belief that users can be clustered. Users in a cluster share preferences
and dislikes for particular items and are likely to agree on future items. In the
context of this paper, a user can be considered a Java class and an item refers
to a software component and more specifically a Java method. Like CF, the goal
of Content-Based Filtering (CBF) [9] is to suggest or to predict the utility of
certain items for a particular user. CBF recommendations are based solely on
an analysis of the items for which the current user has shown preference. Unlike
CF, users are assumed to operate independently. Items which correlate closely
with the user’s preference are likely to be recommended. For example in a news
recommender system we would analyse the keywords from the current user’s
preference to recommend news stories which contain similar keywords; keywords
could be “business” or “sport”. In our work, instead of analysing keywords or
categories we analyse the order in which components are used. In our hybrid
recommendation technique we produce our primary recommendation set using
CF. We then make use of CBF to order the initial recommendation set. The
component which we believe to be most useful to the current developer at this
time will appear first in the recommendation set.

4.2 Evaluation

We have conducted experiments to investigate the accuracy of our hybrid al-
gorithm. The component repository used in these experiments contained 1888

Practice/Belief

An Eclipse Plugin to Support Agile Reuse

167

Table 1. XP Reuse Challenges and RASCAL

I Challenge

|RASCAL

Working software
is the primary
measure of
success. Less em-
phasis is placed
on comprehensive
design or support
documentation

and quite often
the source code is
the only available
documentation

sat-
is the

Customer
isfaction
main priority.
This is achieved
through early and
continuous deliv-
ery of working
code.

Simplicity is es-
sential.

Reuse relies on support
documentation. Locating
an undocumented compo-
nent is problematic, at-
tempting to reuse this
component can be daunt-
ing and unappealing to a
developer.

The developer is focused
on producing small work-
ing units of software as
early as possible. If effec-
tive reuse support tools
do not exist then a devel-
oper will perceive the time
taken to locate a reusable
component as too costly
and a burden to achieving
their overall goal.

Software developed with
simplicity in mind will of-
ten tend to be very do-
main specific and perhaps
not as reusable as software
developed for a more gen-
eral or abstract task.

As the developer writes code our agent
is continually searching for reusable
components. Newly developed XP
components do not need support doc-
umentation or commenting for our
agent to locate or recommend them.
These components just need to have
been employed at some stage. Based
on the context of such employment,
our agent will be able to determine
when this component is suitable for
recommendation. No additional devel-
oper effort is required.

Developers need not initiate the pro-
cess of component search and retrieval.
Instead RASCAL automatically rec-
ommends or delivers a suitable com-
ponent to reuse. We believe compo-
nent delivery will enhance, promote
and increase the feasibility of soft-
ware reuse to XP developers as they
can quickly and easily employ reusable
components and thus produce working
code quickly.

We propose that the simplicity of XP
components fosters their reuse. RAS-
CAL will help to support and encour-
age such reuse which otherwise may
not have occurred. Despite their sim-
plicity, some components may still be
initially challenging to understand and
integrate with existing work. RAS-
CAL produces a recommendation for
a component to a class by examining
similar classes which employ this com-
ponent. Code snippets taken from the
similar classes could prove to be an ef-
fective addition to the minimal doc-
umentation which often accompanies
XP components.

methods from the standard Java Swing library and the Abstract Window Toolkit
(AWT). Recommendations were made for a total of 508 Java classes (users)

168 Frank McCarey, Mel 0 Cinnéide, and Nicholas Kushmerick

which invoked on average 60 methods. These classes were taken from 60 GUI
applications in SourceForge [6].

For each class several sets of recommendations were made. For example, if a
fully developed class used 10 Swing methods, then we removed the 10th method
from the class and a recommendation set was produced for the developer based
on the preceding 9 methods. Following this recommendation, the 9th method
was removed from the class and a new recommendation set was formed for
this developer based on the preceding 8 methods. This process was continued
until just 1 method remained. Each recommendation set contained a maximum
of 5 methods as we believe this to be a sufficient lookahead for a developer.
We evaluated the results using Precision and Recall [10]. Precision represents
the probability that a recommended method is relevant. Recall represents the
probability that a relevant method will be recommended. Based on our repository
of original classes, we also evaluate whether the actual next method a particular
developer invoked is in our recommendation set. This is an important evaluation
as we wish to recommend methods in an realistic and meaningful order.

4.3 Results

Figure 3 displays the results of our recommendation technique. We also present
a baseline result based simply on recommending the five most commonly used
methods at each recommendation stage. The recommendation precision is dis-
played in figure 3(a); the average precision of our technique is 20% which com-
pares favorably with our baseline result. Recall is displayed in figure 3(b); the
average recall, based on our recommendation algorithm, is 36%. That is, if we
were to recommend ten methods, then on average almost four of those recom-
mended methods would be relevant. Finally, in figure 3(c) we display the like-
lihood that the next method the developer will actually invoked will be in our
recommendation set; on average there is 43% likelihood that it will be. Further
to this encouraging result, we see that RASCAL can make reasonably accurate
predictions at a relatively early stage in the class’s development. For example,
when a developer has invoked 20% or less of the total methods she will employ
then there is 42% likelihood that RASCAL will correctly recommend the next
invocation. We only present the results of our hybrid approach here as we have
ascertained that this algorithm leads to the most accurate predictions; [11] de-
tails the implementation details, benefits and accuracy of the individual CF and
CBF algorithms.

