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ABSTRACT
Object-oriented systems that undergo repeated addition of
functionality commonly suffer a loss of quality in their un-
derlying design. This problem must often be remedied in
a costly refactoring phase before further maintenance pro-
gramming can take place. Recently search-based approaches
to automating the task of software refactoring, based on the
concept of treating object-oriented design as a combinato-
rial optimisation problem, have been proposed. However,
because search-based refactoring is a novel approach it has
yet to be established which search techniques are most suit-
able for the task.

In this paper we report the results of an empirical compar-
ison of simulated annealing, genetic algorithm and multiple
ascent hill-climbing in search-based refactoring. A prototype
automated refactoring tool is employed, capable of making
radical changes to the design of an existing program in or-
der that it conform more closely to a contemporary quality
model. Results show multiple-ascent hill climbing to outper-
form both simulated annealing and genetic algorithm over a
set of four input programs.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance
& Enhancement — restructuring, reverse engineering and
reengineering

General Terms
Design

Keywords
Search – Based Software Engineering, Refactoring, Object –
Oriented Product Metrics, Automated Design Improvement

1. INTRODUCTION
Object-oriented systems that undergo repeated addition

of functionality commonly suffer a loss of quality in their
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underlying design. This problem, known as design erosion
[21] or software decay [9], occurs when changes are made to
a program without due consideration to its overall structure
and design rationale. Design erosion can be combatted by
refactoring, or improving the design of a program without
changing its behaviour, but even with the use of contem-
porary programming tools this requires significant effort on
the part of the maintenance programmer.

Recently, search-based approaches to automating the task
of software refactoring have been proposed by the authors
[21] and Seng et al [22]. These approaches are based on
the concept of object-oriented design as a combinatorial op-
timisation problem, where a fitness function defining de-
sign quality is constructed from a weighted sum of object-
oriented metrics, and are inspired by the successful applica-
tion of search-based approaches in other areas of software
engineering such as subsystem clustering and test-data gen-
eration.

Once formulated suitably as a solution representation,
change-effecting operator and fitness function, the problem
of automated refactoring can be tackled using a wide variety
of search techniques. As is the case with other search-based
software engineering applications, however, the effectiveness
of the various techniques may vary considerably. Because
search-based refactoring is a novel approach it remains to
be established which search techniques are most suitable in
the general case; while the authors have compared the dif-
fering performance of hill-climbing and simulated annealing
searches in two case studies [21], no thorough comparison of
the effectiveness of local and evolutionary search techniques
for this problem has yet been carried out.

In this paper we report the results of an empirical compar-
ison of simulated annealing, genetic algorithm and multiple
ascent hill-climbing searches. We have extended the CODe-
Imp search-based refactoring tool [21] to employ a genetic
algorithm search with a similar representation, crossover op-
erator and mutation operator to that described by Seng et
al [22], as well as increasing the power of the tool by adding
to the number of different refactorings available for use in
searching for a superior design.

The remainder of this paper is structured as follows: in
section 2 we outline related work in search-based software
engineering, such as module clustering, as well as discussing
the state of the art in search-based refactoring. In section
3 we describe the experimental methodology for the study
reported here, including the extensions made to the CODe-
Imp tool. Section 4 contains the results of the study, com-
prised of comparisons of various parameter sets for each of
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the search techniques employed, and a comparison of the
relative performance of these techniques. We conclude and
suggest some directions for future work in section 5.

2. RELATED WORK
Search-Based Software Engineering (SBSE) can be de-

fined as the application of search-based approaches to solv-
ing optimisation problems in software engineering [10]. Such
problems include module clustering, where a software system
is reorganised into loosely coupled clusters of highly cohesive
modules to aid reengineering [8, 11, 14, 19], test data gener-
ation [16], automated testing [23] and project management
problems such as requirements scheduling [1] and project
cost estimation [3, 6, 7]. Papers by Clark et al and Harman
provide a thorough review of work in the field [5, 10].

