
Automated Software Evolution Towards Design Patterns

Mel Ó Cinnéide
Department of Computer Science

University College Dublin
Ireland.

mel.ocinneide@ucd.ie

Paddy Nixon
Department of Computer Science

University of Strathclyde
Scotand.

paddy@cs.strath.ac.uk

ABSTRACT
During the evolution of a software system, it may be nec-
essary to refactor the software in order to make it more
flexible and amenable to new requirements that are being
introduced. A typical aim of such a refactoring is to apply a
suitable design pattern to the program in order to enhance
its flexibility. Performing such a transformation by hand
is an error-prone process, so automated support would be
useful.
We have developed a methodology for the creation of au-
tomated transformations that can apply a design pattern to
an existing program. In this paper we present a brief descrip-
tion of this methodology, and report on the results of using
this methodology to develop program transformations that
can apply the Gamma et al design patterns. It is found that
in almost 75% of cases a satisfactory transformation is de-
veloped, and that much of the commonality between design
patterns can be captured in reusable minitransformations.

Keywords
Design patterns, refactoring, automated program transfor-
mations, design quality.

1. INTRODUCTION
Getting a design right first time is impossible. One of
the major advances in software development thinking in the
past decade has been the acceptance of the notion that the
process of building a software system should be an evo-
lutionary one [1, 3]. Rather than the classical waterfall
model where analysis is fully completed before design, and
design fully completed before implementation, evolutionary
approaches are based on building a simple version of what
is required and extending this iteratively to build a more
complicated system. At each stage in this process, there is
a working system which is to be extended with a new re-
quirement or set of requirements. It is very unlikely that
the design of the initial system will be flexible enough to el-
egantly support the later requirements to be added in. Con-

sequently, it is to be expected that when the system is to
be extended with a new requirement, its design will also
have to be made more flexible in order to accommodate the
new requirement elegantly. Current thinking recommends
breaking this process of extending a system into two stages
[2, 6]:

1. Program Restructuring: This involves changing the
design of the program so as to make it more amenable
to the new requirement, while not changing the behav-
iour of the program.

2. Actual Updating: Here the program is changed to ful-
fill the new requirement. If the restructuring step has
been successful, this step will be considerably simpli-
fied.

Our work has focused on developing a novel approach to
providing sophisticated automated support for the restruc-
turing step.
We now consider now what type of restructurings a de-
signer may want to perform in order to make a system more
flexible and able to accommodate a new requirement. A de-
signer usually has an architectural view of how they wish the
program to evolve that is at a higher level than, for example,
simply creating a new class or moving an existing method.
Probably the most interesting and challenging category of
higher-level transformation that a designer may wish to ap-
ply comprises those transformations that introduce a design
pattern [7]. Design patterns typically loosen the coupling
between program components, thus enabling certain types
of program evolution to occur with minimal change to the
program itself. For example, the instantiation of a Product
class within a Creator class could be replaced by an ap-
plication of the Factory Method pattern. This enables the
Creator class to be extended to instantiate a subclass of the
Product class without significant reworking of the existing
code.
The scenario we consider is as follows: An existing pro-
gram is being extended with a new requirement. After
studying the code and the new requirement, the designer
concludes that the existing program structure makes the
desired extension difficult to achieve, and that the applica-
tion of some particular design pattern would introduce the
necessary flexibility to the program. It is at this point that
we aim to provide automated tool support. The designer
selects the design pattern to be applied and the program
components that are to take part in the restructuring, and
our transformation tool applies that design pattern to the



given program components in such a way that program be-
haviour is maintained.
A key aspect of our approach is that the intellectual de-
cision of what design pattern to apply, and where to apply
it, remains with the designer. We are not attempting to for-
malise or automate quality; our aim is to remove the burden
of tedious and error-prone code reorganisation from the de-
signer. In this paper we will present the results of developing
a suite of automated design pattern transformations.

