
Recommending Library Methods:
An Evaluation of Bayesian Network Classifiers

Frank McCarey, Mel Ó Cinnéide and Nicholas Kushmerick
School of Computer Science and Informatics, University College Dublin,

Belfield, Dublin 4, Ireland.
{frank.mccarey, mel.ocinneide, nick}@ucd.ie

Abstract

Programming tasks are often mirrored inside an organi-
sation, across a community or within a specific domain. We
propose that final source codes can be mined, that knowl-
edge and insight can be automatically obtained and that
this knowledge can be reused for the benefit of future devel-
opments. We focus on reusable software libraries; we wish
to learn information about how such libraries are used and
then elegantly pass this information onto individual devel-
opers.

In this paper we investigate a Collaborative Filtering
approach of recommending library methods to a individ-
ual developer for a particular task. The central idea is
that we find source codes that are the most relevant to the
task at hand and use these to suggest useful library meth-
ods to a developer. To determine the similarity and rele-
vance of source code, we investigate and compare a number
of Bayesian clustering techniques including Bayesian Net-
works and Naı̈ve-Bayes. We present results and discuss the
suitability of Bayesian networks to this domain.

1. Introduction

A healthy knowledge flow between programming peers
can positively impact personnel morale, team productivity
and the ultimate outcome of a project. Be it a new de-
veloper just added to the team or the experienced profes-
sional unfamiliar with a particular library, all can benefit
from the experiences and skills of others. The tools and
techniques used to share such information within organi-
sations can vary greatly; for example, colleagues may hold
informal meetings, telephone or email each other or perhaps
rely on detailed support materials. Though these techniques
may be effective, it is clear that they lack efficiency. For
both the requestor and the responder, there is the overhead
of task switching; just replying to an email may upset the

flow of ones primary task. Similar to Ye and Fischer [28],
we propose that much of this knowledge can be shared au-
tomatically through the provision of proper tool support.

In this paper we focus on tool support for software li-
braries. Reuse of such libraries has been shown to improve
software quality and developer productivity whilst reducing
defect density [20] and time-to-market [29]. It is imprac-
tical though to consider that any one individual would be
entirely familiar with any one library; for example, the lat-
est version of the Java API library has over 3000 classes
while the Java Swing library has over 500 classes. Over a
period of time, it is likely that many different programmers
will have used a particular library. We suggest that insight
can be gained from analysing how particular libraries are
used and that this knowledge can be passed onto individ-
ual programmers through intelligent support tools; we are
currently developing the RASCAL tool.

RASCAL is a proactive recommender that is designed
to support library reuse. RASCAL hopes to address sev-
eral of the pragmatic issues that currently hamper reuse; for
example, developer motivation, time constraints, library ac-
cessability and lack of conversancy for a particular library.
RASCAL currently recommends a set of library methods
to a developer which it believes to be relevant to the task
at hand. We propose that by identifying and recommend-
ing reusable methods from a library and subsequently facil-
itating quick access to these, we will foster and encourage
reuse.

Similar to many commercial recommenders, RASCAL
produces a set of personalised recommendations for an indi-
vidual. However, unlike other domains where perhaps a set
of books or movies may be presented to a customer, RAS-
CAL recommends a set of task relevant methods to a par-
ticular developer. Like most recommendation tasks, RAS-
CAL recommends software methods that the developer is
interested in. Recommendation in our tool is complicated
though because we wish to recommend methods which we
believe the developer may be unfamiliar with or unaware of.
Another interesting distinction between our recommender

Figure 1: RASCAL Overview

system and most mainstream recommenders is that we are
trying to predict, in order, the next likely method a devel-
oper will employ. Many typical recommender systems only
predict a vote for items which the user has not yet tried. Our
aim is to predict the next library method a developer should
invoke; it is quite likely that the developer will have invoked
this method previously.

Recommendations are produced using a Collaborative
Filtering (CF) [25] algorithm as explained in section 3.
An important aspect of CF algorithms is clustering users;
in this paper we investigate and compare a number of
Bayesian approaches that can be used to classify how sim-
ilar source codes are. In particular, we will detail Bayesian
Networks, Naı̈ve-Bayes, Tree-Augmented Naı̈ve Bayes,
Forest-Augmented Naı̈ve Bayes and finally Bayesian Net-
work Augmented Naı̈ve-Bayes.

The main contributions of this work are:

• A viable solution to domain knowledge sharing, in re-
spect of software reuse libraries.

• A technique embedded in the RASCAL support tool
that significantly enhances reuse.

• An investigation of how effectively Bayesian tech-
niques can be applied to source code. We use these
techniques to support reuse but in theory several other
tasks could be supported such as clone detection, code
modeling and categorisation.

The remainder of this paper is organised as follows. In
the next section we provide a brief overview of the main
components in RASCAL. This is followed by a detail ex-
planation of the recommendation algorithm and a compari-
son of a number of different Bayesian techniques in section
3. Section 4 presents experimental results with discussion.
Related works are reviewed in section 5. Finally we discuss
how RASCAL can be extended and draw general conclu-
sions in section 6.

2. System Overview

RASCAL is currently implemented as a plugin for the
Eclipse IDE. As a developer is writing code, RASCAL
monitors the methods currently invoked and uses this infor-
mation to recommend a candidate set of methods to the de-
veloper. Recommendations are then presented to the devel-
oper in the recommendations view at the bottom right hand
corner of the IDE window. At present, RASCAL recom-
mends methods from the Swing and AWT libraries. Below
we describe the main components of RASCAL, as shown in
figure 1.