Once a software engineering task is framed as a search
problem there are numerous approaches that can be applied
to solving that problem, from local searches such as ex-
haustive search and hill-climbing to meta-heuristic searches
such as genetic algorithms (GA) and ant colony optimisa-
tion. Module clustering, for example, has been addressed
using exhaustive search [15], hill-climbing [11, 13, 15, 18], ge-
netic algorithms [8, 11, 15, 18] and simulated annealing (SA)
[18]. In those studies that compared search techniques, hill-
climbing was, perhaps surprisingly, found to produce better
results than meta-heuristic GA searches [11, 17]. These re-
sults were echoed in search-based auto-parallelisation [24],
where local searches also out-performed GA. In software
clustering the meta-heuristic simulated annealing search was
found by Mitchell et al. [18] to perform similarly to hill-
climbing in terms of solution quality, but better in terms of
search efficiency.

The concept of treating object-oriented design as a com-
binatorial optimisation problem that can be solved using a
search-based approach was introduced by the authors [20],
and later small case studies based on the QMOOD quality
model [2] were conducted which suggested that both simu-
lated annealing and hill-climbing are effective in solving this
problem [21]. Seng et. al. [22] describe a similar approach
but use a genetic algorithm to solve the combinatorial op-
timisation problem. The evaluation function employed by
Seng is novel rather than previously validated, but is based
on well-known metrics such as Response For a Class (RFC)
and Weighted Methods per Class (WMC) from Chidamber
& Kemerer’s object-oriented metrics suite [4], among others.
The authors report success in automatically repositioning
displaced methods in the class structure using a GA search.
However, as only the Move Method refactoring is considered
the extent of change within the class structure is limited.

3. EXPERIMENTAL METHODOLOGY
In this section we describe CODe-Imp, a prototype search-

based refactoring tool designed to facilitate experimentation
in automatically improving the design of existing programs.
In common with other search-based software engineering ap-
plications, search-based refactoring requires a solution rep-
resentation, a change operator that allows for movement in
the space of alternative solutions and a fitness or evaluation
function that allows solutions to be ranked in terms of de-
sirability. With these three elements in place, various search
techniques can be applied in solving the problem. In sections
3.1, 3.2 and 3.3 respectively we describe the solution repre-

sentation, change operator and fitness function employed in
this study. In section 3.4 we briefly discuss the four search
techniques employed, while in section 3.5 we describe the
input programs used.

3.1 Solution Representation
In search-based refactoring, the solution representation

can be a program itself, its Abstract Syntax Tree (AST)
or a more abstract model. The key requirements are that
it must be possible to determine what transformations can
be made to the representation in order to move through the
space of alternative solutions, and it must be possible to ap-
ply corresponding refactorings to the program in question
in order to implement the solution.

This study employs the tool CODe-Imp (Combinatorial
Optimisation Design-Improvement), developed by the au-
thors in order to test the thesis that the maintainability of
object-oriented programs can be improved by automatically
refactoring them to adhere more closely to a pre-defined
quality model. CODe-Imp takes Java 1.4 source code as in-
put and extracts design metric information via a Java Pro-
gram Model (JPM), calculates quality values according to
an evaluation or fitness function and effects change in the
current solution by applying refactorings to the AST as re-
quired by a given search technique. Output consists of the
refactored input code as well as a design improvement report
including quality change and metric information [21].

CODe-Imp uses a two-level representation; the actual pro-
gram to be refactored is represented as its AST, but a more
abstract model called the JPM is also maintained from which
metric values are determined and refactoring preconditions
are checked. Where possible, the JPM alone is refactored
when a new solution is to be examined, but for the most
complex refactorings the more robust approach of refactor-
ing the AST and regenerating the JPM is adopted.

3.2 Change Operator
In the context of search-based refactoring, the change op-

erator is a transformation of the solution representation that
corresponds to a refactoring that can be carried out on the
source code. The refactoring configuration of CODe-Imp,
which was extended by the authors for the experiments re-
ported here, consists of the fourteen refactorings described
below. In CODe-Imp, complementary pairs of refactorings
are employed in order that all changes made to the input de-
sign during the course of the search be reversible. This is a
requirement of some search techniques that must move freely
through the solution space, such as simulated annealing. All
refactorings employed operate at the method/field level of
granularity and higher, in order to focus on improvement
of design rather than implementation issues such as correct
factorisation of methods. The two principles of implement-
ing complementary pairs of refactorings and operating at
the method/field level of granularity have been upheld in
extending the refactoring set; those refactorings that have
been added to CODe-Imp for this study are indicated by
asterisks below.

