
A Methodology for the Automated Introduction of Design Patterns

Mel Ó Cinnéide Paddy Nixon
Department of Computer Science Department of Computer Science

University College Dublin Trinity College Dublin
Ireland. Ireland.

Mel.OCinneide@ucd.ie Paddy.Nixon@cs.tcd.ie

Abstract

In reengineering legacy code it is frequently useful to
introduce a design pattern in order to add clarity to the
system and thus facilitate further program evolution. We
show that this type of transformation can be automated in
a pragmatic manner and present a methodology for the
development of design pattern transformations. We
address the issues of the definition of a starting point for
the transformation, the decomposition of a pattern into
minipatterns and the development of corresponding
minitransformations that can introduce these
minipatterns to a program. We argue that behaviour
preservation is a key issue and develop a rigorous
argument of this for each minitransformation we
discover. The architecture of an existing software
prototype is also discussed and the results of applying
this methodology to develop a transformation for the
Factory Method pattern are presented.

Keywords: Software re-engineering and restructuring;
legacy software; software evolution and modernisation;
behaviour preservation; design patterns.

1. Introduction

Legacy systems frequently require restructuring in
order to make them more amenable to future changes in
requirements. This restructuring is performed either by
hand or through the use of automated tools (e.g., [1]). In
the latter case, the designer usually specifies certain
operations to be carried out, e.g., to extract a method from
existing code or to move a method from one class to
another, and the tool handles the mundane details of
performing the transformation itself.

We are interested in developing automated support for
program transformations that use a more sophisticated
target structure than that of the examples just mentioned.
A designer usually has a architectural view of how they
wish the program to evolve that is at a higher level than

simply creating a new method or moving an existing
method. One interesting category of higher-level
transformation that a designer may wish to apply
comprises those transformations that introduce design
patterns [10]. Design patterns loosen the binding between
program components thus enabling certain types of
program evolution to occur with minimal change to the
program itself. For example, the creation of a Product
object within a Creator class could be replaced by an
application of the Factory Method pattern (See appendix
A for a brief description of design patterns and the
Factory Method pattern in particular). This enables the
Creator class to be extended to use another type of
Product object without significant reworking of the
existing code. Our aim is to develop a tool that automates
the introduction of design patterns to an existing object-
oriented program.

The scenario we assume is as follows: An existing
(legacy) program is being extended with a new
requirement. After studying the code and the desired
requirement, it is concluded that the existing structure of
the program makes the desired extension difficult to
achieve, and that the application of some design pattern
would introduce the desired flexibility to the program. It
is at this point in the process that we aim to provide tool
support to the designer. A key aspect of this approach is
that it is the designer that decides what design pattern to
apply and where it is to be applied. We are not attempting
to automate quality in any way; our aim is purely to
remove the burden of tedious and error-prone code
reorganisation from the designer. In this paper we present
a methodology and tool support for the development of
these design pattern transformations.

In section 2 we outline the methodology we propose
for the development of design pattern transformations.
Sections 3, 4 and 5 discuss key aspects of this
methodology in more detail, using the Factory Method
pattern as an example. In section 6 we present the final
transformation that introduces this design pattern. The
architecture of our current prototype is described in

section 7 and some practical results are presented. In
section 8 we compare our approach with other work in
this area and finally in section 9 we present some
conclusions.

2. Methodology

2.1. Motivation

There are several criteria we wish our methodology to
fulfil:
• The design pattern transformations developed must

preserve program behaviour.
• The transformations are to be applicable to real

programs.
• Reuse of portions of existing transformations must be

feasible.
• The possibility of automating the development of the

transformation itself should be provided for.
We expand on these criteria in the following paragraphs.

Behaviour preservation: Software maintenance
activities frequently involve updating existing software in
order to address some new requirement. This problem is
usually simplified by breaking it into two stages:
1. Refactoring: This involves changing the design of the

program so as to make it more amenable to the proposed
change, while not changing the behaviour of the
program. This corresponds roughly to the consolidation
phase described in [9].

2. Actual Updating: Here the program is changed to fulfil
the new requirement. If the refactoring step has been
successful, this step will be considerably simplified.
We are aiming to construct a tool that supports the

refactoring step. For this to be successful in practice, the
designer must have a strong degree of confidence that the
transformations being applied do indeed preserve program
behaviour. In our approach we therefore place a heavy
emphasis on demonstrating that the design pattern
transformations are behaviour preserving.

