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Abstract

The high cost of software maintenance could be reduced by automatically improv-
ing the design of object-oriented programs without altering their behaviour. We
have constructed a software tool capable of refactoring object-oriented programs to
conform more closely to a given design quality model, by formulating the task as
a search problem in the space of alternative designs. This novel approach is vali-
dated by two case studies, where programs are automatically refactored to increase
flexibility, reusability and understandability as defined by a contemporary quality
model. Both local and simulated annealing searches were found to be effective in
this task.

Key words: search based software engineering, automated design improvement,
refactoring

1 Introduction

One measure of the quality of an object-oriented design is the level of difficulty
encountered in carrying out maintenance programming. This is because the
goal of the object-oriented approach is to produce understandable, modular
designs in order to minimise the cognitive complexity of programming tasks.
However, it is not uncommon to encounter designs that have become weakened
as a side-effect of the repeated addition of functionality during development (a
problem referred to as design erosion), or have not been properly maintained
in the past. Such designs can require significant refactoring in order to increase
their maintainability to an acceptable level, thus increasing the cost of carrying
out maintenance tasks.

The ideal solution to this problem would be the automation of some portion of
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the refactoring step by the application of an automated design improvement
tool. Such a tool would take the current set of program entities as input
and output a set with the same external behaviour, but having a design that
conforms more closely to a given quality model. Maintenance programming
or manual refactoring could then begin from a more advantageous point, thus
reducing the costs involved.

Our novel approach to automated design improvement is the formulation of
the refactoring task as a search problem; given a design quality function we
apply automated refactorings to a program in order to move through the space
of alternative designs and search for those of highest quality. The effectiveness
of the search can be measured in terms of the change in quality function, but
the effectiveness of the approach itself can only be judged in terms of the actual
changes made to the program, and to what extent it is more maintainable than
the original. For this reason, choice of design quality function is a key facet of
this work.

While there exists a large body of work dealing with the measurement of
design quality in terms of a set of metrics (see section 2.3), there are few
examples of attempts to capture complex properties such as maintainability
as a single value, as required for an evaluation function. This is perhaps not
surprising, given that comparison of the design of unrelated programs with
different purposes has little meaning. However, for the purpose of search-based
software maintenance the evaluation function need only be capable of ranking
alternative designs of the same program.

One model of software quality that incorporates suitable evaluation functions
is Bansiya’s ‘Hierarchical Model for Object-Oriented Design Quality Assess-
ment’ [2], or QMOOD, which defines evaluation functions for such quality
attributes as flexibility, reusability and understandability, based on eleven
object-oriented design metrics. We have examined these evaluation functions
through experimentation described in this article and determined that their
level of suitability for this approach varies considerably. In the process we have
demonstrated a secondary function of the search-based software maintenance
approach; that by refactoring programs to comply with a given quality model
we gain a valuable mechanism for validation of that model.

While our primary goal in this work was to demonstrate that object-oriented
programs can be automatically refactored to conform more closely to a given
quality model using a search-based approach, we also report here on several
other significant contributions:

e An assessment of the suitability and effectiveness of several contemporary
evaluation functions for the purpose of search-based software maintenance.



e A comparison of the performance of a set of search techniques in the con-
text of automated refactoring of Java programs guided by contemporary
evaluation functions.

e A subjective assessment of the performance of a prototype automated refac-
toring tool from a software engineer’s perspective.

This article expands on the CSMR 2006 paper ‘Search-Based Software Mainte-
nance’ [33] in which we report similar success in automatically refactoring Java
packages to increase maintainability. While the same metric suite is employed
here, we have substantially expanded the refactoring capability of the proto-
type design improvement tool, with the addition of six refactorings described
in section 4.1. We also report here on larger case studies involving complete
open-source programs, rather than individual packages, and have employed
a wider variety of search techniques. Our research on this novel concept was
first published in 2003 [32].

The remainder of this article is structured as follows: in section 2 we sur-
vey related work in the fields of search-based software engineering, automated
and semi-automated design improvement, and design quality measurement. In
section 3 we discuss the limitations of our approach. In section 4 we describe
our experimental methodology, with particular emphasis on the prototype
design-improvement tool CODe-Imp. In section 5 we present the results of
search-based refactoring of two Java programs, with regard to overall qual-
ity function gain and relative performance of search techniques. In section
6 we present our observations on search-based maintenance of the same two
Java programs, discussed in terms of individual metrics and direct code ex-
amination, and compare the differing effects of three evaluation functions. We
describe directions for future work in section 7 and conclude in section 8.

2 Related Work

Work related to this project can be divided broadly into three areas: Search-
Based Software Engineering, Automated Design Improvement and Design
Quality Measurement. These topics are discussed below.

2.1 Search-Based Software Engineering

Search-Based Software Engineering (SBSE) can be defined as the applica-
tion of search-based approaches in solving optimisation problems in software
engineering [19]. Such problems include module clustering, where a software



system is reorganised into loosely coupled clusters of highly cohesive mod-
ules to aid reengineering [16,20,24,29], test data generation [26], automated
testing [37] and project management problems such as requirements schedul-
ing [1] and project cost estimation [9,14,15]. An overview of such work and
comprehensive recent references can be found in [13] and [19] respectively. Of
particular relevance to this work is ‘Metrics Are Fitness Functions Too’ [19],
in which Harman states that any product or process metric can be used as
the evaluation function driving a search-based optimisation.

Once a software engineering task is framed as a search problem there are
numerous approaches that can be applied to solving that problem, from local
searches such as exhaustive search and hill-climbing to meta-heuristic searches
such as genetic algorithms (GAs) and ant colony optimisation. Module cluster-
ing, for example, has been addressed using exhaustive search [25], hill-climbing
[20,23,25,28], genetic algorithms [16,20,25,28] and simulated annealing (SA)
[28]. In those studies that compared search techniques, hill-climbing was, per-
haps surprisingly, found to produce better results than meta-heuristic GA
searches [20,27]. These results were echoed in search-based auto-parallelisation
[39], where local searches similarly out-performed GA. In software clustering
the meta-heuristic simulated annealing search was found by Mitchell et al. [28§]
to perform similarly to hill-climbing in terms of solution quality, but better in
terms of search efficiency.

