
A Recommender Agent for Software Libraries:
An Evaluation of Memory-Based and Model-Based

Collaborative Filtering
Frank McCarey, Mel Ó Cinnéide and Nicholas Kushmerick

School of Computer Science and Informatics,
University College Dublin,
Belfield, Dublin 4, Ireland.

{frank.mccarey, mel.ocinneide, nick}@ucd.ie

Abstract— Software Agents can conveniently facilitate knowl-
edge discovery and knowledge sharing across an organisation.
We contend that programming tasks are often mimicked, that
knowledge concerning reusable libraries can be extracted auto-
matically from source code repositories, and that this knowledge
can then be filtered and presented to a developer in a manner that
will encourage and support future software reuse. We introduce
RASCAL, a recommender agent that continually recommends a
set of task relevant library methods to a developer.

RASCAL learns information regarding how a particular
reusable library is used and then employs this insight to make
task relevant recommendations to a developer. In this paper we
detail our RASCAL agent and describe two recommendation
techniques; namely Model-Based and Memory-Based Collabora-
tive Filtering. We are interested in producing a scalable and
efficient realtime recommender and thus ideally would favor
a Model-Based approach. However, each scheme is evaluated
against both runtime performance and recommendation accu-
racy. We present results and discuss the merits and limitations
of each technique.

I. INTRODUCTION

Reusable libraries tend to be large; for example, the latest
version of the Java API library has over 3000 classes while the
Java Swing library contains more than 500 classes. Therefore it
is imperative that proper tool support be available and that such
support tools allow a developer to easily access components in
a library. Further to this, it must be recognised that a developer
cannot be fully conversant with an entire library or set of
libraries and that there is a need to advise a developer when
and how to reuse components.

Traditional reuse support tools have mainly focused on
passive search techniques, as summarised by Mili et al. [1].
We shift the focus from retrieval to recommendation akin to
work of Ye et al. [2]. Our desire is to share, among developers,
knowledge about what reusable components exist in a library
and to subsequently inform a developer when it is appropriate
to use a particular component. Typically this knowledge is
shared between programmers via direct meetings, emails or
instant messenger and forces a strong dependence on human
memory. As noted in LaToza’s et al. study, there is also an
expensive overhead associated with this type of task switching
for both the requester and responder; for example, simply

replying to an email may upset the flow of your primary
task. We believe that much of this knowledge could be stored
and distributed automatically with the assistance of a software
agent. We have developed RASCAL, a recommender agent
that encourages and assists a developer to make use of software
libraries; in particular we focus on library methods.

A central objective of RASCAL is to create an environment
where reuse is straightforward, encouraged and allowed to
foster. Proponents of reuse claim improvements in software
quality and developer productivity [3] whilst a reduction in
defect density [4] and time-to-market [5]. However there are
several pragmatic issues that hamper reuse such as devel-
oper motivation, time constraints and library accessability,
in addition to the inadequacy of existing knowledge sharing
mechanisms. We suggest that many of these problems stem
from ineffective support tools and propose that RASCAL will
help to address many of these issues.

The RASCAL agent constantly monitors the code a devel-
oper is writing and, based on this, pro-actively recommends
a candidate set of task relevant library methods. Recommen-
dations are produced using a Collaborative Filtering (CF) [6]
algorithm. CF algorithms work by clustering users who share
preferences and dislikes for particular items. A recommen-
dation for an individual is based on the opinions of other
like-minded users within the individuals cluster. We propose
that this principle can be applied in the software engineering
domain. The code a developer is currently writing can be
clustered with other similar source codes and based on these
similar source codes, we can produce a recommendation for
this developer. Important considerations when implementing
RASCAL are scalability, accuracy and response times. With
this mind we will investigate, compare and evaluate two
CF algorithms in this paper, memory-based and model-based
collaborative filtering.

A distinction between our recommender agent and other
commercial recommenders is that we are attempting to suc-
cessfully predict a library method that a developer should
invoke. It is possibly that a developer will have invoked this
method previously; most recommender systems only make
predictions for new or unseen items. Recommendation is

Fig. 1: The main components of the RASCAL agent.

further complicated by the fact that the order in which methods
are invoked is of importance and this needs to be reflected in
the recommendation set.