Applicability to real programs: The tool developed
should be applicable to real programs and be able to cope
with the complexities of source code representation of
design structures. This conflicts to a certain extent with the
previous point, in that formally proving properties of
programs written in industrial-strength languages is
unrealistic. We resolve this by working with an industrial
language, Java, and taking a semi-formal approach to
demonstrating behaviour preservation.

Reuse where possible: Design patterns have a lot in
common so it is to be expected that design pattern
transformations will have a lot in common as well. In our
methodology we seek to decompose the transformations into
reusable chunks and to make these chunks available to later
developments of design pattern transformations.

Allow for future automation: There is a non-trivial
amount of work involved in building a new transformation

for a given design pattern. At present we automate the
application of the design pattern transformation; we aim
ultimately to automate the building of the transformation as
well. This means that given a definition of the structure of a
design pattern and a starting point for the transformation,
the system can semi-automatically generate the appropriate
transformation. At present we use transformations with
semi-formal pre- and postconditions (à la Opdyke [16]) and
use them to reason rigorously about program behaviour.
This opens the possibility of taking a fully-formal approach
in the future thus enabling the derivation of the
transformation algorithm itself.

2.2. Outline of methodology

Figure 1. The design pattern methodology.

The methodology is depicted as an activity chart in
figure 1. Initially a design pattern is chosen that will serve
as a target for the design pattern transformation under
development. We then consider what the starting point for
this transformation will be, that is, what sort of design
structures it may be applied to. This starting point is
termed a precursor, which is described in more detail in
section 3. It has now been determined where the
transformation begins, (the precursor) and where it ends
(the design pattern itself). This transformation is then
decomposed into a sequence of minipatterns. A

Do
 Minitransformations

exist?

Define design pattern
transformation as
composition of

minitransformations

Decompose
into Minipatterns

Decide on
Precursor for this

pattern

Select Design
Pattern

yes

no Define minitrans-
formations

minipattern is a design motif that occurs frequently; in
this way it is similar to a design pattern but is a lower-
level construct. Section 4 examines minipatterns in more
detail.

For every minipattern discovered a corresponding
minitransformation must also be developed. A
minitransformation comprises a set of preconditions, a
sequence of transformation steps, a set of postconditions
and an argument demonstrating behaviour preservation.
Minitransformations are our unit of reuse, so for any
minipattern identified we first check if a
minitransformation for it has already been built as part of
the development of a previous design pattern
transformation. If so, that minitransformation can be
reused now, otherwise a new minitransformation must be
developed. A key element in our approach is that the
overall transformation must not change the behaviour of
the program. We achieve this by demanding that all the
component minitransformations be behaviour-preserving
as well and this is demonstrated as part of the
development of the minitransformation.
Minitransformations and our approach to demonstrating
behaviour preservation are the subject of section 5.

The final design pattern transformation can now be
defined as a sequence of minitransformations. As each
minitransformation is behaviour-preserving, so too is the
composition of minitransformations so long as the
preconditions for each one are shown to hold. An
example of a complete design pattern transformation is
presented in section 6.

In the following sections we describe this process in
more detail, using the Factory Method transformation as
an example throughout. In particular, all the terms
italicised above are discussed in detail.

3. The starting point for the transformation:
precursors

Much of the existing work on design pattern
transformations ([2], [4], [5], [8]) assumes what can be
termed a green field situation. By this we mean that when
the design pattern transformation is applied to the
program, the components that take part in the
transformation do not already have any existing
relationships pertaining to the pattern. Consequently these
approaches do not support the breaking of existing
relationships as part of the transformation process. From a
software maintenance perspective this is inadequate
because in a legacy system, the basic intent of the pattern
may well exist in the code already, but in a way that is not
amenable to further program evolution. For example, in
the case of the Factory Method pattern, the Creator class
may already create and use instances of a Product class,
but not in the flexible manner that allows easy extension
to other Product classes.

At the other extreme there is the antipattern ([12])
approach, which was investigated in our earlier work
([14], [15]). In this approach the assumption is made that
the designer has failed to appreciate the need for the
pattern in the first instance, and has used some inadequate
design structure to deal with the situation. The philosophy
behind this approach is that the code may have been
developed by a designer who was not aware of patterns.
For example, in the case of the Factory Method pattern,
the client of the Creator class may have to configure it
with a flag to tell it what type of Product class to create.
We discovered several problems with this approach:
• For any pattern there are several variants and for each

variant there can be several antipatterns. The volume
of antipatterns rises sharply and each one has to be
dealt with individually.