Push Down Field moves a field from some class to those
subclasses that require it.

Pull Up Field moves a field from some class(es) to the
immediate superclass.
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Push Down Method moves a method from some class to
those subclasses that require it.

Pull Up Method moves a method from some class(es) to
the immediate superclass.

Extract Hierarchy adds a new subclass to a non-leaf class
C in an inheritance hierarchy. A subset of the sub-
classes of C will inherit from the new class.

Collapse Hierarchy removes a non-leaf class from an in-
heritance hierarchy.

Increase Field Security* increases the security of a field
from public to protected or from protected to private.

Decrease Field Security* decreases the security of a field
from private to protected or from protected to public.

Increase Method Security* increases the security of a
method from protected to private or from public to
protected.

Decrease Method Security* decreases the security of a
method from protected to public or from private to
protected.

Replace Inheritance with Delegation* replaces an in-
heritance relationship between two classes with a del-
egation relationship; the former subclass will have a
field of the type of the former superclass.

Replace Delegation with Inheritance* replaces a del-
egation relationship between two classes with an in-
heritance relationship; the delegating class becomes a
subclass of the former delegate class.

Make Superclass Abstract* declares a constructor-less
class explicitly abstract.

Make Superclass Concrete* removes the explicit decla-
ration of an abstract class without abstract methods.

3.3 Fitness Function
The fitness function employed here is an implementation

of the Understandability function from Bansiya’s QMOOD1

hierarchical design quality model [2], consisting of a weighted
sum of metric quotients between two designs. Use of this
design quality evaluation function was previously found by
the authors to result in tangible improvements to object-
oriented program design in the context of search-based refac-
toring [21]. The QMOOD model includes the eleven metrics
described below. The weight for each metric in the Under-
standability function is listed beside each metric acronym;
metrics are weighted positively where high values are con-
sidered to contribute to understandability and negatively
where low values contribute.

• Data Access Metric (DAM, 0.33)

The ratio of the number of non-public attributes to the
total number of attributes declared in the class. This
metric corresponds to the property encapsulation.

1Quality Model for Object-Oriented Design

• Cohesion Among Methods of Class (CAM, 0.33)

The relatedness among methods of a class, computed
using the summation of the intersection of parameters
of a method with the maximum independent set of all
parameter types in the class. This metric corresponds
to the property cohesion.

• Number Of Methods (NOM, -0.33)

A count of all the methods defined in a class. This
metric corresponds to the property complexity.

• Number of Polymorphic Methods (NOP, -0.33)

A count of the number of methods that can exhibit
polymorphic behaviour. This metric corresponds to
the property polymorphism.

• Direct Class Coupling (DCC, -0.33)

A count of the different number of classes that a class
is directly related to. The metric includes classes that
are directly related by attribute declarations and mes-
sage passing (parameters) in methods. This metric
corresponds to the property coupling.

• Design Size in Classes (DSC, -0.33)

A count of the total number of classes in the design.
This metric corresponds to the property design size.

• Average Number of Ancestors (ANA, -0.33)

The average number of classes from which each class
inherits information. This metric corresponds to the
property abstraction.

In addition, metrics for the design properties messaging,
inheritance, aggregation and hierarchies are included in the
QMOOD model but unweighted in the Understandability
function.

3.4 Search Techniques

3.4.1 Genetic Algorithm
For this study we have extended the set of search tech-

niques available to CODe-Imp by including a Genetic Al-
gorithm (GA) implementation similar to that of Seng et al
[22]. For the purpose of genetic algorithm implementation,
the standard solution representation (the AST) can be con-
sidered the phenotype, while the sequence of refactorings car-
ried out in order to reach that solution can be considered the
genotype. The mutation operator employed here is identical
to that described by Seng, and simply consists of adding one
random refactoring to the genotype. Our crossover operator
is similar to Seng’s, and consists of ‘cut and splice’ crossover
of two genotypes, so the length of the offspring genotypes
can differ from that of the parents. It is of course likely
that in the process of splicing genotypes we will encounter a
situation where the necessary preconditions for some refac-
toring are not met. In such a case we discard the refactoring
in question, rather than discard the entire genotype.
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3.4.2 Simulated Annealing
Simulated Annealing (SA) is a meta-heuristic search tech-

nique inspired by the metallurgic process of annealing, where
a molten metal is cooled slowly in order to produce or pre-
serve certain characteristics in the solid form [12]. SA has
been applied to a wide range of search-based software en-
gineering problems, and has been found to be effective in
the context of software clustering [18]. SA has the advan-
tage that it is very robust against local optima in the search
space, but the disadvantage that its many parameters can
make it hard to configure for any given problem.