5 Related Work

Much research on tool support for software reuse has concentrated on intelligent
search and retrieval techniques which are dependent on developer initiation, for
example [5]. However, to effectively and realistically support component reuse it
is tremendously important that component retrieval be complemented with unso-
licited component delivery /recommendation. One technique to address this issue
is CodeBroker [12]. CodeBroker infers the need for components and proactively

An Eclipse Plugin to Support Agile Reuse 169

Precision Recall Next Component Correctly Recommended
80 L ;o w®
50 %)
~ =4 Hybrid -4-Basellne - i
2 T4
_gn s EI{O
Em-?‘d:t:tzg_‘_k EN P .
& 101 d e E e)
e =4 Hybrid - Baseline "
; 0 e — -+ Hybrid -+ Baseline
0 10 20 30 4 5 & 70 80 % 100 L o

0 0 2 30 40 5 60 7T 80 %0 140 nwzuanwsbsbmause!w
Known Components (%) Known Components (%) Known Components (%)

(a) (b) (c)

Fig. 3. (a) Precision (b) Recall (¢) Next found

recommends components, with examples, that match the inferred needs. The
need for a component is inferred by monitoring developer activities, in particu-
lar developer comments and method signature. This solution greatly improves
on traditional retrieval approaches, but it does not address the requirements
of Agile Reuse. The reusable components in the repository must be sufficiently
commented to allow matching, this may exclude many components. Developers
must actively and correctly comment their code which currently they may not
do. Active commenting is an additional strain placed on developers which may
make the use of CodeBroker less appealing and particularly unsuitable for XP
and other Agile methodologies.

Ohsugi et al. [13] propose a system to allow users discover useful functions at
a low cost in application software such as MS Word and MS Excel for the pur-
pose of improving the user’s productivity. For clarity, Convert Text to Table or
Insert Picture are examples of MS Word functions. A set of candidate functions
is recommended to the individual, based on the opinions of like-minded users.
The technique proposed is an extension of traditional collaborative filtering algo-
rithms used in mainstream recommender systems such as Amazon. In our work
we apply Ohsugi’s principle to a different problem domain, namely reusable soft-
ware components. Similar to CodeBroker [12] our goal is to recommend a set
of candidate software components to a developer; however our recommendations
are based on the opinions of like-minded developers and not the developer’s com-
ments/method signature. Unlike the related works, our technique is specifically
designed to assist reuse in an XP environment.

6 Conclusions

In this paper we introduced the concept of Agile Reuse and identified specific
issues which hamper such reuse. In addressing these issues, we evaluated col-
laborative and content-based filtering and found a hybrid approach to be most
effective. Our recommendation scheme addresses various shortcomings of pre-
vious solutions to the component retrieval problem; user context and problem
domain are considered while no additional requirements are placed on the de-

170 Frank McCarey, Mel 0 Cinnéide, and Nicholas Kushmerick

veloper. Opportunities exist to expand RASCAL’s scope though. Firstly, we will
develop RASCAL into a general recommender capable of recommending various
component types. RASCAL will then be extended to allow greater user interac-
tion; for example an accepted recommendation will be automatically added to
the user’s code. With any unsolicited recommender, delivery is important. Using
established industrial links, extensive user trials are planned which we hope will
foster a more usable application.

Recommender systems are a powerful technology that can cheaply extract
knowledge for a software company from its code repositories and then exploit this
knowledge in future developments. We have demonstrated that RASCAL offers
real promise for allowing developers discover reusable components and is well
suited to Agile development. When little information is known about the user we
can nevertheless make reasonably good predictions and future work will likely
strengthen recommendations. We believe RASCAL will aid developers whilst
improving their productivity, enhance the quality of their code and promoting
software reuse.

References

1. Beck, K.: XP explained: embrace change. Addison-Wesley Publishing Co. (2000)

2. Yongbeom, K., Stohr, E.: Software reuse: Survey and research directions. Man-
agement Information Systems 14 (1998) 113-147

3. Hooper, J., Chester, R. In: Software Reuse: Guidelines and Methods. Plenum
Press, NY (1991)

4. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Surv. 28 (1996)

5. Yao, H., Etzkorn, L.: Towards a semantic-based approach for software reusable
component classification and retrieval. In: Proceedings of the 42nd annual South-
east regional conference, ACM Press (2004) 110-115

6. OSTG: Open source technology group inc (ostg). http://sourceforge.net. (2004)

7. Daudjee, K.S., Toptsis, A.A.: A technique for automatically organizing software
libraries for software reuse. In: Proceedings of the 1994 conference of the Centre
for Advanced Studies on Collaborative research, IBM Press (1994) 12

8. Sarwar, B.M., Karypis, G., Konstan, J.A., Reidl, J.: Item-based collaborative
filtering recommendation algorithms. In: World Wide Web. (2001) 285-295

9. Oard, D., Marchionini, G.: A conceptual framework for text filtering process.
Technical report, University of Maryland, College Park (1996)

10. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
New York (1999)

11. McCarey, F., Cinneide, M., Kushmerick, N.: Knowledge reuse for software reuse.
In: Submitted to the 17th International Conference on Software Engineering and
Knowledge Engineering. (2005)

12. Yunwen, Y., Fischer, G.: Information delivery in support of learning reusable soft-
ware components on demand. In: Proceedings of the 7th international conference
on Intelligent user interfaces, ACM Press (2002) 159-166

13. Ohsugi, N., Monden, A., Matsumoto, K.: A recommendation system for software
function discovery. In: Proceedings of the 9th Asia-Pacific SE Conference. (2002)

	An Eclipse Plugin to Support Agile Reuse
	1 Introduction
	2 System Overview
	3 Agile Reuse
	4 Recommendations
	4.1 Recommendation Technique
	4.2 Evaluation
	4.3 Results

	5 Related Work
	6 Conclusions
	References