2.2 Automated Design Improvement

Previous approaches to the fully automated restructuring of software have fo-
cussed on improving one particular aspect of design, such as method reuse
or code factorisation. Examples of such work include that of Casais [11], who
proposed algorithms to restructure class hierarchies in order to maximise ab-
straction, and Moore [30], who proposed a system where existing classes are
discarded and replaced with a new set with optimal method factorisation —
meaning code duplication is minimised. However, since object-oriented design
involves numerous trade-offs, this narrow focus can result in overall quality
loss.

Our approach has two main advantages over previous fully automated restruc-
turing work. Firstly, and most significantly, the use of evaluation functions
consisting of combinations of multiple metric values allows us to employ much
richer quality models than the single-goal approaches mentioned above, which
do not take into account the numerous trade-offs involved in object-oriented
design. Secondly, by careful choice and definition of the refactorings employed
we can make design quality affecting changes to an object-oriented program
without loss of domain-specific information such as class and member names;



a particular disadvantage of Moore’s work [30].

While the term refactoring was popularised by Opdyke [34] as a verb meaning
‘to improve the design of a program without altering its behaviour’, the word
has subsequently come to be used as a noun meaning ‘a code change that can
be made in order to improve design while preserving behaviour’. An example
of a refactoring is Pull Up Method, meaning the repositioning of a method at
a higher level in an inheritance hierarchy. Catalogues of refactorings such as
Fowler’s ‘Refactoring: Improving the Design of Existing Code’ [18] are avail-
able that have provided a useful standard for reference and communication.

The application of many of the refactorings prescribed by Fowler and others
can be automated to some extent, given user interaction. Robert’s Refactoring
Browser [35] was one of the first software tools to provide automated assis-
tance for the application of refactorings; today most IDEs provide some form
of automated refactoring support. While such tools reduce the effort involved
in refactoring, they do not assist the programmer in the vital task of deter-
mining where it is advantageous to apply refactorings. Some semi-automated
approaches to design improvement, however, attempt do just that.

Semi-automated approaches to design improvement mainly involve the use
of metric-based rules to identify areas in need of improvement, the onus then
being on the programmer to determine precisely what changes should be made.
Such ‘bad smell’ detection has been proposed by van Emden [17], and by
Tahvildari [36], whose system also recommends ‘meta-pattern transformations’
that can be applied to ameliorate the defect. The proviso of such tools is, of
course, that they reduce the need for programmer intervention rather than
eliminate it.

2.3 Design Quality Measurement

In order to treat object-oriented design as a search problem, it is necessary to
define a quality evaluation function that will serve to rank alternative designs.
Furthermore, in order for an effective search to be carried out this quality
function must be automatically computable from the design model at a mini-
mal cost. We have conducted a survey of metric-based object-oriented quality
models and selected three of the most prominent, which are described below
and assessed as to their suitability for the task in hand. The principle crite-
ria for assessment were: firstly, that the model comes as close as possible to
providing complete evaluation functions, and secondly, that the constituent
metrics are well-defined and well-established.



2.3.1 CK

The Metrics Suite for Object-Oriented Design (known as CK) of Chidamber
and Kemerer [12] is a seminal work in object-oriented quality measurement
and is still frequently cited today. Metrics are defined for properties such as
complexity, inheritance, coupling, cohesion and messaging. The CK metrics
and subsequent modifications by Li et al. [38] have been independently val-
idated as indicators of such characteristics as fault-proneness [3], but no at-
tempt has been made to combine them in the form of an evaluation function.
Several interpretations exist of some CK metrics, such as Lack of Cohesion of

Methods (LCOM).

2.3.2 MOOD2

The MOOD (Metrics for Object-Oriented Design) metrics suite [7] was in-
troduced by Fernando Brito e Abreu et al. in 1994 and was subsequently
evaluated by the author [6] and others [21]. Because some deficiencies were
identified, namely the lack of measures of reuse, polymorphism and external
coupling, the MOOD suite was superseded by the MOOD2 metrics suite in
1998 [4]. The MOOD2 metrics are also defined in an English-language paper
[5] through extended OCL and the GOODLY design language [8].

The MOOD?2 suite is a comprehensive, modern metrics suite including several
measures each of coupling, reuse, polymorphism, data-hiding and inheritance.
MOOD2 metrics are formally defined, and hence can be directly implemented
without resolution of ambiguity. However, nowhere in the literature are evalu-
ation functions defined that combine MOOD2 metric values to give an overall
quality index. As a result MOOD2 does not provide a complete quality model
suitable for use in search-based refactoring.

2.3.3 QMOOD

The QMOOD (Quality Model for Object-Oriented Design) model of Bansiya
2] was introduced in 2002 and consists of a hierarchy of four levels. The levels
in descending order are: Design Quality Attributes such as ‘understandability’,
Object-Oriented Design Properties such as ‘encapsulation’, Object-Oriented
Design Metrics, and Object-Oriented Design Components such as ‘class’.

For the purpose of search-based refactoring, the QMOOD model has the ad-
vantage that it defines functions from metric values to Quality Attribute In-
dices (QAIs) for such design attributes as flexibility, reusability and under-
standability. This provides an excellent foundation for experimentation in au-
tomatically refactoring a design to conform to this quality model. However,
while QMOOD provides a detailed model of object-oriented design quality, it



is lacking in the area of effective metric definition. Metrics in QMOOD litera-
ture [2] are defined in natural language, and are in some cases ambiguous. In
order to implement the QMOOD metrics for replicable studies it is necessary
to define them more precisely.