As a prerequisite to producing recommendations, the
RASCAL agent needs a repository of source code to allow
clustering as required by the recommendation algorithm.
In our research, we use the open-source Sourceforge [11]
repository. By mining and analysing such a repository,
we can establish what reusable library methods exist,
obtain knowledge about how they are used by developers
and employ an appropriate information retrieval model to
efficiently represent these usage patterns. To validate our
work we produce recommendations for these mined classes;
we compute over 35,000 recommendations for almost 1400
open-source Java classes.

The main contributions of this work are:

• A software agent that supports and encourages software
reuse.

• An evaluation of memory-based and model-based collab-
orative filtering in a software engineering reuse context
with regard to recommendation accuracy and runtime
performance; we also note that there may be a trade-off
between the two.

• A lightweight solution, embedded in RASCAL, to knowl-
edge acquisition and knowledge sharing. This work is
specifically geared to supporting reuse but potentially
could be used for other tasks such as recommending
design practices or identifying code duplication.

The remainder of this paper is organised as follows. In the
next section we provide an overview of the main components
in the recommender agent. This is followed by a detailed
description and comparison of memory-based and model-
based collaborative filtering algorithms. Section IV presents
experimental results with discussion. Related works are re-
viewed in section V and finally in section VI we discuss how
RASCAL can be extended and draw general conclusions.

II. RASCAL OVERVIEW

The RASCAL agent presently recommends a set of methods
from the Swing and AWT libraries to a developer. Below we
describe the four main components of RASCAL, as shown in
figure 1.

We produce personalised recommendations for each individ-
ual Developer. When producing a recommendation, we only
consider the content of the current active method which this
developer is coding; we do not record any long-term history.
In recommender systems, it is common terminology to refer to
the user for whom the recommendation is being sought as the
active user; likewise here we will refer to the active developer
or the active method that a developer is coding. Developer
preferences are gathered implicitly.

The Code Repository contains code from previous projects,
external libraries, open-source projects etc; in our work we
used the Sourceforge [7] repository however any repository
with sufficient source code is applicable to RASCAL. This
source code repository can be considered an unstructured
database of user preferences. This repository will be continu-
ally updated as new classes/systems are developed. From such
a repository, we automatically extract information about what
reusable library methods exist and also knowledge about how
these are used by developers.

We produce an Information Retrieval Model by mining
the source code repository. This allows us to make sense
of all the user preferences in the code repository and to
represent them using a suitable model. We describe both the
statistical Vector Space Model (VSM) and the probabilistic
Naı̈ve-bayes information retrieval (IR) model in subsection
III-A and subsection III-B respectively. This model will need
to be created once initially and subsequently updated when
a new piece of source code is added to the repository. We
extract information from the source code repository using the
Bytecode Engineering Library [8].

Finally there will be a Recommender agent for each
individual developer; this agent actively monitors the method
that a developer is coding. Based on this, the agent queries

Fig. 2: RASCAL Eclipse Plugin

the information retrieval model to establish a set of source
codes that are most similar to the code currently being written
by this developer. Following this, a candidate set of ordered
library methods is recommended to the active developer. The
recommendation set is produced based on the similar source
codes; we explain the collaborative filtering recommendation
technique in full in the section III.

RASCAL is currently implemented as a plugin for the
Eclipse IDE as shown in figure 2. As a developer is writ-
ing code, RASCAL monitors the library methods currently
invoked by this developer and uses this information to recom-
mend a candidate set of methods. Recommendations are then
presented to the developer in the recommendations view at the
bottom right hand corner of the IDE window. Recommenda-
tions are unsolicited and thus unobtrusive; a developer need
not accept nor reject a recommendation.

It is extremely important that RASCAL integrates seam-
lessly with the developers IDE. RASCAL should also be able
to initialise quickly and produce reliable recommendations in
a realtime environment. If even a modest computation time
is required then it is highly probable that the plugin would
quickly be disabled by the developer. For this reason, we have
carried out much research to date in efficient IR models. We
have investigated the Vector Space Model (VSM), Latent Se-
mantic Indexing (LSI) [9] and Bayesian Networks (BN) [10].
In the following section we investigate two recommendation
algorithms commonly used with such IR models.