• The design knowledge encapsulated in design patterns
has been developed over many decades of software
development. A designer who is “not aware of
patterns” and chooses an inappropriate solution to a
design problem has really just made a mistake. The
problem of transforming an antipattern to a design
pattern then becomes that of transforming poor design
to good design, which cannot of course be solved
generically.
For these reasons we use a different starting point for

our transformations. For a large class of design patterns,
one may regard the effect of the pattern as being to make
certain program evolutions easier. This suggests that in
the simple case the design pattern is not needed, but as
future changes in requirements demand greater flexibility
from the software, it becomes necessary. For example, it
is frequently the case that a class A creates an instance of
a class B, but normally this relationship does not require
the application of a design pattern. However a future
change in the requirements may well require that class A
have the flexibility to work with any one of a number of
different product classes, and so the need for the Factory
Method pattern arises. The designer of the original system
did not make an error of judgement; software systems
will always evolve in ways that the original designers
simply cannot foresee. Indeed, applying a design pattern
where it is not needed is highly undesirable as it
introduces an unnecessary complexity to the system.

This leads us to our description of a precursor: a
precursor is a design structure that expresses the intent of
a design pattern in a simple way but that would not be
regarded as an example of poor design. This is not a
formal definition, but it serves to exclude both the green
field situation where there is no trace of the intent of the
pattern in the code, and the antipattern situation where the
designer had tried to resolve the problem in an inadequate
way.

For example, the precursor we use for the Factory
Method pattern is simply this: the Creator class must
create an instance of the Product class, or in our notation:

creator.creates(product)

This may appear a trivial condition, but it is a natural
precursor to the Factory Method pattern. The Creator
class creates and uses an instance of the Product class and
while this is adequate for the moment, a new requirement
may demand that the Creator class be able to work with
other types of Product class and this will require the
application of the Factory Method pattern.

4. Minipatterns and minitransformations

In developing a transformation for a particular design
pattern we naturally wish to reuse our previous efforts as
much as possible. To obtain maximum leverage, this
reuse should be at the highest level possible. Examining
the design pattern catalogues ([3], [10]) it is clear that
certain motifs occur repeatedly across the catalogues. For
example, a class may know of another one only via an
interface, or the messages received by an object may be
delegated to a component for detailed processing. These
design motifs or minipatterns are combined in various
ways to produce different design patterns. In this way a
pattern is a composition of minipatterns. By focusing on
developing transformations for minipatterns, we are able
to develop a library of useful transformations that can be
reused whenever that minipattern is identified again in a
later development. The transformation that corresponds to
a minipattern is naturally called a minitransformation.

In the case of the Factory Method pattern we can
identify three component minipatterns:
1. ABSTRACTION: The Product class must have an

interface that reflects how the Creator class uses the
instances of Product that it creates.

2. ENCAPSULATE CONSTRUCTION: In the Creator class, the
construction of Product objects must be encapsulated
inside dedicated, overrideable methods.

3. ABSTRACT ACCESS: Apart from within the construction
methods described in (2) the Creator class must have
no knowledge of the Product class except via the
interface described in (1).
This amounts to a declarative description of the

structure of the Factory Method pattern. It is obvious that
other patterns use some of these minipatterns as well. For
example, Abstract Factory uses all of them. Many design
patterns make use of the first one.

As the same minipatterns occur in many different
patterns, we build up a library of them and try to reuse the
existing ones in our current effort.

5. Minitransformations and behaviour
preservation

For each minipattern identified, a minitransformation
is developed. A minitransformation comprises a set of
preconditions, a sequence of transformation steps, a set of
postconditions and an argument demonstrating behaviour

preservation. The preconditions for the initial
minitransformation must simply be the program state
described by the precursor. Later minitransformations
will in general rely on the postconditions promised by the
earlier minitransformations.

Each minitransformation is defined in terms of low-
level refactorings. The preconditions are described using
predicates over the source code. The steps of the
transformation frequently use helper functions in order to
extract useful information from the code. For space
reasons we do not provide the full definitions of the
refactorings, predicates and helper functions, but see
Appendix B for a brief description of the ones we refer to
in this paper.

Behaviour preservation is crucial in this approach. We
take a view similar to Opdyke in his work on C++
refactorings ([16]) in that our arguments are semi-formal
and are applied at the level of program code. We attempt
to mimic the argument that a programmer would use were
they to perform the design pattern transformation by
hand. While our arguments lack the rigor of a fully-
formal approach, they capture the logic of the type of
behaviour-preservation arguments that programmers
make to themselves in reorganising program code. By
centralising the argument in one place, we absolve the
programmer from having to think about behaviour
preservation in applying these transformations. Also, if in
regression testing it transpires that a transformation is not
in fact behaviour-preserving, the error can be traced back
to the original argument and corrected there.