In this study we have employed the standard geometric
cooling schedule, but a very low starting temperature. This
is due to the assumption that even a design of low quality
from a human perspective is in fact in the top few percent
when we consider the space of all possible designs.

3.4.3 Multiple Ascent Hill-Climbing
A variation on the standard first ascent hill-climbing al-

gorithm, multiple ascent hill-climbing (HCM) is capable of
achieving improved results due to its ability to escape from
local optima. HCM initially acts identically to a first ascent
hill-climbing search, but when a local optimum is reached a
pre-defined number of random refactorings are carried out
in order to move away from that point in the solution space.
The search is then restarted from the randomly chosen so-
lution. This procedure is repeated a set number of times,
depending on the number of restarts parameter. The num-
ber of random refactorings made each time is the restart
depth parameter. This search technique is considered a pri-
mary candidate for search-based refactoring because local
searches have been shown to be effective in the similar do-
main of module clustering [11, 17], as well as in previous
exploratory work [21].

3.4.4 Steepest Ascent Hill-Climbing
Although not considered a primary candidate for use in

search-based refactoring due to its long run-times and in-
ability to escape local optima, the performance of steepest
ascent hill-climbing was used as a reference point in this
study in order to carry out normalisation of results across
different input programs. Because the extent to which a de-
sign can be improved varies greatly depending on such fac-
tors as how many refactorings can legally be applied, this
normalisation was vital in order to establish relative per-
formance of the search techniques mentioned above in the
general case. Steepest ascent hill-climbing provided an ideal
reference point due to its deterministic nature, as the same
quality gain is obtained from each run on a given input pro-
gram.

3.5 Input
Input consisted of four Java 1.4 programs of a maximum

size of fifty top-level classes; three randomly selected from
SourceForge2 via java-source.net, and a self-contained sub-
set of the Spec-Benchmarks3 standard performance evalua-
tion framework, to which it was known a large number of
refactorings could be applied. Clearly, some refactorings re-
duce the number of legal refactorings that can be applied to
a design, while some increase the number and others have

2http://sourceforge.net/
3http://www.spec.org/

no effect. We indicate below the number of distinct refac-
torings that could be applied to each design on input. The
programs selected were:

1. Beaver, a parser generator

• 30 top-level classes

• 4999 SLOC

• 177 refactorings could initially be applied

2. Mango, a collections library

• 45 top-level classes

• 1131 SLOC

• 28 refactorings could initially be applied

3. EAOP, an aspect-oriented programming library

• 40 top-level classes

• 1164 SLOC

• 200 refactorings could initially be applied

4. Spec-Check, a benchmarking program

• 41 top-level classes

• 4836 SLOC

• 351 refactorings could initially be applied

4. RESULTS
Experiments were carried out on a 2.2GHz AMD Athlon

powered PC with 2GB CL2 RAM. Mean processing time per
solution examined was less than one second, including model
building, metric extraction, quality assessment, discovery of
legal refactorings, and actual (AST) refactoring. Total run-
time varied between six minutes and twelve hours as dis-
cussed below, depending on the search technique employed,
number of refactorings possible for the input program and
the number of refactorings applied. However, CODe-Imp
makes no use of concurrent processes, so there is potential
to greatly decrease these run-times.

Statistical analyses were carried out using Graphpad Prism.
A confidence interval of 95% was used in all statistical tests.
Error bars on all figures indicate standard deviation from
the mean; three replications of each experiment were per-
formed.