The QMOOD quality model was selected for this work as it includes pre-
defined evaluation functions. Were another metric suite selected it would have
been necessary to define evaluation functions on those metrics, thus reducing
the independence of our work from the field of software product measure-
ment. In order to ameliorate the problem of ambiguous metric definitions in
QMOOD, we have precisely defined the QMOOD metrics as implemented
in CODe-Imp later in this article. It should be noted that other metrics for
individual design properties such as cohesion could be substituted for the cor-
responding QMOOD metrics without alteration to the approach as a whole.

3 Limitations of this approach

In common with all fully automated refactoring tools CODe-Imp has the draw-
back that changes in the design must be communicated to the programmer.
Several issues such as the relocation of program comments and need to intro-
duce new identifiers such as class names can complicate this task [10]. These
issues could be addressed by a programmer review of the refactored code, but
our assumption that this would be less expensive than completely manual
refactoring is unproven.

As automatic refactoring with CODe-Imp improves program design with re-
spect to a well-defined quality model rather than in an absolute sense, the
effectiveness of the approach hinges on how accurately that quality model re-
flects the refactoring goals of the user. Quality models of sufficient detail to
be employed in our case studies are extremely rare in the literature, largely
because the definition of quality varies not only between software domains but
also between refactoring tasks of differing motivation. Early in the software
life-cycle, for example, the main motivation for refactoring may be to preserve
flexibility so that further functionality can be easily added, while later in the
cycle reusability may be paramount. For this reason, we ultimately see the
automated refactoring approach described here being employed by software
companies that have developed their own domain-specific quality models.



4 Experimental Methodology

In order to test the thesis that object-oriented programs can be automati-
cally refactored so that their design conforms more closely to a given quality
model we have constructed a prototype search-based design improvement tool
called CODe-Imp!. CODe-Imp can be configured to operate using various
subsets of its available automated refactorings, various search techniques, and
various evaluation functions based on combinations of established metrics. In
the remainder of this section we describe the configuration of CODe-Imp that
yielded the results reported in this article.

4.1 Refactorings

The refactoring configuration of CODe-Imp was constant throughout the case
studies reported here, and consisted of the fourteen refactorings described be-
low. Complementary pairs of refactorings were selected so that changes made
to the input design during the course of the search could be reversed. This
is necessary for some search techniques (e.g. Simulated Annealing) to move
freely through the space of alternative designs.

Push Down Field moves a field from some class to those subclasses that
require it. This refactoring is intended to simplify the design by reducing
the number of classes that have access to the field.

Pull Up Field moves a field from some class(es) to the immediate super-
class. This refactoring is intended to eliminate duplicate field declarations
in sibling classes.

Push Down Method moves a method from some class to those subclasses
that require it. This refactoring is intended to simplify the design by reduc-
ing the size of class interfaces.

Pull Up Method moves a method from some class(es) to the immediate su-
perclass. This refactoring is intended to help eliminate duplicate methods
among sibling classes, and hence reduce code duplication in general.

Extract Hierarchy adds a new subclass to a non-leaf class C in an inheri-
tance hierarchy. A subset of the subclasses of C will inherit from the new
class. This refactoring is intended to help improve class cohesion and mod-
ularity by increasing abstraction in the class hierarchy.

! Combinatorial Optimisation Design-Improvement



Collapse Hierarchy removes a non-leaf class from an inheritance hierarchy.
This refactoring is intended to reduce design complexity by removing su-
perfluous classes from the design.

Increase Field Security increases the security of a field from public to pro-
tected or from protected to private. This refactoring increases data encap-
sulation.

Decrease Field Security decreases the security of a field from private to
protected or from protected to public. This refactoring reduces data encap-
sulation.

Replace Inheritance with Delegation replaces an inheritance relationship
between two classes with a delegation relationship; the former subclass will
have a field of the type of the former superclass. This refactoring is used to
rectify a situation where a subclass does not use enough of a superclass’s
features to justify the specialisation relationship [18].

Replace Delegation with Inheritance replaces a delegation relationship
between two classes with an inheritance relationship; the delegating class
becomes a subclass of the former delegate class. This refactoring can be
used in a situation where a delegating class is using enough features of a
delegate class that a specialisation relationship would be more appropriate
[18].

Increase Method Security increases the security of a method from pro-
tected to private or from public to protected. This refactoring can reduce
the size of the public interface of a class.

Decrease Method Security decreases the security of a method from pro-
tected to public or from private to protected. This refactoring can increase
the size of the public interface of a class.

Make Superclass Abstract declares a constructorless class explicitly ab-
stract. This increases some measures of abstraction, and facilitates other
refactorings.

Make Superclass Concrete removes the explicit ‘abstract’ declaration of
an abstract class without abstract methods. This decreases some measures
of abstraction.

We have deliberately chosen refactorings that operate at the method/field level
of granularity and higher because our focus is on the automatic improvement
of the design encapsulated in a program rather than implementation issues



such as correct factorisation of methods.

During the search process alternative designs are repeatedly generated by the
application of a refactoring to the existing design, evaluated for quality, and
either accepted as the new current design or rejected. As the current design
changes, the number of points at which each refactoring can be applied will
also change. One the functions of CODe-Imp’s Java Program Model (JPM),
an abstraction of the AST automatically enriched with program facts at run-
time, is to determine where refactorings can legally be applied — in other
words, where the corresponding code alterations can be made without alter-
ing program behaviour. In order to achieve this we have employed a system
of conservative precondition checking similar to that developed by Roberts
for the Smalltalk ‘Refactoring Browser’ [35] and subsequently extended by O
Cinnéide [31], but using static rather than dynamic analysis. Further details
are omitted here due to space constraints.

4.2 Search Techniques

In order to provide an insight into which search techniques are most effective
in a search-based software maintenance context we have replicated the case
studies reported here across four; three local and one meta-heuristic. The
search techniques selected were the following:

First-Ascent Hill Climbing (HC1) A local search algorithm where the search
examines neighbouring solutions until a higher quality solution is discovered.
This neighbour then becomes the current solution. Local search algorithms
were selected as they have been shown to produce good results in other
SBSE applications, as discussed in section 2.1.