A key difference in our work is that we use
postconditions as well, as we want to be able to compose
refactorings and minitransformations and argue behaviour
preservation about the composition.

The structure of our behaviour preservation arguments
matches the top three levels of the software architecture
depicted in figure 2. We describe this in more detail in the
following paragraphs. At the lowest level we have a layer
of refactorings that perform minor transformations to the
program code. These are naturally close to Opdyke’s
refactorings and it is in most cases straightforward to
demonstrate that they are behaviour preserving. Some of
these refactorings are more complicated and themselves
make use of simpler refactorings. For each refactoring we
define its pre- and postconditions and provide an
argument for behaviour preservation. At this level we also
have a layer of helper functions and predicates that are
used to extract information from the program code. For
example, one helper function, usesInterface ,
determines the actual interface that is accessed via a given
object reference. A predicate creates determines if one
class creates instances of another.

The next layer up is a layer of minitransformations
each of which corresponds to a minipattern. Pre- and
postconditions are defined for minitransformations, and
also an algorithm is given that performs the

transformation. This algorithm is defined in terms of the
refactorings and helper functions defined at the layer
below. The argument for behaviour preservation then is
simply a case of demonstrating that the preconditions of
each of the component refactorings hold.

The top layer contains the actual design pattern
transformations themselves and follows the same pattern
of definition and behaviour-preservation argument as for
the minitransformations. A design pattern transformation
is defined as much as possible in terms of
minitransformations, but may also need to use some
refactorings from the next lower layer.

The minitransformations for the three minipatterns
ABSTRACTION, ENCAPSULATE CONSTRUCTION and ABSTRACT

ACCESS are presented below. All helper functions,
refactorings and predicates are underlined and brief
definitions of these are given in Appendix B.

Name: ABSTRACTION

Arguments:
String className : name of the class to be abstracted.
String infName : name of the new interface to be created.
Description: Builds a new interface, infName , to the class
className and adds it to the program.
Preconditions:
No name clashes:
∀ i:Interface i.name != infName ∧
∀ c:Class c.name != infName (pre1)

The class must exist:
exists(className) (pre2)

Algorithm :
(1) Interface inf = abstractClass(className,

infName) 1;

(2) addInterface(inf);

(3) addImplementsLink(className,infName);

Behaviour Preservation:
1: Invokes a helper function and therefore does not

update the program. From pre2 we know that the
class must exist.

2: From pre1 we know that infName does not already
exist in the program, so this step adds an unreferenced
interface to the program, which cannot affect
compilation or behaviour.

3: pre2 ensures that className exists while the
postcondition of (2) ensures that infName exists. The
postcondition of (1) ensures that className fully
implements the interface defined in infName , so all
preconditions for (3) are fulfilled.

1The new interface created here reflects the entire public interface of the
concrete product class. To ensure correctness, all that is required are the
parts of the public interface that are actually used in the creator class.
However, if the creator class happens not to use an essential part of the
concrete product class, this would result in the creation of an unintuitive
interface. Therefore we take a conservative approach here and abstract
the entire public interface of the product class.

Postconditions:
The new interface infName precisely reflects the public
methods of className :
equalInterface(className,infName)

Name: ENCAPSULATE CONSTRUCTION

Arguments:
String creator : name of the class to be updated.
String product : name of the product class.
String createP : name of the new constructor method.
Description: For every constructor in the product class, a
new method called createP that performs this
construction is added to the creator class. All creations
of product objects in the creator class are replaced with
invocations of the appropriate createP method.
Preconditions:
The given classes must exist:
exists(creator) ∧
exists(product) (pre1)

The name for the new constructor method must not
already exist in the creator class:
!exists(creator,createP) (pre2)

Algorithm :
(1) ForAll c:Constructor s.t. c ε product {

(2) Method m = c.makeAbstract();

(3) m.setReturnType(absP);

(4) addMethod(creator, m);
}

(5) ForAll e:ObjectCreationExpression ε creator
s.t. e.classCreated() == product &&
e.containingMethod().name() != createP

{

(6) replaceObjCreationWithMethInvocation(e,
createP);

}

Behaviour Preservation:
1: To demonstrate behaviour preservation over a set

operation like this, we show that it holds in the
general case for an element of the set:

2: Invokes helper function.
3: Sets the return type of a method that is not yet in the

program.
4: Adds a method to the creator class. From pre2 we

know that it can’t already exist in the class so
behaviour is not affected.