III. RECOMMENDATIONS

The goal of a collaborative filtering (CF) algorithm is to
suggest new items or predict the utility of a certain item for
a particular user based on the users’ previous preference and
the opinions of other like-minded users [6]. CF systems are
founded on the belief that users can be clustered. Users in
a cluster share preferences and dislikes for particular items
and will likely agree on future items. CF algorithms are used
in mainstream recommender systems like Amazon [11] and
Movielens [12]. In our work we use a CF algorithm to recom-
mend a set of library methods to a developer. We can infer a
developers’ previous preferences implicity by examining the
set of library methods that they have invoked. Breese et al. [13]
identify two classes of CF algorithms, namely memory-based
and model-based; we will investigate both.

For clarity we describe three terms, specific to this context,
that are common terminology in recommender literature.

Item This refers to a reusable library method. We wish to
predict a developers preference for an item.

User A user is a Java method in our source code reposi-
tory. The active user can be considered the method
currently being written or indeed the actual developer
of that method. We need to establish a database or a
repository of users to facilitate recommendation.

Vote This represents a users’ preference for a particular
item. In this context, a vote is simply an invocation
count for a particular library method.

Fig. 3: Illustration of the kNN formation. Here we look for
the active methods’ k=8 most similar source codes. We need
to compare the active user with 34 other users.

A. Memory-Based Collaborative Filtering

In a memory-based approach, a prediction for the active user
is derived by considering all other users in the code repository.
Vote vij corresponds to the vote by user i for item j. The mean
vote for user i is:

vi =
1
|Ii|

∑
j∈Ii

vi,j (1)

where Ii is the set of items the user i has voted on. The
predicted vote using memory-based CF for the active user a
on item j, PVaj , is a weighted sum of the votes of the other
similar users:

PVaj = va + N
∑

i∈kNN

sim (a, i) (vi,j − vi) (2)

where weight sim(a, i) represents the correlation or similarity
between the current user a and each user i. kNN is the set
of k nearest neighbours to the current user, as illustrated in
figure 3. A neighbour is a user who has a high similarity
value sim(a, i) with the current user. The set of neighbours
is sorted in descending order of weight. For experiments we
used a value of k = 8. N is the normalising factor such that
the absolute values of the weights sum to unity. From equation
2 we can now predict a users’ vote for any item. In the context
of this work, we can now predict a developers’ preference for
any library method assuming that there exists at least one user
in the code repository that has previously used the particular
library method. Library methods are ranked based on their
predicted vote and the top n methods are recommended to the
developer. In our experiments, we use a value of n = 7.

Central to CF is the ability to determine a set of users
who are most relevant or similar to the active user for whom
the recommendation is being sought, sim(a, i). We want to
effectively discover source codes in our repository that are
most similar to the code currently being written. As shown
in figure 4, we employ the Vector Space Model (VSM) [14]
to create a matrix of user votes; this corresponds to the IR
component in figure 1. The similarity between any two users,
sim(a, i), can now be computed by determining the cosine
of the angle formed by their vectors. This cosine will fall

Fig. 4: Vector Space Model represent User-Preference Matrix

in the range [-1, 1]. A cosine of 1 indicates two users are
identical whereas -1 denotes no similarities. When making a
recommendation for the active user, we create a query vector
and compare this with all other user vectors.

Note, to determine the kNN nearest users, we must com-
pare the active user with each user in the code repository.
This property of memory-based CF algorithms has potential
implications for scalability and runtime performance. In gen-
eral however, memory-based CF works reasonably well, are
straightforward to implement and easily allow new users to be
added. In the RASCAL system, we expect new source code
to be added to the code repository frequently and hence this
latter characteristic may be important.