Steepest-Ascent Hill Climbing (HC2) A second local search algorithm,
where the search examines all neighbouring solutions and moves to the so-
lution of highest quality.

Multiple-Restart Hill Climbing (HCM) A variation of first-ascent hill climb-
ing where a number of ‘restarts’ are made when the search reaches an ap-
parent optimum. In the experiments described here three restarts of a depth
of five random refactorings were made in each case.

Low-Temperature Simulated Annealing (SA) A meta-heuristic search tech-

nique described below. Simulated annealing was selected as it has previously
been found to perform well in the context of software clustering [28].
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A Simulated Annealing [22] search essentially involves making series of ten-
tative changes to some solution of a combinatorial optimisation problem.
Changes which increase the quality of the solution are accepted, and the
changed solution becomes the starting point for the next series of tentative
changes. In addition, some changes which reduce the quality of the solution
are accepted in order to allow the search to escape from local minima. Such
(negative) changes are accepted with a probability that decreases steadily dur-
ing the annealing process (equation 1; where p is the probability of accepting a
given solution, dq is the magnitude of quality reduction relative to the current
solution, and 7" is the temperature value).

p=e T (1)

In common with other search techniques simulated annealing requires an eval-
uation function and a problem representation with a means of altering solu-
tions. In addition, a cooling schedule is required that determines how quickly
the annealing runs, and hence how likely the solution is to be of high qual-
ity. CODe-Imp employs the standard geometric cooling schedule, meaning the
temperature is reduced by a constant factor after each step in the annealing
process.

The parameters of a geometric cooling schedule are: Ty,.+, the starting value
for the temperature variable; Markov chain length (M), the number of ten-
tative changes that will be made at each temperature; and f, the geometric
cooling factor. Theoretically, a simulated annealing search yields optimum re-
sults when M tends towards infinity and f towards one; in practice the cooling
schedule should be as slow as possible within the time available.

A number of different cooling schedules were tested in order to establish a use-
ful candidate for the experiments described later in this article. Mean quality
increase over three runs for Markov chain lengths 1 and 2 and various cool-
ing factors in the range 0.990 — 0.999 was recorded for input B under the
QMOOD Understandability evaluation function, which we describe in section
4.3. A cooling factor of f=0.9975 was found to be most effective while Markov
chain lengths of 1 and 2 were equally effective for that value. A cooling sched-
ule of f=0.9975 and M =1 was therefore used in the experiments described in
the remainder of this article.

It should also be noted that a low temperature simulated annealing was em-
ployed, meaning that the value of Tg.+was adjusted to give large quality
drops a lower than normal chance of being accepted. This is because standard
simulated annealing is usually employed where the starting solution is of ex-
tremely low quality, such as a timetable with a large number of clashes in the
context of a timetabling problem. In contrast, object-oriented designs which
are of low quality from a programmer’s perspective are nonetheless of rela-
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tively high quality, when we consider the potentially infinite size of the search
space of all functionally equivalent designs. In the experiments reported in
this article that used simulated annealing initial acceptance probabilities of
approximately 0.2 were observed for large quality drops, whereas a standard
annealing schedule would result in initial probabilities of approximately 0.8.

4.8  Fvaluation Functions

The evaluation functions employed in the CODe-Imp prototype described here
are the Flexibility, Reusability and Understandability functions defined as
part of the QMOOD hierarchical design quality model [2]. Each evaluation
function in the model is based on a weighted sum of quotients on the eleven
metrics described in table 1. QMOOD evaluation functions determine the
relative quality attributes of two designs, presumed to be similar in purpose.
For this reason, each metric value for the refactored design D’ is divided by
the corresponding value for the original design D to give the metric change
quotient. Metric weights for each evaluation function are shown in table 2; a
positive weight corresponds to a metric that should be increased in order to
enhance the design property in question, while a negative weight corresponds
to a metric that should be decreased.

Of course, the concept of design quality is quite ephemeral and even sub-
concepts such as understandability cannot easily be defined. We consider the
QMOOD evaluation functions examples of how some desirable design property
can be precisely expressed, rather than definitive metrics for the design prop-
erties they are named for. We therefore attempt to optimise these values not
in order to guarantee an improvement in terms of the subjective concepts of
flexibility, reusability and understandability, but rather to demonstrate that in
the general case a well-defined design property can be optimised using our ap-
proach. However, in section 6 we do subjectively assess whether the QMOOD
evaluation functions lead to improvements in the corresponding design prop-
erties, in the context of our approach.

4.4 Input & Hardware

Input consisted of one program from the Spec Benchmarks? standard per-
formance evaluation framework and one program taken from SourceForge?
via java-source.net. These programs were selected because a large number of
refactorings could be applied to them. Input A (Spec-Check) consisted of 41

2 http://www.spec.org/
3 http://sourceforge.net/
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Metric

Acronym

Description

Design Property

Design Size in Classes

Number Of Hierarchies

Average Number of

Ancestors

Number of Polymor-
phic Methods

Class Interface Size

Number Of Methods

Data Access Metric

Direct Class Coupling

Cohesion Among
Methods of Class

Measure Of Aggrega-
tion

Measure of Functional
Abstraction

DSC

NOH

ANA

NOP

CIS

NOM

DAM

DCC

CAM

MOA

MFA

A count of the total number of classes in the
design. Interpreted as excluding imported li-
brary classes.

A count of the number of class hierarchies in
the design. Interpreted as excluding hierarchies
that consist of a specialised class within the
design and a generalised class outside.

The average number of classes from which each
class inherits information.

A count of the number of the methods that can
exhibit polymorphic behaviour. Interpreted as
the average across all classes, where a method
can exhibit polymorphic behaviour if it is over-
ridden by one or more descendent classes.

A count of the number of public methods in
a class. Interpreted as the average across all
classes in a design.

A count of all the methods defined in a class.
Interpreted as the average across all classes in
a design.