5: See (1) above.
6: Steps (2) to (4) add methods createP to creator that

given a list of arguments, return a product object
constructed with the same argument list. This step
replaces each product object creation expression with
an invocation of the appropriate createP method.

Postconditions:
The only expressions in the creator class that create
product objects are found in the createP methods:
∀ e:ObjectCreationExpression ε creator s.t.
e.classCreated() == product,

e.containingMethod().name() == createP

Name: ABSTRACT ACCESS

Arguments:
String creator : name of the class to be updated.
String product : name of the product class.
String infName : name of the interface.
String createP : name of methods to be excluded.
Description: Replace in the creator class all uses of the
product class name with infName . Any method in
creator named createP is not affected.
Preconditions:
The given classes and interfaces must exist:
exists(creator) ^
exists(product) ^
exists(infName) (pre1)

The interface infName must precisely reflect the public
methods of product :
equalInterface(product, infName) (pre2)

The product class must not have public data:
!product.hasPublicField() (pre3)

The product class must not have any static methods:
!product.hasStaticMethod() (pre4)

Algorithm :
(1) ForAll o:ObjectRef ε creator s.t.

o.type() == product &&
o.containingMethod().name() != createP
{

(2) replaceClassWithInterface(o, infName);
}

Behaviour Preservation:
1: To demonstrate behaviour preservation over a set

operation like this, we show that it holds in the
general case for an element of the set:

2: o is of class product so from pre3 and pre4 we see
that the only attributes of o accessible in creator are
the public methods of product . From pre2 , all public
methods of product are part of the infName interface,
so we can safely redefine the type of o to be infName .

Postconditions:
The creator class holds no references to the class
product except in the createP methods:
∀ o:ObjectRef ε creator s.t.
o.type() == product,

o.containingMethod().name() == createP

6. The factory method transformation

In this section we describe the final design pattern
transformation that is the culmination of the previous
sections. The complete preconditions, algorithm and
behaviour-preservation argument is given together with a
discussion of the issues involved.

6.1. Specification of the transformation

Name: APPLY FACTORY METHOD

Arguments:
String creator : name of the class that creates product
objects.

String product : name of the product class.
String absP : name of the new interface to the product

class.
String createP : name of the new factory method itself.
Description: Applies the Factory Method design pattern
to the program.
Preconditions:
exists(creator) (pre1)
exists(product) (pre2)
!exists(absP) (pre3)
!exists(creator,createP) (pre4)
creator.creates(product) (pre5)
!product.hasPublicField() (pre6)
!product.hasStaticMethod() (pre7)

Algorithm :
1. ABSTRACTION(product, absP)

2. ENCAPSULATE_CONSTRUCTION(creator, product,
 createP)

3. ABSTRACT _ACCESS(creator, product, absP,
 createP)

Behaviour Preservation:
We need only show that the preconditions for each of the
component minitransformations hold:
1: pre2 and pre3 guarantee the preconditions for this

step.
2: pre1 , pre2 and pre4 guarantee the preconditions for

this step.
3: pre1 , pre2 , pre3 , pre6 , pre7 coupled with the

postcondition of (1) guarantee the preconditions for
this step.

The algorithm is strikingly simple: it makes use of the
three minitransformations we defined earlier so the
behaviour preservation argument need only demonstrate
that the preconditions for each of these
minitransformations hold. This is promising in that it
suggests that as we develop a more complete set of
minitransformations, other design pattern transformations
will be similarly straightforward to define.

6.2. Categorisation of the preconditions

The preconditions for the Factory Method
transformation can be divided into four categories. The
first four preconditions simply ensure that the classes
referred to in the parameters to this transformation exist
and that the names for the new program entities to be
introduced by this transformation do not already exist.
These preconditions are trivial but are necessary to ensure
the safety of the transformation. If one of them fails the
designer need only be requested to choose a different
name to replace the offending choice.

The fifth precondition is the key precursor
precondition. This describes the essence of the starting
point for the transformation. It implies that there is a tight
binding between the creator class and the product class
and this is what applying this pattern is going to
ameliorate. In general, if a precursor precondition fails, it
is senseless to continue with the transformation. In the

Factory Method example, the transformation can
continue, but it is effectively a green field beginning then,
and some of the transformations performed will be
needless.

The sixth precondition is an example of a refactoring
precondition, which is a minor problem that prevents the
transformation from being applied. The class has a public
data field, which is a well-established example of poor
class design. This prevents the transformation from being
performed as public fields cannot be accessed through an
interface. If the designer agrees, this class can be
refactored automatically to make this data private and
instead provide access to the offending fields via public
accessor and mutator methods. This then removes this
obstacle to the application of the transformation.