B. Model-Based Collaborative Filtering

Model-based CF algorithms seeks to fit a probabilistic
model to the data through unsupervised learning techniques
and to subsequently use this model for making predictions. We
used a similar version of the model-based clustering method
described by Breese et al. [13]. In this work we create a set
clusters C = c1, c2, ..., cm where m is the number of unique
clusters, as shown in figure 5. We estimate the probability that
an active user a belongs to a particular cluster cx, Pr(cx, a).
After establishing the cluster which user a is mostly likely to
be a member, we can use a modified version of equation 2 to
predict the vote for user a on item j:

PVaj = E (va,j) = Pr(cx, a)(vcx,j) (3)

where cx is the classified cluster and vcx,j is the average vote
for item j in cluster cx. To make a recommendation set, we
recommended the top n items with the highest predict vote.
We also use a value of n = 7 in the model-based experiments.

Unlike previously, a users’ predicted vote for an item is
based on users within cluster cx and not the top kNN users.
We only consider one cluster when making recommendations
and thus the probability weighting is not as important as
perhaps in other systems were the top s clusters are considered.
However the probability value is still useful as a confidence
measure. We considered the possibility of examining the top
s clusters to perhaps compensate for a cluster which had a
low confidence value (probability) or a low user population,
however we found that such a solution had a negative effect
on overall recommendation accuracy.

Fig. 5: Illustration of EM clustering. We now compare the
active method with 9 clusters as opposed to 34 individual users
when using the kNN memory-based algorithm.

To implement this approach, we use a simple Naı̈ve-bayes
[15] [16] clustering model. For clarity, we can visualise this
model as a simple tree structure that has the classification
node as a parent of all other attribute nodes. This is illustrated
in figure 6. Naı̈ve-bayes is based on the assumption that the
attributes values are independent of each other given the class
C. In the context of this work, the classification node repre-
sents a particular cluster, whereas an attribute node represents
each reusable library method that can be invoked. We initially
use the Expectation-Maximisation (EM) [17] algorithm to find
clusters and hence to learn the structure of the model. The
conditional probability of each attribute given the class C is
learnt from training data. Classification is then done for a
query user, the active user, by applying Bayes rule to compute
the probability of C given a particular instance of attributes.
Following this, we can establish which class or cluster has
the highest posterior probability. The probability that user a
belongs to cluster cx is calculated as follows:

P (cx, a) = P (cx)
Ia∏

j=1

P (va,j |cx) (4)

where Ia is the set of items that user a as voted on and va,j

is user a’s vote for item j.
This model was constructed and implemented using the

popular WEKA [18] machine learning tool. A major benefit of
model-based CF is that we need only keep the parameters of
the model in memory to make predictions, which takes much
less space than the entire user-preference matrix as is required
by the memory-based model, assuming the number of clusters
is less than the original number of users. We found the optimal
size of the cluster set to be less than 50% of the original
number of users. A further benefit is that recommendations can
be produced very fast as there will likely be a much smaller set
of clusters than users. The average item-vote for each cluster
can also be pre-computed. Unlike the memory-based scheme,
the model-based technique requires an initial learning phase
before predictions can be made and thus it is more difficult to
add new users. However it may be possible to add more source
codes to our model in a nightly build and thus the availability
of the recommender agent would not be adversely affected.

Fig. 6: Naı̈ve-Bayes Example

IV. EXPERIMENTS

A. Dataset

We produced over 35,000 recommendations from 3481
methods mined from Sourceforge [7]. Recommendations were
produced solely at the method level and not the class level as
in previous work [19]. Further to this, each method had on
average 11 invocations. Recommendations were made for both
the SWING and AWT libraries; in total there was 2090 Swing
and AWT library methods that were invoked at least once in
our code repository. Since we have the complete source code,
we can automatically evaluate the recommendations for a piece
of code by checking whether the recommended method was
in fact called subsequently.

For each user defined method, several recommendations
were made. For example, if a fully developed method had
10 Swing invocations, then we removed the 10th invocation
from that method and a recommendation set was produced for
the developer based on the preceding 9 invocations. Following
this recommendation, the 9th invocation was removed from
the user method and a new recommendation set was formed
for this developer based on the preceding 8 invocations.
This process was continued until just 1 invocation remained.
Each recommendation set contained a maximum of 7 library
methods; we must be careful not to overload the developer
with a large recommendation set yet recommend a reasonable
number of methods that will allow the developer to better plan
their approach to the programming task.