2. METHODOLOGY
The complete methodology is depicted in summary form
as a UML activity chart in figure 1. An earlier version of
this methodology is described in [9], while the full details
of our current methodology are described in [8, chapter 4].
For space reasons, we confine ourselves in this section to
providing a coarse outline of the methodology.
Initially a design pattern is chosen that will serve as a
target for the design pattern transformation under develop-
ment. We then consider what the starting point for this
transformation will be, that is, what sort of design struc-
tures it may be applied to. This starting point is termed a
precursor. A precursor is a design structure that expresses
the intent of a design pattern in a simple way, but that would
not be regarded as an example of poor design. This is not
a formal definition, but it serves to exclude both the “green
field” situation where there is no trace of the intent of the
pattern in the code, and the antipattern situation where the
programmer has resolved the problem in an inadequate way.
For example, the precursor we use for the Factory Method
pattern is simply this: the Creator class must create an in-
stance of the Product class. This condition may appear to be
trivial, but it is a natural precursor to the Factory Method
pattern. The Creator class creates and uses an instance of
the Product class and while this is adequate for the moment,
a new requirement may demand that the Creator class be
able to work with other types of Product class and this will
require the application of the Factory Method pattern. In
terms of Foote and Opdyke’s lifecycle model [5], precursors
are structures that are likely to be built during the prototyp-
ing phase. They are simple structures that are adequate for
the purposes of building a working system rapidly, but in-
adequate in terms of supporting future evolution and reuse.
It has now been determined where the transformation be-
gins, (the precursor) and where it ends (the design pattern
itself). This transformation is then decomposed into a se-
quence of minipatterns. A minipattern is a design motif that
occurs frequently; in this way it is similar to a design pat-
tern but is a lower-level construct. Examining the design
pattern catalogues [4, 7], it is clear that certain motifs occur
repeatedly across the catalogues. For example, a class may
know of another one only via an interface, or the messages
received by an object may be delegated to a component
object for detailed processing. These design motifs, or mini-
patterns, are combined in various ways to produce different
design patterns. In this way a pattern can be viewed as a
composition of minipatterns.
For every minipattern discovered a corresponding mini-

transformation that can apply this minipattern must also
be developed. A minitransformation comprises a precondi-
tion, an algorithmic description of the transformation, and
a postcondition. The program that is being transformed
must satisfy this precondition in order for the minitrans-

Select Design

Pattern

Decide on Precursor

for this pattern

Decompose into
Minipatterns

Define transformation as composition

of minitransformations

Define

minitransformations

Do minitransformations

exist?
no

yes

Figure 1: The Design Pattern Methodology

formation to maintain the behaviour of the program. The
transformation itself is expressed as a composition of primi-
tive refactorings, which have already been demonstrated to
be behaviour preserving. The pre- and postconditions of
the entire minitransformation are computed by applying a
semi-formal technique, described in full detail in [8, chapter
3].
Minitransformations are our primary unit of reuse, so for
any minipattern identified we first check if a minitransfor-
mation for it has already been built as part of the devel-
opment of a previous design pattern transformation. If so,
that minitransformation can be reused now, otherwise a new
minitransformation must be developed. By focusing on de-
veloping transformations for minipatterns, we are able to de-
velop a library of useful transformations that can be reused
whenever that minipattern is identified again in a later de-
velopment.
The final design pattern transformation can now be de-
fined as a composition of minitransformations and possibly
some primitive refactorings. The pre- and postconditions
for this design pattern transformation are computed in the
same way as they are computed for a minitransformation.