4.1 Simulated Annealing
In order to determine a suitable simulated annealing cool-

ing schedule for use in the general case of search-based refac-
toring, the set of input programs were automatically refac-
tored to conform more closely to the QMOOD Understand-
ability model under all nine permutations of cooling factor
(CF) 0.990, 0.993 or 0.996 and Markov chain length (MCL)
1, 2 or 3. Figure 1 shows the mean quality increase observed
across the set of input programs, with each data point nor-
malised against the highest observed value under SA for the
particular input program. Statistical analysis of these data
using 2-way ANOVA revealed no significant correlation be-
tween quality gain and either cooling factor or Markov chain
length, in the range investigated. Furthermore, Bonferroni
post-tests revealed no significant difference between the re-
sults achieved for any pair of cooling schedules.
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Figure 1: Mean quality change – SA

These results support the recommendation of low values
for both cooling factor and Markov chain length, since more
computationally expensive parameters do not yield greater
quality function gains. However, the variation in mean qual-
ity gain for most of the cooling schedules investigated was
large, indicating that the relative performance of SA varies
greatly depending on the particular input program in ques-
tion. As a result, no strong recommendation of schedule
for use in the general case can be made, and use of SA in
search-based refactoring would likely require a large volume
of searches with different parameters in order to be confident
that high-quality solutions were obtained.

4.2 Genetic Algorithm
In order to determine the ideal parameters for a genetic

algorithm in the general case of search-based refactoring, the
set of input programs were automatically refactored to con-
form more closely to the QMOOD Understandability model
under all nine permutations of mutation probability (Mu)
0.8, 0.5 or 0.2 and mating probability (Mate) 0.8, 0.5 or 0.2.
Figure 2 shows the mean quality increase observed across
the set of input programs, with each data point normalised
against the highest observed value under GA for the partic-
ular input program. Statistical analysis of these data using
2-way ANOVA revealed an extremely significant correlation
between quality gain and the combination of mutation prob-
ability and mating probability (P less than 0.0001). Bon-
ferroni post-tests indicated that the combination of Mu 0.8
and Mate 0.8 was significantly more effective over the set of
input programs than any other set of parameters.

These results support the recommendation of high mu-
tation and mating probabilities, with values of 0.8 & 0.8
yielding high mean quality increases with little deviation.
However, high mutation and mating parameters result in
a high computational expenditure, as discussed below. It
should be noted that in many cases the application of a
single refactoring did not affect the QMOOD Understand-
ability function value, so the mutation operator employed
did not always produce a change in solution quality. This is
likely a factor in the observed ineffectiveness of low mutation
probabilities in this study.

4.3 Multiple Ascent Hill-Climbing
In order to determine suitable parameters for multiple as-

cent hill-climbing in the general case of search-based refac-
toring, the set of input programs were automatically refac-
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Figure 2: Mean quality change – GA

tored to conform more closely to the QMOOD Understand-
ability model under nine permutations of number of restarts
(R) 1, 2 or 3 and restart depth 5, 10 or 20. Figure 3 shows
the mean quality increase observed across the set of input
programs, with each data point normalised against the high-
est observed value under HCM for the particular input pro-
gram. Statistical analysis of these data using 2-way ANOVA
revealed no significant correlation between quality gain and
either number of restarts or restart depth. Bonferroni post-
tests indicated that no parameter set produced significantly
greater mean quality gains than any other.

These results support the recommendation of low values
for both number of restarts and restart depth, since more
computationally expensive parameters do not yield greater
quality function gains.

4.4 Comparison of Searches
Figure 4 shows the mean quality increase for each search

technique for the entire set of input programs. For each pro-
gram/search pair the set of parameters having the highest
mean quality gain were taken as the performance of that
search technique on that program. These values were then
normalised against the performance of steepest ascent hill-
climbing (HC) for each input program, before mean quality
gain over the set of input programs was calculated. Statisti-
cal analysis using Student’s T-test for unpaired data assum-
ing equal variance revealed no significant difference in mean
quality increase over the set of input programs between the
four search techniques. However, two other criteria are per-
tinent in comparing the relative performance.

Firstly, a search technique upon which a search-based
refactoring tool is based must be capable of producing good
results for any input, as the user will not wish to run the
tool several times with different search techniques in order
to obtain high-quality results. It is therefore important that
quality gain is consistently high across the set of possible
input programs. As can be seen from figure 4, the standard
deviation of quality gain is quite large for both simulated
annealing and genetic algorithm searches, small for multiple
ascent hill-climbing, and zero for steepest-ascent hill climb-
ing.