B. Evaluation

Precision and Recall are the most popular metrics for
evaluating information retrieval systems. Precision is defined
as the ratio of relevant recommended items to the total number
of items recommended; P = nrs/ns, where nrs is the number
of relevant items selected and ns is the number of items
selected. This represents the probability that a selected library
method is relevant. A library method is deemed relevant if
it is used by the developer for whom the recommendation is
being sought. Recall is defined as the ratio of relevant items
selected to the total number of relevant items; R = nrs/nr,
where nrs is the number of relevant items selected and nr is
the number of relevant items. This represents the probability
that a relevant library method will be selected.

(a) (b) (c)

Fig. 7: (a) Precision (b) Recall (c) Next Recommended

It is particulary important that RASCAL recommends meth-
ods in a relevant order i.e. the invocation order. We will
evaluate this using a simple binary Next Recommended (NR)
metric; NR = 1 if we successfully predict or recommend the
next method a developer will use, otherwise NR = 0. We will
also discuss runtime performance issues in subsection IV-D.

C. Results

All results are displayed as a percentage value as shown in
figure 7. Model-based results are based on 850 clusters. We
include a baseline result here also. Baseline recommendations
were produced by recommending, at each recommendation
stage, the seven most commonly invoked library methods.
Both the memory-based and model-based produce signifi-
cantly better results than our baseline technique. Overall the
memory-based approach produced marginally better results as
detailed below.

Precision is displayed in figure 7(a). The average precision
value while using the memory-based CF algorithm was 42%,
this compares with a 34% average when using model-based
CF. If the recommendation set contained the maximum seven
library methods then, on average, three would be used by
the developer based on using memory-based CF. The average
value of recall for memory-based was 57% compared with
53% for the model-based approach. As the size of the rec-
ommendation set can be between zero and seven, we validate
our recommendations against the next seven invocations the
developer actually made. Hence it is possible that a single
recommended library method was used twice by a developer
within this scope and thus would be relevant twice. This would
have a positive effect on recall but would likely negatively
impact precision as now there may be more incorrect recom-
mendations in the set.

The next recommended metric is displayed in figure 7(c).
Again the model-based average of 55% is relatively close to
the memory-based average of 60%. When we know very little
about the actually method a developer is writing there is still
a reasonable good chance that we will be able to correctly
predict the next library method that they need to invoke.

D. Discussion

We find that memory-based CF consistently outperforms
model-based CF recommendations. However, it is important
that we recognise several other benefits of using model-based
CF and in particular the Naı̈ve-bayes clustering model. Our
work is aimed at developing a practical tool to assist develop-
ers to reuse software libraries. To gain developer confidence in
such a tool, recommendations should be useful and frequent.
Likewise it also important to consider performance issues;
recommendations should be presented in a timely an efficient
manner. The average time taken to make a recommendation
was under 0.2 seconds using the Naı̈ve-bayes model compared
with over 1 second when using the memory technique. As
more source code is added to the repository or as a reusable
libraries grows, there will be a much more sever effect on the
memory-based performance. However, there is an overhead
cost associated with building the original clustering model. In
this example where there was 2090 users and 3481 library
methods, it took just under 3 hours to create the Naı̈ve-bayes
model which had 850 clusters (40% of the original number of
users). We experimented with different cluster sizes; generally
recommendations were poorer when a smaller number of
clusters were used but there was no significant improvement
in results when the cluster size was greater than 850.

Generally, we notice two different trends in precision and
recall. Precision tends to decrease as we know more about
the active method while recall increases. This result perhaps
requires clarification. Consider a developer who invokes in
total 10 methods. When we make a recommendation for that
developer when she has only used 1 method, there is a set
of 9 possible methods to recall. The chances of recalling all
relevant methods is quite low and hence the recall result is low
in earlier recommendations. However, when this developer has
used 9 methods and there is only 1 possible method to recall,
then the chances of this method being in the recommendation
set is quite high. In contrast, the more invocations the devel-
oper has made, the fewer there are to correctly recommend
and hence precision decreases in latter recommendations.