3. RESULTS
We applied this methodology to a set of seven patterns
from the Gamma et al catalogue [7], and prototyped the re-
sulting transformations. Using the experience gained from
this process, we analysed the remaining Gamma et al pat-
terns with a view to finding a suitable precursor, assessing
if a workable transformation can be built, and determining
the minitransformations that are likely to be used. In each
case we assessed the result we achieved and placed it in one
of the following categories:



Pattern Name Purpose Assessment
Abstract Factory creational Excellent
Builder creational Excellent
Factory Method creational Excellent
Prototype creational Excellent
Singleton creational Excellent
Adapter structural Excellent
Bridge structural Excellent
Composite structural Excellent
Decorator structural Partial
Facade structural Impractical
Flyweight structural Impractical
Proxy structural Partial
Chain of Responsibility behavioural Excellent
Command behavioural Partial
Interpreter behavioural Impractical
Iterator behavioural Partial
Mediator behavioural Impractical
Memento behavioural Partial
Observer behavioural Impractical
State behavioural Partial
Strategy behavioural Excellent
Template Method behavioural Excellent
Visitor behavioural Impractical

Table 1: Assessment of Design Pattern Transforma-
tions

Assessment No. of Patterns Percentage
Excellent 11 48%
Partial 6 26%
Impractical 6 26%

Table 2: Summary of Assessments

1. Excellent : The methodology worked very well. A plau-
sible precursor was found and a compelling transfor-
mation was built, making use of some of the minitrans-
formations already identified.

2. Partial : There is some problem with the result that
means a usable transformation can be developed, but
it is not complete. Typically the designer is left with
some work to do by hand in order to complete the
transformation.

3. Impractical : There is a serious problem with the result
that makes it impossible to build a transformation, or
produces one whose precondition is so constrained that
it is of no practical value.

The results are presented in complete form in table 1,
and in summary form in table 2. These tables indicate a
very satisfactory result. An excellent transformation was
achieved for close to half the patterns considered, and in a
further 26% of cases a workable, though partial, transfor-
mation was found.
The methodology worked very well for the creational pat-
terns, but not so successfully for the structural patterns or
behavioural patterns. It was to be expected that behav-
ioural patterns would cause problems, but it is surprising
that the results for the structural patterns were not better.
Our approach is based on static analysis of the program,

and so deals more easily with concrete program structure
than with dynamic behaviour. The reason for this apparent
anomaly is that although a pattern is assigned one of three
categories, it may well contain elements from all three. For
example, Abstract Factory is a very static, creational pat-
tern but Builder, although also categorised as creational,
has a distinct behavioural flavour as the objects in question
are created in a dynamic “piecemeal” fashion.
Other initially surprising results were those for Strategy (a
behavioural pattern that worked well) and Facade (a struc-
tural pattern that failed). In the case of Strategy, we used a
precursor where the behavioural aspects of the pattern are
already encapsulated within methods. The transformation
therefore just has to deal with the structure of this pattern,
and this proved straightforward to handle. Facade presented
the opposite problem. Its structure is easy to deal with, but
there is also a behavioural element in how the client classes
interact with the subsystem classes that are to be encapsu-
lated, and this behavioural element could not be extracted
and transformed.
The following minipatterns were identified during the process
of building these transformations:

1. Abstraction adds an interface to a class that reflects
how the class is used in some context. This enables
another class to take a more abstract view of this class
by accessing it via this interface.

2. EncapsulateConstruction is applied when one class
creates instances of another, and it is required to weaken
the binding between the two classes by packaging the
object creation statements into dedicated methods.

3. AbstractAccess is applied when one class uses, or
has knowledge of, another class, and we want the re-
lationship between the classes to operate in a more
abstract fashion via an interface.

4. PartialAbstraction constructs an abstract class from
an existing class and creates an inheritance relation-
ship between the two classes.

5. Wrapper is applied to “wrap” an existing receiver
class with another class, in such a way that all requests
to an object of the wrapper class are passed to the
receiver object it wraps, and similarly any results of
such requests are passed back by the wrapper object.

6. Delegation moves part of an existing class to a com-
ponent class, and sets up a delegation relationship
from the existing class to its component.

