
Dependency in Software Watermarking
D. Curran; M. 0 Cinnkide, N.J. Hurley, G.C.M. Silvestre

Information Hiding Laboratory, Department of Computer Science,
University College Dublin, Belfield, Dublin 4, Ireland,

david. curr an@ucd. ie

1 Introduction
The advent of bytecode languages such as Java and advances in decompilation tools have made
it easier to infringe the copyright of software. This presents a serious challenge to the soft-
ware industry, as modern Internet software is highly distributed and the potential for software
piracy is immense. Software watermarking has been proposed as one means of protecting the
intellectual property .in software. The strategy is to embed secret ownership information (i.e.,
a ‘watermark’) in a program that cannot be easily removed by unauthorised parties but that
can be reliably extracted by an authorised decoder.

One of the most effective watermarking techniques proposed to da,te is the dynamic graph
watermarking scheme of Collberg et a1 [l, 23 which is resistant to attacks such as optimisation
and obfuscation. In this method a watermark is represented by a number that is encoded in
the topology of a, paxticu1a.r graph structure. The program to be watermarked is altered so tha.t
this graph is formed in the structures created by the program running for a particular input.
The watermark detector searches through the heap of the prograrn for a graph of required type
and once located, the number is decoded froni the graph.

For such an embedding to take place, the program text must be augmented with watermark
generating code. Such code does not represent the watermark itself, but rather is a set of
instructions that result in the watermark being generated in a dynamic state of the running
program.

The goal of this paper is to investigate a practical implenientation of dynamic graph wa-
termarking, focusing particularly on embedding stealthy watermark generating code in the
program’s text. Our scheme is based on the premise that watermarking code should not be
distingiiisha,ble from ordinary program code. This i s became one stra,tegy for a n attacker whose
goal is to destroy the watermark is to attempt to directly locate the watermark generating code
within the program text, and remove or alter it.

2 A Blended Dynamic Graph Scheme
We aim to embed the watermark generating code deeply into the structure of the host program
so that not only is detection of the watermark code difficult, it is also difficult to change the
watermark code without also changing the observable run-time behaviour of the host program.

As a first step towards this goal we focus on reducing the number of statements that, need
to be added in order to produce the graph. By reducing the resource usage of the watermark
generating code we make it more difficult to detect. This resource usage can be measured in
added lines of code.

*Supported by Enterprise Ireland Basic Resea,rch Grant SC/2002/178

0-7803-8482-2/04/$20.00 02004 IEEE. 569

Our strategy for reducing this number of lines of code is to reuse watermark generating
code segments to build isomorphic subgraphs each time they are executed. This allows us to
produce N identical graph parts using a code segment that is executed at least N times. As a
consequence of code blending the watermark generating code is tied- in with the control flow of
the program which further enmeshes watermark generating code with the host program.

Software engineering principles state that data sharing inside a program should be kept
to a minimum. Violation of this principle makes watermark code conspicuous and thus open
to att,ack. A large watermark generated from many code segments disobeys this data sharing
principle. We reduce the data dependency by representing the watermark using a set of smaller
graphs rather than a single graph. The watermark number is encoded by a number of smaller
graphs. The detector recreates the original graph using placement information encoded in each
of these graph enumerations. This allows us to create watermarks in separated segments of
code without these segments needing to share information.

3 Results
We examine if our system increases the efficiency of watermark generation and we compare our
system against the Sandmark implementation [I] to examine whether the unusual properties
of programs watermarked with Sandmark render them susceptible to attack.

Our tests showed that using our current code blending strategy reduces the number of
watermark generating statements by an average of 13%. This shows that by blending watermark
generating code with the host program more efficient watermarks can be achieved. Our scheme
was found to be resistant to optirnisation and obfuscation attacks.

We created a byte code analyser to detect Sandmark’s watermark generating code. Each
class in the watermarked program was evaluated using a metric which calculated a weighted
sum of a set of characteristics that are considered rare in ordinary classes, but which appear
in the Sandmark watermark generating class. Our static analysis attack successfully removes
calls to Sandmark’s watermark generating code even when the code is obfuscated.

4 Conclusion
Our experimental results show that if watermark generating code is distinguishable from or-
dinary program code the watermark can be removed. On the other hand, by obeying the
principles of software engineering and by blending watermark generating code with the host
program software watermarks become less susceptible to attack. By seamlessly integrating
the watermarking code with the host program we have increased the robustness of software
watermarking to altacks based on lhe slatic arialysis ol class files.

References
Christian Collberg, SandMark: A Tool for the Study of Software Protection Algorithms.
http://www. cs. arizona. cdu/sandmark/, 2004.

C. Collberg and C. Thomborson, Software watermarking: Models and dynamic embeddings.
Proceedings of POPL ’99 of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 311-324, March 1999.

0-7803-8482-2/04/$20.00 02004 IEEE. 570

http://www