V. RELATED WORK

Traditional retrieval schemes focused generally on tech-
niques like Keyword Search and Signature Matching [1]. More
recently several intelligent retrieval tools have been proposed.
Mingyang et al. [20] employ conversational case-based rea-
soning technology to help developers locate reusable compo-
nents. Software components are represented as cases and a
knowledge intensive case-based reasoning method is adopted
to explore context-based semantic similarities between a users’
query and stored components. A conversational approach is
used to collect user requirements interactively and incremen-
tally. Another approach for promoting reuse is to assume that
all components (ie, packages, methods and arguments) are
annotated with semantic labels that indicate opportunities for
reuse. A key problem with this approach is that it requires
considerable effort to provide the semantic annotations. Hess
et al. [21] describe a variety of machine learning techniques
for automatically assigning such annotations, and demonstrate
their effectiveness on a large collection of Web Services.

Several web-based search and retrieval techniques have
been developed such as Koders.com, Kickjava.com and
Planetsourcecode.com. Similar to Google [22], Compo-
nentRank [23] is one such technique. Components are ranked
based on analysing use relations among the components and
propagating the significance of a component through the use
relations. Preliminary results indicate that this technique is
effective in giving a high rank to stable general components
which are likely to be highly reusable and a lower rank to
non-standard specialised components. Hummer and Atkinson
[24] have carried out a general study on using the web as
a reuse repository; they evaluate several search engines such
as Google, Yahoo and Koders. They identify some of the
advantages of web based approaches such as scalability and
efficiency but also note limitations such as security, legal
concerns and implicit classes.

The use of software agents for supporting and assisting
library browsing has been proposed by Drummond et al. [25].
An active agent attempts to learn the component which the
developer is looking for by monitoring the developers’ normal
browsing actions. Based on experimental results, 40% of the
time the agent identified the developers’ search goal before
the developer reached the goal. By providing non intrusive
advice that accelerates the search, this work is intended to
complement rather than replace browsing.

A major limitation with all of the retrieval techniques above
is that the developer must initiate the search process. However,
in reality developers are not aware of all available methods in a
library or may be unable to express their query clearly. If they
believe a reusable component for a particular task does not
exist then they are less likely to search the component repos-
itory. Thus to effectively and realistically support component
reuse it is tremendously important that component retrieval be
complemented with component delivery/recommendation.

Ye and Fischer [2] identify the cognitive and social chal-
lenges faced by software developers who reuse and also

present a tool named CodeBroker which address many of
these challenges. CodeBroker infers the need for components
and pro-actively recommends components, with examples,
that match the inferred needs. The need for a component is
inferred by monitoring developer activities, in particular de-
veloper comments and method signature. This solution greatly
improves on previous approaches, however the technique is
not ideal. Reusable components in the repository must be
sufficiently commented to allow matching and developers
must also actively and correctly comment their code. Active
commenting is an additional strain placed on developers which
is likely to make the use of CodeBroker less appealing.

Mandelin et al. [26] present an intelligent tool for under-
standing and navigating the API of a particular library. They
suggest developers often know the objects they would like
to reuse but are unaware of how to write the source code
to get those objects; for example a developer may wish to
create a IF ile object from a ASTNode but may not be aware
of the code needed to do this. They provide a tool named
PROSPECTOR which can automatically assist a developer to
better understand the library API by providing code snippets
relevant to the current task; for example, how to convert
between different data representations.

Reuse support through code examples is a popular research
theme. Grabert and Bridge [27] present a software tool for
examplet reuse. They define examplets to be goal-directed
snippets of source code, often written for tutorial purposes,
that show how to use program library facilities to achieve some
task. The tool allows users to specify their goal in natural
text and will subsequently automatically take into account
the source code on which they are working. The system
combines text retrieval and a semantic net representation of
the source code to achieve promising results. Another notable
tool for finding code examples is Strathcona [28]. The tool
is used to find source code in an example repository by
matching the code a developer is currently writing. Similarity
is based on multiple structural matching heuristics, such as
examining inheritance relationships, method calls, and class
instantiations. These measures are applied to the code currently
being written by the developer and matched examples from the
repository are retrieved and recommended.