Secondly, the computational cost of the various searches
is of course a factor in choosing between them. Longest
relevant run times for the various search techniques were as
follows:
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SA Up to two hours for spec-check with most effective pa-
rameters for that input (CF 0.996, M 3).

GA Up to twelve hours before peak values were observed
for most effective parameters (mut 0.8, mate 0.8) for
spec-check.

HCM Approximately one hour for spec-check with most
effective parameters (3 restarts, depth 5).

HC Approximately one hour in the case of spec-check input.

While precise runtimes are clearly implementation depen-
dant, these results are representative of the expected relative
efficiency of the algorithms. HC, for example, must examine
every possible refactoring before accepting one so it is un-
surprising that it requires more time than HCM with a low
restart depth parameter. GA is extremely inefficient in the
number of solutions it examines relative to its total runtime
because the entire population of solutions must be stored in
memory, resulting in a huge memory-access overhead. This
is a result of the complexity of the solution representation
in this domain, which necessitates more intense computa-
tion than the binary string representation used in other GA
applications.

In summary, simulated annealing has several disadvan-
tages; it is hard to recommend a cooling schedule that will
generally be effective, results varied considerably across in-
put programs and the search is quite slow. No significant
advantage in terms of quality gain was observed that would
make up for these shortcomings.

The genetic algorithm has the advantage that it is easy
to establish a set of parameters that work well in the gen-
eral case, but the disadvantages that it is costly to run and
varies greatly in effectiveness for different input programs.
Again, no significant advantage in terms of quality gain was
observed that would make up for these shortcomings.

Multiple-ascent hill climbing stood out as the most effi-
cient search technique in this study; it produced high-quality
results across all the input programs, is relatively easy to
recommend parameters for, and runs more quickly than any
of the other techniques examined.

Steepest ascent hill-climbing produced surprisingly high
quality solutions, suggesting that the search space is less
complex than might be expected, but is slow when we con-
sider its known inability to escape local optima.
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Figure 4: Overall mean quality change

5. CONCLUSIONS & FUTURE WORK
In this study we have investigated how best to parame-

terise three search techniques for use in search-based refac-
toring, and compared the overall performance of four. High
values for mating and mutation probability are shown to
produce the best results for a genetic algorithm, while low
values for restart depth and numbers of restarts are shown
to be most efficient for multiple ascent hill-climbing. The
effectiveness of simulated annealing cooling schedules was
shown to vary depending on input program.

Comparison of search techniques showed multiple–ascent
hill climbing (HCM) to be most suitable for search-based
refactoring. Although no statistically significant difference
in mean quality gain was observed between the four search
techniques, HCM performed best in terms of speed, con-
sistency of quality gain over various input programs and
consistency of quality gain for a particular parameter set.
Since parameters of restart depth 10 or less and number of
restarts 2 or less produced large quality gains over all in-
put programs, HCM can be used in search-based refactoring
without the large volume of searches with different parame-
ters required by a simulated annealing implementation.

These results are consistent with the search space for
the set of refactorings employed under the QMOOD Un-
derstandability function being relatively smooth, which sug-
gests that meta-heuristic search techniques are over-powered
for this particular application. Further studies using other
contemporary evaluation functions will be required in order
to determine whether these results can be generalised across
the domain of search-based refactoring as a whole. However,
the superiority of multiple-ascent hill climbing in this study
leads us to conclude that search-based refactoring tools such
as CODe-Imp , that utilise the QMOOD Understandability
function, should make use of this search technique.

Further work is also required in the related field of au-
tomated object-oriented design quality measurement, since
search-based refactoring can only be as effective at actu-
ally improving design as the quality model employed is at
measuring it. Of particular interest would be an analysis
of the impact of search-based refactoring on such artifacts
as design patterns and ‘bad smells’. We believe a synergy
exists between search-based refactoring and design quality
measurement, since the programmer can be shown the re-
sults of rigorously implementing a given quality model. We
therefore expect that future collaboration with members of

1119



the object-oriented measurement community will yield the
next major advances in search-based refactoring.
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