The ratio of the number of private (protected)
attributes to the total number of attributes de-
clared in the class. Interpreted as the average
across all design classes with at least one at-
tribute, of the ratio of non-public to total at-
tributes in a class.

A count of the different number of classes that
a class is directly related to. The metric in-
cludes classes that are directly related by at-
tribute declarations and message passing (pa-
rameters) in methods. Interpreted as an aver-
age over all classes when applied to a design as
a whole; a count of the number of distinct user-
defined classes a class is coupled to by method
parameter or attribute type. We exclude stan-
dard Java library classes from the computa-
tion.

The relatedness among methods of a class,
computed using the summation of the intersec-
tion of parameters of a method with the maxi-
mum independent set of all parameter types in
the class. We have excluded constructors and
implicit ‘this’ parameters from the computa-
tion.

A count of the number of data declarations
whose types are user-defined classes. Inter-
preted as the average value across all design
classes. We define ‘user defined classes’ as non-
primitive types that are not included in the
Java standard libraries.

The ratio of the number of methods inherited
by a class to the number of methods accessible
by member methods of the class. Interpreted as
the average across all classes in a design of the
ratio of the number of methods inherited by a
class to the total number of methods available
to that class, i.e. inherited and defined meth-
ods.

Design Size

Hierarchies

Abstraction

Polymorphism

Messaging

Complexity

Encapsulation

Coupling

Cohesion

Composition

Inheritance

Table 1

QMOOD metrics [2].
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function DSC NOH ANA DAM DCC CAM MOA MFA NOP CIS NOM
Flexibility 0 0 0 0.25 -0.25 0 0.5 0 0.5 0 0
Reusability 0.5 0 0 0 -0.25 0.25 0 0 0 0.5 0
Understandability -0.33 0 -0.33 0.33 -0.33 0.33 0 0 -0.33 0 -0.33
Table 2

Metric weights of QMOOD evaluation functions [2].

classes to which 351 distinct refactorings could initially be applied, while in-
put B (Beaver)consisted of 30 classes to which 190 distinct refactorings could
initially be applied.

Experiments were carried out on a 2.2GHz AMD Athlon powered PC with
1GB RAM. Mean processing time per solution examined was approximately
one second, including model building, metric extraction, quality assessment,
discovery of legal refactorings, and actual (Abstract Syntax Tree) refactoring.
Total run times varied between approximately one hour and almost two hours
depending on input size and search algorithm for local searches, with simulated
annealing notably requiring a disproportionately long run time of up to ten
hours due to processing overheads required by the algorithm. However, CODe-
Imp was designed with robustness rather than speed as a priority and makes
no use of concurrent processes, so there is potential to greatly decrease these
run-times.

In the following two sections we present case studies of two facets of the
search-based refactoring of Java programs. In section 5 we present the results
of refactoring of two programs with regard to quality gain and relative perfor-
mance of search techniques, while in section 6 we present our observations on
search-based maintenance of the same two Java programs, discussed in terms
of individual metrics and direct code examination, and compare the differing
effects of three evaluation functions.

5 Case Studies I; comparison of search techniques

In this section we present the quality changes observed using each of the
four search techniques described in section 4.2. Two input programs and the
QMOOD Flexibility, Reusability and Understandability evaluation functions
described in section 4.3 were examined, giving a total of six distinct cases for
comparison. These results indicate the level of success achieved in refactoring
the input programs to improve design as measured by the evaluation func-
tions, and allow us to compare the performance of the three search techniques
employed.

The results described in this section are mean values of at least three replica-
tions of each run, the only variation being in random decisions required by the
search algorithms. Figures show standard deviation ‘error’ bars; where these
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Fig. 1. Mean quality change — Input A

are absent no deviation from the mean was observed. Statistical significance
was established in all cases by performing student’s t-test for unpaired data
assuming unequal variance, in order to establish that perceived differences
were not due to chance alone. A confidence interval of 95% was used.

5.1 Input A — Spec-Check

Figure 1 shows the mean overall quality changes observed for each search tech-
nique and evaluation function for input A. An increase in evaluation function
value was observed for all four search techniques for each of the three evalua-
tion functions Flexibility, Reusability and Understandability. The magnitude
of quality function change was greatest in the case of the Understandability
function and smallest in the case of the Flexibility function, but as QMOOD
evaluation functions are based on a weighted sum of metric quotients this does
not necessarily mean that more extensive changes were made to the design in
any particular case.

The four search techniques yielded identical results in terms of mean solu-
tion quality increase across the Flexibility and Understandability evaluation
functions. For the Reusability function HC2 produced significantly greater
quality increases than HC1, HCM or SA. No statistically significant difference
in quality increase was observed between the other three search techniques.

Figure 2 shows the mean number of solutions examined in each of the cases
graphed in figure 1. For all three evaluation functions, HC1 and SA examined
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the fewest solutions, with a statistically significant difference occurring only
for the Reusability function, where SA examined fewest solutions. For all three
functions HC2 examined the greatest number of solutions, with HCM exam-
ining significantly fewer than HC2 but significantly more than HC1 or SA. So,
while the four search techniques performed similarly in terms of mean quality
gain for this input, the number of solutions examined in the search process
varied considerably, with HC2 examining approximately twice as many as SA
in each case.

For this input all four search techniques produced quality improvements, but
HC1 and SA were the most efficient in terms of number of solutions exam-
ined. Since SA incurred high processing overheads as mentioned in section 4.4,
HC1 must be considered the most efficient search technique for this input. As
neither HCM or SA discovered solutions of higher quality it is likely that the
search space was smooth for these three combinations of input and evaluation
function.

5.2 Input B — Beaver

Figure 3 shows the mean overall quality changes observed for each search
technique and evaluation function for input B. An increase in evaluation func-
tion value was observed for all three search techniques for each of the three
evaluation functions Flexibility, Reusability and Understandability.