Our work is similar to a number of the techniques mentioned
above. Like CodeBroker [2], our goal is to recommend a set
of candidate software components to a developer; however
our recommendations are not based on the developers’ com-
ments/method signature. In contrast we produce recommen-
dations using collaborative filtering which is similar to case-
based reasoning and the example based techniques employed
by Grabert and Bridge [27], and Holmes and Murphy [28].
Similar to the PROSPECTIVE tool and the work of Hess
et al., we are interested in increasing and supporting library
reuse though we are attempting to predict in advance what a
developer is attempting to code. Like Drummond et al. [25]
we use an active agent to monitor the current developer though
we are concerned with pro-actively recommending suitable
reusable methods as opposed to assisting the search process.

VI. CONCLUSIONS

We have presented a software agent that can support and
encourage software reuse by facilitating knowledge sharing
within a community. We have shown that just as people
can be clustered in terms of their preferences for various
items, Java source code may also be clustered based on the
library methods invoked. We investigated two collaborative
filtering algorithms; we found that memory-based algorithms
performed better in terms of precision and recall but that
a model-based technique was significantly faster and yet
produced reasonably good results. In terms of developing a
user friendly recommender agent, we believe a model-based
approach is most applicable to our domain.

Our recommendation scheme addresses various shortcom-
ings of previous solutions to the library retrieval problem;
RASCAL considers the developer context and problem do-
main but uniquely does not place any additional requirements
on existing library components or developers. Unlike many
typical reuse tools, RASCAL is pro-active and constantly
suggests library methods to reuse. However there is a need to
incorporate code examples in our recommendations, similar to
the work of Holmes and Murphy [28]. In addition, presently
the only information we know about an active method is
library invocation frequency. We will examine if it is useful to
know further information; for example the classes instantiated
by a user or structural information. This information may be
useful for improving the clustering technique. Further work
is also required in the practical implementation; RASCAL
offers unsolicited advice and we must be sensitive to this. The
RASCAL plugin should be unobtrusive and work seamlessly
with the existing IDE.

Recommender agents provide a low-cost practical solution
to the software component retrieval problem. Knowledge about
reuse libraries can automatically be gathered and easily dis-
tributed among developers, for the benefit of future devel-
opments. RASCAL can make fast and reasonably accurate
predictions, even when little information is known about the
active method and it is our belief that future work will
strengthen both recommendation accuracy and performance.

VII. ACKNOWLEDGEMENTS

Funding for this research was provided by the Irish Research
Council for Science, Engineering and Technology (IRCSET).

REFERENCES

[1] A. Mili, R. Mili, and R. T. Mittermeir, “A survey of software reuse
libraries,” Annals of Software Engineering, vol. 5, pp. 349–414, 1998.

[2] Y. Ye and G. Fischer, “Reuse-conducive development environments,”
International Journal of Automated Software Engineering, vol. 12, pp.
199–235, 2005.

[3] V. R. Basili, L. C. Briand, and W. L. Melo, “How reuse influences
productivity in object-oriented systems,” Commun. ACM, vol. 39, no. 10,
pp. 104–116, 1996.

[4] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz, “An empirical
study of software reuse vs. defect-density and stability,” Proceedings of
the 26th International Conference on Software Engineering (ICSE’04),
pp. 282–292, 2004.

[5] K. Yongbeom and E. Stohr, “Software reuse: Survey and research
directions,” Management Information Systems, vol. 14, no. 4, pp. 113–
147, Spring 1998.

[6] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl, “Item-based
collaborative filtering recommendation algorithms,” in World Wide
Web, 2001, pp. 285–295. [Online]. Available: citeseer.ist.psu.edu/
sarwar01itembased.html

[7] J. Ebert, “Storm - a user story tool. http://xpstorm.sourceforge.net,”
2002.