The final precondition is termed a contraindication and
indicates that there is a more serious problem in applying
the Factory Method pattern. The product class has a
static method that is used by the creator class. This
implies that the creator class depends on the concrete
class of the product it uses and this cannot be replaced by
access via an abstract interface. This is an inherent
problem in the design of the program that prevents the
application of the pattern transformation. In this case the
design must be revisited by the programmer to determine
if it is possible to resolve this issue.

7. Tool architecture and results

Figure 2. Architecture of the design pattern tool.

We have constructed a prototype software tool, called
DPT (Design Pattern Tool) that applies design pattern
transformations to Java programs in the manner described
above. It has a 4-tier architecture (see figure 2) that

matches the layers we defined in the structure of the
behaviour preservation arguments:
• Design Pattern transformations.
• Minitransformations.
• Helper functions, predicates and refactorings.
• AST operations.

The top three layers implement the corresponding parts
of the argument system described in section 5. The
bottom layer implements the actual changes to the code
by performing surgery directly on parse trees generated
from the Java source files. Visitors ([10]) are frequently
used at this level to perform operations that involve an
entire parse tree. The parsing of the source files and the
construction of the parse trees were implemented using
JavaCC ([11]).

We provide an example of the application of the
Factory Method transformation to a generic program:
class Creator {

public void doIt() {
Product p = new Product("some text");
Product q = new Product(1234);
p.foo();
q.foo();

}
}
class Product {

public Product(int x){}
public Product(String s){}
public void foo() {}

}

The Factory Method transformation is now applied to the
program above as follows:

applyFactoryMethod("Creator","Product",
"absProduct","createProduct")

DPT applies the transformation and outputs the following
code:
class Creator {

public void doIt (){
absProduct p = createProduct("some text");
absProduct q = createProduct(1234);
p.foo();
q.foo();

}
public absProduct createProduct (int x) {

return new Product(x);
}
public Product createProduct (String s) {

return new Product(s);
}

}
interface absProduct {

public void foo ();
}
class Product implements absProduct {

public Product (int x) {}
public Product (String s) {}
public void foo() {}

}

Note how in the Creator class all references to
Product have been changed to absProduct and
instantiations of the Product class only occur via
invocations of the new construction methods,
createProduct . The only change to the Product class is
that it now implements the new interface absProduct ,

Design Pattern Transformations

 Minitransformations

 Helper functions, predicates,
refactorings

 Abstract Syntax Trees,
Visitors

which describes the complete interface to the Product

class. The significance of these changes is that it is now
easy to build a Creator class that works with a new type
of Product . Simply add an implements link from the
new Product class to the absProduct interface and
subclass the Creator class, overriding the createProduct

methods to instantiate the new type of Product class. No
further changes are necessary.

We have also developed partial results for other
creational patterns: Abstract Factory, Builder and
Singleton.

8. Related work

Our ideas on refactoring and behaviour preservation
build upon the work of William Opdyke on refactoring
C++ programs ([16]). He developed a suite of low-level
refactorings that can be applied to a C++ program and
used these as a basis for several higher-level refactorings,
e.g., conversion of an inheritance relationship to an
aggregation relationship. This work was also used as the
basis for the Smalltalk Refactory ([17]) developed several
years later in the same research group. Smalltalk proved
to be a more successful language to use as it does not
suffer from the low-level complexities of C++. Our work
extends this by using refactorings as a basis for
developing a more sophisticated type of refactoring that
can introduce a design pattern.

Gert Florijn and his group in Utrecht have developed a
patterns tool that provides a broad range of support for a
programmer working with patterns ([8], [13]). Their focus
is on the representation of design patterns within the tool
itself and the maintenance of the constraints associated
with a design pattern, i.e., checking that changes to the
program do not violate any of the design patterns present
in the code. Their work also deals with pattern
application, but the starting point of their transformations
is the green field situation, so the issues of behaviour
preservation and reorganisation of existing relationships
as part of the transformation process do not arise.