The three search techniques yielded varying results in terms of mean solu-
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tion quality increase across the three evaluation functions. For the Flexibility
function, SA produced the greatest quality increase by a clear margin, while
no statistically significant difference was observed between the other three
search techniques. For the Reusability function, HC1 and HCM produced the
greatest quality increases, with no statistically significant difference between
them, while HC2 and SA produced lesser quality increases, with no statisti-
cally significant difference between them. For the Understandability function,
HC2 produced the greatest mean quality increase. Although HCM produced
the highest quality individual solution observed, the large variation in solution
quality in this case caused the mean quality increase to be significantly lower
than HC2. HC1 and SA also performed significantly worse than HC2 for this
evaluation function.

Figure 4 shows the mean number of solutions examined in each of the cases
graphed in figure 3. For all three evaluation functions HC1 examined the fewest
solutions, although SA did not examine significantly more in the case of the
Flexibility function. For the Flexibility and Understandability functions HC2
examined the greatest number of solutions, while for the Reusability function
SA examined more by a small but statistically significant amount. In all three
cases HCM examined the second-highest number of solutions, although in the
case of the Reusability function it did not examine significantly more than
HC2.

For this input all four search techniques produced quality improvements, but
HC1 was most efficient in terms of number of solutions examined. In the case
of the Flexibility function SA produced the greatest quality increase while
examining the second fewest mean number of solutions, but still required the
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greatest run-time due to the processing overheads mentioned in section 4.4. In
the case of the Understandability function HC2 produced the greatest quality
increase, but at the cost of examining approximately twice as many solutions
as each of the other search techniques.

In summary, the search techniques employed all demonstrated strengths in
this experiment: first-ascent hill climbing consistently produced quality im-
provements at a relatively low cost, steepest-ascent hill climbing produced the
greatest mean quality improvements in two of the six cases, multiple-ascent
hill climbing produced individual solutions of highest quality in two cases, and
simulated annealing produced the greatest mean quality improvement in one
case.

6 Case Studies II; comparison of evaluation functions

In this section we present the observed changes in the metric values that com-
prise each of the three QMOOD evaluation functions Flexibility, Reusability
and Understandability, for two Java programs after search-based refactoring.
These results demonstrate the differing effects of the various evaluation func-
tions on the output design and, along with an examination of the output code,
allow us to discuss the effectiveness of the evaluation functions in actually in-
creasing design quality. For clarity, we present the results of the best single run
for each input in each of the following sections. As can be seen from figures 1
and 3, little variation was observed in mean quality increase in most cases.
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For each evaluation function we will present the observed changes in metric
values and describe how they contributed to the increase in quality function
value. We also report the refactorings that were actually applied to the design
in order to achieve these changes, and discuss the impact on the design from
a programmer’s perspective, having examined the refactored source code. The
relevant subsections will be titled ‘metric quotient changes’, ‘concrete design
changes’ and ‘analysis of refactored design’, respectively.

6.1 Flexibility

The Flexibility quality attribute in QMOOD is defined as the readiness of a
design for adaptation to provide functionally related capabilities [2]. Metric
changes resulting from use of the Flexibility function in CODe-Imp are shown
in figure 5. Input A values are from one solution obtained using HC1; input
B values are from one solution obtained using SA. It should be noted that
these are metric quotient changes; differences from the identity value of 1 are
graphed. A graphed value of 1 would equate to a doubling of the metric value
from input to output. The actual metric weights comprising the Flexibility
function are shown in table 2 and are repeated in figure 5. Details of the
individual metrics can be found in table 1.
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6.1.1 Metric quotient changes

In the case of input A, use of the QMOOD Flexibility function resulted in in-
creases in the positively weighted DAM (0.25) and MOA (0.5) metrics, as well
as the negatively weighted DCC (-0.25) metric. A decrease was also observed
in the unweighted ANA metric.

In the case of input B, use of the Flexibility function resulted in increases in
the positively weighted DAM (0.25) metric and the unweighted MFA metric,
and decreases in the negatively weighted DCC (-0.25) metric and unweighted
CAM metric.

6.1.2 Concrete design changes

In more concrete terms, for input A the DAM metric value increased from
0.82 to 0.90, so the output solution consisted of classes with a higher average
ratio of non-public to public attributes. MOA for the program increased from
0.61 to 0.63, while DCC increased from 0.83 to 0.85. ANA decreased from 0.17
to 0.12. Examination of the refactored code revealed that nine applications of
the Increase Field Security refactoring had increased encapsulation in eight
different classes, while one Pull Up Field and one Replace Inheritance With
Delegation refactoring had increased aggregation for one class at the cost of
one additional coupling link.

In the case of input B the DAM metric value increased from 0.58 to 0.81,
so again the output solution consisted of classes with a considerably higher
average ratio of non-public to public attributes. In addition, DCC fell from 2.70
to 2.63 and CAM fell from 0.67 to 0.62, meaning that average coupling and
average cohesion decreased slightly, while MFA increased from 0.03 to 0.10.
Examination of the source code revealed that eleven applications (net) of the
Pull Up Method and seven applications (net) of the Pull Up Field refactorings
had reduced coupling in the case of six different classes but increased coupling
in the case of three classes, for a net decrease of three classes coupled to one
other. One class displayed slightly reduced cohesion. In addition, application
of the Increase Field Security refactoring had improved encapsulation in seven
classes.

6.1.3 Analysis of refactored designs

The refactored design in the case of input A exhibited improved data-hiding,
with seven classes having a greater proportion of non-public methods com-
pared to the input design. In addition, use of the inheritance mechanism had
decreased by one instance, which had been replaced by aggregation. Coupling
had also increased slightly. Examination of the refactored code revealed that
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where the inheritance relationship had been replaced by delegation the for-
mer subclass made no use of any of the former superclass’s features, so the
change was justified. The refactored design in this case was superior in terms
of general object-oriented design principles such as the maximisation of encap-
sulation and the use of inheritance only where it is suitable, so there was some
evidence that general maintainability had increased. There was no conclusive
evidence that the refactored design would be more flexible in particular.