Reuse of minipatterns is an important issue to consider.
We hoped that the minipatterns uncovered during the devel-
opment of the earlier design pattern transformations would
prove useful in later developments. In table 3 we depict
the reuse of minipatterns across the design pattern trans-
formations. Note that for simplicity, when one transforma-
tion reuses another in its entirety (e.g., Abstract Factory
uses Singleton), we depict this as reuse of the component
minitransformations. Also, we omit from the table design
patterns for which no satisfactory transformation was found.
It is clear from this table that we have achieved con-
siderable reuse of the set of six minitransformations that
were uncovered during the development of these design pat-
tern transformations. The actual reuse achieved is even



Pattern Abs AbsAcc Encap Partial Wrap Deleg
Abstract Factory x x x x
Builder x x x
Factory Method x x x x
Prototype x x
Singleton x
Adapter x x x
Bridge x
Composite x x
Decorator x x x
Proxy x x x
Chain of Responsibility x x
Command x x
Iterator x x x
Memento x
State x x x
Strategy x x x
Template Method x x

Table 3: Reuse of Minitransformations
The abbreviations in the table are as follows. Abs:Abstraction, AbsAcc:AbstractAccess,

Encap:EncapsulateConstruction, Partial:PartialAbstraction, Wrap:Wrapper, Deleg:Delegation.

stronger, as this table only depicts minitransformation reuse
and ignores the reuse of primitive refactorings.

4. CONCLUSIONS
We have developed a methodology for the creation of
behaviour-preserving design pattern transformations, and
applied this methodology to the Gamma et al design pat-
terns. Our results were promising in that for most patterns
a workable solution could be found, and there proved to be
extensive reuse of the minitransformations that were devel-
oped during this work.
Further empirical studies are necessary to assess if our ap-
proach can contribute to the practice of software evolution.
Our prototype transformation tool makes sweeping changes
to a program when it applies a pattern, and it is an open
question whether a programmer would be content to allow
a large system to be updated in this way. Indeed, a software
tool can fail in practice for any number of reasons [10], and
arguing abstractly that it is nevertheless useful is futile. Our
position is that a programmer will use a software tool only if
they have a very clear mental model of what the tool does.
Compilers, debuggers and profilers all fit into this category.
As design patterns become more established, we can expect
programmers to become more comfortable with the notion
of automated design pattern transformations.

5. REFERENCES
[1] K. Beck. Extreme Programming Explained. Addison
Wesley Longman, Reading, Massachusetts, first
edition, 2000.

[2] K. Bennett and V. Rajlich. Software maintenance and
evolution: A roadmap. In A. Finkelstein, editor, The
Future of Software Engineering, New York, 2000.
ACM Press.

[3] G. Booch. Object-oriented analysis and design with
applications. Benjamin/Cummings, Redwood City,
California, second edition, 1994.

[4] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. A System of Patterns:
Pattern-Oriented Software Architecture. John Wiley &
Sons, Chicester, first edition, 1996.

[5] B. Foote and W. Opdyke. Lifecycle and refactoring
patterns that support evolution and reuse. In
J. Coplien and D. Schmidt, editors, Pattern Languages
of Programming, Monticello, Illinois, 1995.

[6] M. Fowler. Refactoring: improving the design of
existing code. Object Technology Series.
Addison-Wesley Longman, Reading, Massachusetts,
first edition, 1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley,
Reading, Massachusetts, first edition, 1995.

[8] M. Ó Cinnéide. Automated Application of Design
Patterns: a Refactoring Approach. PhD dissertation,
University of Dublin, Trinity College,
Department of Computer Science, 2000. Available from:
http://www.cs.ucd.ie/staff/meloc/home/papers/thesis/
thesis.htm.

[9] M. Ó Cinnéide and P. Nixon. A methodology for the
automated introduction of design patterns. In H. Yang
and L. White, editors, Proceedings of the International
Conference on Software Maintenance, pages 463–472,
Oxford, Sept. 1999. IEEE Press.

[10] D. Roberts and J. Brant. “Good enough” analysis for
refactoring. In S. Ducasse and J. Weisbrod, editors,
ECOOP Workshop on Experiences in Object-Oriented
Re-Engineering, Brussels, July 1998. FZI Karlsruhe
report.