Yehudai, Gil and Eden ([5]) have developed a
prototype tool called the patterns wizard that can apply a
given design pattern to an Eiffel program. This work is
very similar to ours in that it takes a metaprogramming
approach and organises the transformations into four
levels: design pattern, micro-pattern (our minipatterns),
idioms (our refactorings) and abstract syntax tree. The
starting point they use is the green field situation rather
than attempting to deal with a precursor as we do. This
makes the patterns wizard unsuitable for reengineering
certain types of legacy code that our approach can handle.
If the designer has already partially introduced the intent
of the pattern to the code, using the patterns wizard to
apply this pattern will leave an amount of manual work
for the programmer to do in order to bring the program to
a consistent state. As a consequence of taking a green

field approach, behaviour preservation is not so important
and is more or less ignored in their work. The
micropatterns developed in their work are valuable and
are used in the specifications of many design pattern
transformations. However, of the three minipatterns we
used to define the Factory Method transformation, only
one, ABSTRACTION, appears in Eden's catalogue ([7]).
This is again a consequence of our taking a precursor as
the starting point for our transformations: certain
minipatterns are necessary in our approach that would not
be needed otherwise. Yehudai, Gil and Eden have also
developed a declarative language called LePUS for
formally specifying the structural and behavioural aspects
of design patterns ([6]). This has potential to be
developed into a tool that applies design patterns, but
practical results in this area are not evident yet in their
published work.

The work of Benedict Schultz and Walter Zimmer is
also close to what we have presented here ([18], [19]).
They merge William Opdyke’s refactoring work with so-
called design pattern operators to produce behaviour-
preserving transformations that introduce design patterns.
Their published work to date presents only their initial
ideas.

9. Conclusions

We have presented a methodology for the development
of design pattern transformations in a behaviour-
preserving fashion. The use of precursors as the starting
point for these transformations is novel and makes this
approach especially useful in the area of maintenance of
legacy software. The layered architecture enables the
transformations to be described in a language-
independent way by delegating all language detail to the
lower layers. While Java has been used as the vehicle
language for this work, we expect that much of what we
developed would apply to any similar statically-typed,
class-based, object-oriented language.

This layered model also enables us to reuse large parts
of existing transformations at a high level. This both
speeds the development process and makes the
transformations easier to understand. The approach taken
to the demonstration of behaviour preservation is both
compelling and straightforward to apply. In the future we
aim to formalise this approach and examine the potential
of automatically deriving a design pattern transformation
given the static structure of the design pattern and a
suitable precursor.

We have also provided a categorisation of the
preconditions for design pattern transformations and
described how the different categories can be handled in
suitable ways by a transformation tool.

Our methodology has been applied successfully to
structure-rich patterns such as Gamma et al's ([10])
creational patterns: Abstract Factory, Factory Method,

Singleton and Builder. We also applied an earlier version
of this methodology to a structural pattern, Decorator
([14]). The applicability of this approach to strongly
behavioural patterns, where the structure of the pattern is
less important than its dynamic aspects, has yet to be
established.

Our current work involves applying this methodology
to a broad variety of design patterns and evaluating our
software tool further in a practical context.

References

[1] Bennet, K. H., Do Program Transformations Help
Reverse Engineering?, Proceedings of the International
Conference on Software Maintenance ICSM '98, IEEE
Press, 1998.

[2] Budinsky, F. J. et al, Automatic code generation from
design patterns, IBM Systems Journal, Vol. 35, No. 2,
1996.

[3] Buschmann, F. et al, A System of Patterns: Pattern-
Oriented Software Architecture, John Wiley & Sons.
1996.

[4] Demeyer, S., Meijler, T.D. and Rieger, M., Towards
Design Pattern Transformations, Proceedings of the
Workshop on Object-Oriented Software Evolution and
Re-Engineering, European Conference on Object-
Oriented Programming, June 1997.

[5] Eden, A.H., Gil, J. and Yehudai, A., Precise Specification
and Automatic Application of Design Patterns,
Proceedings of the Twelfth IEEE International Automated
Software Engineering Conference, 1997.

[6] Eden, A.H., Hirshfeld, Y. and Yehudai, A., Towards a
Mathematical Foundation for Design Patterns, available
from: http://www.math.tau.ac.il/~eden/ bibliography.html.

[7] Eden, A.H. and Yehudai, A., Tricks Generate Patterns,
Technical Report 324/97, Department of Computer
Science, Tel Aviv University, 1997.

[8] Florijn, G., Meijers, M. and van Winsen, P., Tool Support
in Design Patterns, European Conference on Object-
oriented Programming, June 1997.

[9] Foote, B. and Opdyke, W. F., Lifecycle and Refactoring
Patterns that Support Evolution and Reuse, Pattern
Languages of Programming, 1994.

[10] Gamma, E. et al, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[11] JavaCC™, The Java Parser Generator. Available from:
http://suntest.com/JavaCC.