In the case of input B, the refactored design exhibited improved data-hiding,
with seven classes having a greater proportion of non-public methods com-
pared to the input design. In addition, coupling had been reduced for three
classes net, at the cost of slightly reduced cohesion for one class. While high
cohesion is valued in object-oriented design, low coupling is perhaps a greater
priority when flexibility of design is paramount. Therefore, the refactored de-
sign in this case was not only better in terms of general object-oriented prin-
ciples, but also could be regarded as more flexible than the input design.

Although the NOP metric is positively weighted in the QMOOD Flexibility
function, no increase in NOP was observed for either input, nor was any in-
crease observed for the positively weighted MOA metric in the case of input A.
There are two possible explanations for this; firstly, there may not have been
any legal refactorings that would increase these values or, secondly, any refac-
toring that increased these values may have also caused an undesired change
of greater magnitude in other weighted metrics and hence been rejected.

6.2 Reusability

Metric changes resulting from use of the Reusability function in CODe-Imp are
shown in figure 6. Input A values are from one solution obtained using HC2;
input B values are from one solution obtained using HC1. Again, these are
metric quotient changes; differences from the identity value of 1 are graphed.
The actual metric weights comprising the Reusability function are shown in
table 2 and repeated in figure 6. It should be noted that it was necessary to
impose a limit on the number of classes in refactored designs considered in
the search space; this is discussed further below.

6.2.1 Metric quotient changes

In the case of input A, use of the QMOOD Reusability function resulted in
increases in the positively weighted metrics DSC (0.5) and CAM (0.25) and
the unweighted metrics ANA, DAM and MFA. Decreases were observed for
the positively weighted metric CIS (0.5), the negatively weighted metric DCC
(-0.25) and the unweighted metrics MOA and NOP.
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Fig. 6. Metric quotient changes, Reusability function

In the case of input B, use of the QMOOD Reusability function resulted in
increases in the positively weighted metrics DSC (0.5), CAM (0.25) and CIS
(0.5), the negatively weighted metric DCC (-0.25), and the unweighted metrics
ANA, DAM, MFA and NOM. Decreases were observed in the unweighted
metrics NOH, MOA and NOP.

In the cases of both input A and input B the most prominent changes are
the increases in ANA and MFA (truncated on graph) which corresponded
to greater than two-fold increases in these metric values in the case of each
input. However, as these metrics are unweighted in the QMOOD Reusability
function, their values had no impact on the search process.

6.2.2 Concrete design changes

Examination of the output code for input A revealed that major changes had
been made to the design, including the addition of eight new classes within
one inheritance hierarchy by means of the Extract Hierarchy refactoring. The
addition of subclasses affected not only the DSC and ANA metrics, but also
all metrics that are taken as an average over the number of design classes. The
observed changes in the DCC, NOP and CIS metrics were due solely to this
effect. The observed increase in the CAM metric was due to three applications
of the Pull Up Method refactoring, with one input class exhibiting greater
cohesion after methods had been repositioned. Three of the eight new classes
also exhibited high CAM values, but in each case this was due to the class
defining only one method.
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Examination of the output code for input B revealed that major changes had
also been made to this design by three applications of the Replace Inheritance
With Delegation refactoring and the addition of six new classes by means
of the Extract Hierarchy refactoring. In contrast to the results for input A,
none of the observed changes occurred solely as a side-effect to the increase
in the size of the design. Significant reductions were observed for this input
in the case of the DCC metric, a result which was not observed for input A:
due to repositioning of methods in inheritance hierarchies, four input classes
were found to be dependent on fewer other classes after refactoring, though
one input class gained a dependency. Improvements were also observed for
the CAM metric in five of the input classes, while decreases were observed in
two. High CAM values were observed for six of the ten new classes, but in all
instances this was a result of the class defining only one method.

6.2.3 Analysis of refactored designs

The striking changes made to the two input designs under the QMOOD
Reusability function provide a good illustration of the capacity of CODe-
Imp to discover designs that conform more closely to a given quality model.
However, in subjectively assessing the level of design improvement in this case
we find fault with the evaluation function. Firstly, as mentioned above, it was
necessary to impose a limit on the number of classes in the solution design.
The reason for this is the large positive weight on the Design Size in Classes
metric, which makes it likely that any addition of a class to the design will be
interpreted as an improvement in the evaluation function. A runaway search
process that adds an infinite number of empty classes to the design therefore
becomes a possibility. In the cases of both input A and B, the ‘best’ solutions
observed reached the imposed design size limit of 1.2 times the number of in-
put classes, even though this meant including featureless classes in the output
design. Secondly, putting aside the featureless classes problem, it is hard to
see how a real increase in the reusability of a design is effected by reorganising
an inheritance hierarchy to favour classes with only one method. While such
classes can be said to be highly cohesive and loosely coupled it is unlikely
that they would represent meaningful domain abstractions. We conclude that
although some genuine improvements to the input design were observed, the
QMOOD Reusability function in its published form is not well-suited to the
task of search-based software refactoring with the set of refactorings we have
employed.
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6.3 Understandability

Metric quotient changes resulting from use of the Understandability function
in CODe-Imp are shown in figure 7. Input A values are from one solution
obtained using HC1; input B values are from one solution obtained using HCM.
Again, these are metric quotient changes; differences from the identity value
of 1 are graphed. The actual metric weights comprising the Understandability
function are shown in table 2 and repeated in figure 7.

6.3.1 Metric quotient changes

In the case of input A the Understandability function produced increases in
the positively weighted metric DAM (weight 0.33) and the negatively weighted
metric DCC (weight -0.33), and a decrease in the negatively weighted metric
ANA (weight -0.33). A very small increase in the positively weighted metric
CAM (0.33) was also observed which is not visible from the graph. In the
case of input B the Understandability function produced increases in the pos-
itively weighted metrics DAM (0.33) and CAM (0.33), the negatively weighted
metrics DCC (-0.33) and NOM (-0.33), and the unweighted metrics MOA and
CIS. Decreases were observed for the negatively weighted metrics ANA (-0.33)
and NOP (-0.33), and the unweighted metrics NOH and MFA.
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6.3.2 Concrete design changes

The average DAM value for classes in the input A design rose from 0.82 to 0.90,
so the proportion of non-public to public methods was considerably higher
in the output design, indicating a greater level of encapsulation achieved by
nine applications of the Increase Field Security refactoring. The average ANA
value dropped from 0.17 to 0.12 as a result of one application of the Replace
Inheritance with Delegation refactoring, and a slight increase in the average
CAM value resulted from an application of the Pull Up Method refactoring.