[8] Apache, “Bytecode engineering library (2002-2003). http://jakarta.
apache.org/bcel,” 2003.

[9] F. McCarey, M. O. Cinnéide, and N. Kushmerick, “Recommending
library methods: An evaluation of the vector space model (vsm) and
latent semantic indexing (lsi),” in Proceedings of the 9th international
conference on Software Reuse, 2006, pp. 217–230.

[10] F. McCarey, M. O. Cinneide, and N. Kushmerick, “Recommending
library methods: An evaluation of bayesian network classifiers,” in Pro-
ceedings of the 2nd international workshop on Knowldge Collaboration
in Software Development in Conjuction with the 21st IEEE ACM on
Automated Software Engineering, 2006.

[11] J. Bezos, “Amazon.com plc. seattle, wa 98108-1226, usa www.amazon.
com,” 2004.

[12] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl,
“GroupLens: An Open Architecture for Collaborative Filtering of
Netnews,” in Proceedings of ACM 1994 Conference on Computer
Supported Cooperative Work, Chapel Hill, North Carolina, 1994.
http://www.movielens.org, pp. 175–186. [Online]. Available: citeseer.
ist.psu.edu/resnick94grouplens.html

[13] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis
of predictive algorithms for collaborative filtering,” in Proceedings
of the Fourteenth Annual Conference on Uncertainty in Artificial
Intelligence, 1998, pp. 43–52. [Online]. Available: citeseer.ist.psu.edu/
breese98empirical.html

[14] T. A. Letsche and M. W. Berry, “Large-scale information retrieval with
latent semantic indexing,” Inf. Sci., vol. 100, no. 1-4, pp. 105–137, 1997.

[15] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: John Wiley and Sons, 1973.

[16] P. Langley, W. Iba, and K. Thompson, “An analysis of bayesian
classifiers,” in National Conference on Artificial Intelligence, 1992, pp.
223–228. [Online]. Available: citeseer.ist.psu.edu/langley92analysis.html

[17] N. L. A. Dempster and D. Rubin, “Maximum likelihood from incomplete
data via the em algorithm,” Journal of the Royal Statistical Society,
vol. 39, pp. 1–38, 1977.

[18] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. 2nd Edition, Morgan Kaufmann, 2005.

[19] F. McCarey, M. O. Cinnéide, and N. Kushmerick, “Knowledge reuse for
software reuse,” in Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering, 2005.

[20] M. Gu, A. Aamodt, and X. Tong, “Component retrieval using conver-
sational case-based reasoning,” pp. 259–271, 2005.

[21] A. Heß, E. Johnston, and N. Kushmerick, “Assam: A tool for semi-
automatically annotating semantic web services,” in Proceedings of the
3rd International Semantic Web Conference (ISWC 2004), Hiroshima,
Japan, 2004.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web,” Stanford Digital
Library Technologies Project, Tech. Rep., 1998. [Online]. Available:
citeseer.ist.psu.edu/page98pagerank.html

[23] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, and
S. Kusumoto, “Component rank: relative significance rank for software
component search,” in Proceedings of the 25th International Conference
on Software Engineering. IEEE Computer Society, 2003, pp. 14–24.

[24] O. Hummel and C. Atkinson, “Using the web as a reuse repository,”
in Proceedings of the 9th International Conference on Software Reuse.
Springer, 2006, pp. 298–311.

[25] C. G. Drummond, D. Ionescu, and R. C. Holte, “A learning agent that
assists the browsing of software libraries,” IEEE Trans. Softw. Eng.,
vol. 26, no. 12, pp. 1179–1196, 2000.

[26] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman, “Jungloid
mining: helping to navigate the api jungle,” SIGPLAN Not., vol. 40,
no. 6, pp. 48–61, 2005.

[27] M. Grabert and D. Bridge, “Case-based reuse of software examplets,”
Journal of Universal Computer Science, vol. 9, pp. 627–640, 2003.

[28] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in ICSE ’05: Proceedings of the 27th interna-
tional conference on Software engineering. New York, NY, USA: ACM
Press, 2005, pp. 117–125.