[12] Koenig, A., Patterns and Antipatterns, Journal of Object-
Oriented Programming, April, 1995.

[13] Meijers, M. Tool support for object-oriented design
patterns, Masters thesis, Department of Computer
Science, Rijksuniversiteit Utrecht, August 1996.

[14] Ó Cinnéide, M., Towards Automating the Introduction of
the Decorator Pattern to Avoid Subclass Explosion,
Technical Report TR-97-7, Department of Computer
Science, University College Dublin, Ireland (also accepted
for the Object-Oriented Evolution and Re-engineering
Workshop, OOPSLA, San José, October 1996).

[15] Ó Cinnéide, M. and Nixon, P., Program Restructuring to
Introduce Design Patterns, Proceedings of the Workshop

on Experiences in Object-Oriented Re-Engineering,
European Conference on Object-Oriented Programming,
Brussels, July 1998.

[16] Opdyke, W. F., Refactoring Object-Oriented Frameworks,
PhD thesis, University of Illinois, 1992.

[17] Roberts, D., Brant, J. and Johnson, R., A Refactoring Tool
for Smalltalk, Theory and Practice of Object systems,
3(4), 1997.

[18] Schulz, B., Design Patterns as Operators Implemented
with Refactorings, Proceedings of the Workshop on
Experiences in Object-Oriented Re-Engineering,
European Conference on Object-Oriented Programming,
Brussels, July 1998.

[19] Zimmer, W., Frameworks und Entwurfsmuster, PhD
thesis, Forschungszentrum Informatik Karlsruhe, 1997.

Appendix A: The factory method pattern

This section provides a brief description of design
patterns and the Factory Method pattern in particular. For
more detail see [10], which is also the source of the
example we use here.

Design Patterns encapsulate established solutions to
commonly-occurring design problems in a flexible and
reusable way. They are not clever, novel architectures but
are rather solutions that have been used many times and
so have proven their worth.

Figure 3. Factory method pattern structure.

The Factory Method pattern is used to loosen the
binding between a class (creator) and another class that it
instantiates (product). Specifically, it enables the creator
class to defer instantiation to a subclass; in this way it is
easy to extend the creator class to work with a new type
of product class. For example, consider a framework that
can present multiple documents to the user. Two key

Document

open()
close()
save()

Application

createDoc()
newDoc()
openDoc()

MyDocument MyApplication

createDoc()

docs

Document d;
d=createDoc();
docs.add(d);
d.open();

return new
MyDocument();

abstract classes in this domain are Application and
Document. The designer has to subclass these classes in
order to realise the required functionality. Consider for
example using these classes to build a drawing
application. The designer would create a subclass of
Application, DrawingApplication and a subclass of
Document, Drawing Document. The Application class is
responsible for creating and managing Documents, but it
only knows when it should create a Document; it does not
know what kind of Document to create. This is the kernel
of the problem: the framework must create instances of
Document, but it knows nothing of the concrete
Document classes it should instantiate.

The Factory Method pattern offers a solution to this
problem (see figure 3). It encapsulates the knowledge of
which Document to create and defers this to a subclass.
The abstract Application class invokes an abstract
method, createDoc, whenever it needs to create a
Document object. Each concrete subclass of Application
must now override the createDoc method to create and
return an instance of the appropriate type of Document. In
figure 3, the MyApplication class redefines the createDoc
method to return an instance of MyDocument. The other
methods in Application work with this instance through
the Document interface.

Appendix B: Helper functions, predicates
and refactorings

In this appendix we provide a brief description of the
helper functions, predicates and refactorings used in
sections 5 and 6.
abstractClass : Construct and return an interface that
reflects all the public methods of the given class.
addImplementsLink : Add an implements link from the
given class to the given interface.
addInterface : Add the given interface to the program.
addMethod : Add the given method to the given class.
classCreated : Return the class of the object created by a
given object creation expression.
containingMethod : Return the method that contains the
given program entity (expression, object reference etc.).
equalInterface : Return true only if the given interface
precisely reflects the public methods of the given class.
exists : Determine if the given program entity exists.
hasPublicField : Return true only if the given class has a
public field.
hasStaticMethod : Return true only if the given class has
a static method.
makeAbstract : Return a method that creates the same
object as the given constructor.
replaceClassWithInterface : Change the type of the
given object reference to the given interface.
replaceObjCreationWithMethInvocation : Replace the
given object creation expression with an invocation of the
given method using the same parameter list.

setReturnType : Set the return type of the given method
to the given class/interface.
type : Return the type of the given object reference.