For input B the average DAM value rose from 0.58 to 0.78, so a considerable
improvement in terms of encapsulation was achieved as a result of eighteen
applications of the Increase Field Security refactoring. Examination of the
output code revealed that the decreases in ANA (0.40 to 0.33) and NOP
(0.007 to 0.004), and the increases in DCC (2.70 to 2.83) and NOM (175 to
189) resulted from two applications of the Replace Inheritance with Delegation
refactoring. Two applications of Pull Up Field and one of Push Down Method
resulted in the increase in CAM (0.66 to 0.67), and helped prevent a greater
increase in DCC.

In each case there was no decrease in DSC, despite the negative weight on
this metric. This is because we do not allow the complete destruction of input
classes by CODe-Imp, even where it can be done legally. The reason for this is
simple; destroying a class that a programmer has identified as an enduring do-
main abstraction is undesirable because it represents a loss of domain-specific
information, and could result in refactored designs containing a large propor-
tion of automatically named classes if classes were repeatedly removed and
replaced.

6.3.3 Analysis of refactored designs

From a programmer’s perspective, the changes to the two designs observed af-
ter running CODe-Imp under the Understandability evaluation function were
positive. The increases in encapsulation and method cohesion seen in both
cases, as well as the decrease in polymorphism seen in one case, mean an im-
provement in the understandability of the designs from our subjective view-
point. In addition, for both inputs unjustified inheritance relationships were
replaced with delegation; for input A a subclass using none of its superclass’s
features and for input B a subclass using only one of its superclass’s ten meth-
ods were refactored. This shows that a design can be improved in ways that are
not directly measured; in this case the redefinition of the relationships between
several classes was a product of reducing inheritance and polymorphism while
maintaining cohesion and encapsulation. Furthermore, these improvements
were made without incurring any loss of domain-specific information encap-
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sulated in the design such as class or member names. For these reasons, the
results reported here suggest that the QMOOD Understandability function is
a quality model suitable for search-based software refactoring.

7 Future Work

In common with all fully automated refactoring tools CODe-Imp has the draw-
back that changes in the design must be communicated to the programmer.
Several issues such as the relocation of program comments and need to intro-
duce new identifiers such as class names can complicate this task [10]. These
issues could be addressed by a programmer review of the refactored code, but
our assumption that this would be less expensive than completely manual
refactoring has not yet been proved.

To date, the refactoring capacity of CODe-Imp has mainly focussed on trans-
forming the structure of inheritance hierarchies. In order for this technique
to become part of software engineering practice it will be necessary to in-
crease the power of the tool. However, only certain refactorings can be fully
automated. Further research is required to determine whether the refactoring
capacity of CODe-Imp can become diverse enough to satisfy the maintenance
programmer.

While we have demonstrated that object-oriented programs can be automati-
cally refactored to improve their design with respect to a given quality model,
much work remains to be done in order to provide a quality model that is of
use in the general case. Although the QMOOD Flexibility and Understand-
ability evaluation functions appear sufficient to produce genuine improvements
in the case studies described here, larger studies with independent assessment
of the refactored designs are required in order to fully establish this approach.
Further studies are also required to establish the level of resources needed to
successfully apply this approach in an industrial setting.

In the future we envisage the search-based software maintenance approach
forming a synergistic relationship with operational research in domain-specific
quality models. Where a specific model is proposed it would be possible to vali-
date and refine it using the search-based approach; a quality model of sufficient
accuracy could then be used to drive the search-based design improvement pro-
cess. It would also be possible to give the programmer more control over the
automated refactoring process, for example by protecting certain methods,
fields or classes from alteration. In this way, portions of the design known to
be of high quality could be preserved.
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8 Conclusion

The results reported here support the thesis that object-oriented programs can
be automatically refactored to improve quality as measured by well-defined
quality models, and partially validate the search-based software maintenance
approach. We have shown that evaluation function increases can be obtained
in all cases examined using simple search techniques, and that variation in
weights on evaluation function components has a significant effect on the over-
all refactoring process.

To elaborate on the contributions stated in section 1; inspection of output
code and analysis of solution metrics provided some evidence in favour of
use of the QMOOD Flexibility function, and strong evidence in favour of use
of the Understandability function. The QMOOD Reusability function in its
present form was not found to be suitable to the requirements of search-based
software maintenance because it resulted in solutions including a large number
of featureless classes.

The search techniques employed all demonstrated strengths in this experi-
ment: first-ascent hill climbing consistently produced quality improvements at
a relatively low cost, steepest-ascent hill climbing produced the greatest mean
quality improvements in certain cases, multiple-restart hill climbing produced
individual solutions of highest quality in certain cases, and simulated anneal-
ing produced the greatest mean quality increase by a clear margin for one
input and evaluation function pair. We conclude that both local search and
simulated annealing are effective in the context of search-based software refac-
toring, as did Mitchell et al [28] for the related problem of module clustering.
Perhaps the most significant observation here was that quality improvements
were obtained using simple search techniques with manageable run-times such
as first-ascent hill climbing, which bodes well for the scalability of the ap-
proach.

In the case of the Understandability function, genuine improvements were
made to the design of both of the programs studied here. In addition, the fact
that these improvements were made using local search techniques indicates
that the search landscape is not as difficult as might be imagined. We con-
clude that a search-based software maintenance tool based on the QMOOD
Understandability evaluation function has the potential to be of real use to
the software engineer faced with a difficult reengineering task.
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