We produce personalised recommendations for each in-
dividual Developer. When producing a recommendation,
we only consider the content of the current active method
which this developer is coding. In recommender systems,
it is common terminology to refer to the user for whom the
recommendation is being sought as the active user; like-
wise here we will refer to the active developer or the active
method that a developer is coding. The Code Repository
contains code from previous projects, external libraries,
open-source projects etc; in our work we used the Source-
forge [8] repository. This repository will be continually up-
dated as new classes/systems are developed. From such a
repository, we can extract information about what reusable
library methods exist and also knowledge about how these
are used. We produce an Information Retrieval Model by
mining the code repository; the actual information retrieval
model used can vary as discussed in section 3.2. This model
will need to be created once initially and subsequently when
a new piece of source code is added to the repository. We
extract information from the repository using the Bytecode
Engineering Library [1].

Finally there will be a Recommender Agent for each in-
dividual developer; this agent actively monitors the method
that the developer is coding. The agent then uses the in-

formation retrieval model to establish a set of source codes
that are most similar to the code currently being written by
the developer and following this, a set of ordered library
methods is recommended to the active developer. The rec-
ommendation set is produced based on the similar source
codes; we explain the recommendation technique in full in
the following section.

3. Recommendations

3.1 Collaborative Filtering

The goal of a Collaborative Filtering (CF) algorithm is
to suggest new items or predict the utility of a certain item
for a particular user based on the user’s previous preference
and the opinions of other like-minded users [25]. CF sys-
tems are founded on the belief that users can be clustered.
Users in a cluster share preferences and dislikes for partic-
ular items and will likely agree on future items. CF algo-
rithms are used in mainstream recommender systems like
Amazon. In our work we use CF to recommend a set of
library methods to a developer.

For clarity we describe three terms, specific to this con-
text, that are common terminology in recommender litera-
ture. An item refers to a reusable library method. We wish
to predict a developers preference for an item. A user is a
Java method in our source code repository. The active user
can be considered as the method currently being written or
indeed the actual developer of that method. Finally a vote
represents a users’ preference for a particular item. In this
context, a vote is simply an invocation count for a particular
library method.

3.1.1 Recommendation Algorithm

Breese et al. [3] identify two classes of CF algorithms,
namely Memory-Based and Model-Based. In a memory-
based approach, a prediction for the active user is based on
the opinions of like-minded users. In contrast, model-based
CF first learns a descriptive model of user preferences and
then uses it for predicting ratings. Employing a memory-
based algorithm, vote vij corresponds to the vote by user i
for item j (invocation count in this work). The mean vote
for user i is:

vi =
1
|Ii|

∑
j∈Ii

vi,j (1)

where Ii is the set of items the user i has voted on. The
predicted vote using CF for the active user a on item j, cfaj ,
is a weighted sum of the votes of the other similar users:

cfaj = va + N
∑

i∈kNN

sim (a, i) (vi,j − vi) (2)

Figure 2: Illustration of the kNN formation. Here we look
for the active methods’ k=8 most similar source codes.

where weight sim(a, i) represents the correlation or simi-
larity between the current user a and each user i. kNN is
the set of k nearest neighbours to the current user, as illus-
trated in figure 2. A neighbour is a user who has a high
similarity value sim(a, i) with the current user. The set of
neighbours is sorted in descending order of weight. For ex-
periments we used a value of k = 10. N is the normalising
factor such that the absolute values of the weights’ sum to
unity. From equation 2 we can now predict a users’ vote for
any item. In the context of this work, we can now predict a
developers’ vote for any library method assuming that there
exists at least one snippet of code in the code repository that
has used the particular library method. Library methods are
ranked based on their predicted vote and the top n methods
are recommended to the developer. In our experiments, we
use a value of n = 7.

Central to CF is the ability to determine a set of users
who are most relevant or similar to the active user for whom
the recommendation is being sought, sim(a, i). We want to
effectively discover source codes in our repository that are
most similar to the code currently being written. The In-
formation Retrieval (IR) model chosen will have a direct
impact on which users are deemed relevant and which are
not, and thus ultimately impacts the recommendation set.
Baeza-Yates and Ribeiro-Neto [2] identify three basic re-
trieval models; boolean, vector/statistical and probabilistic.

In previous works we have investigated the suitability of
vector approaches in the software component recommen-
dation domain [4]; namely we looked at the Vector Space
Model (VSM) and Latent Semantic Indexing (LSI) and
found VSM to produce the best results. Here we investigate
how effective probabilistic approaches are at ranking source
code based on similarity. This is equivalent to classification
in machine learning; however, we are attempting to classify
the top n pieces of code that are most similar to the active
method being written. Typically statistical approaches are
used for memory-based algorithms while probabilistic tech-
niques are used with model-based algorithms. In this work,
we employ a hybrid approach akin to the work of [23]. Like
the model-based technique, we construct a Bayesian net-

work though we treat each method as a unique cluster and
therefore when making a prediction, we need to consider all
methods in the code repository.

3.2 Bayesian Network Classifiers

A Naı̈ve-Bayes BN [7, 16] is a simple structure that
has the classification node as a parent of all other attribute
nodes. Naı̈ve-Bayes is based on the assumption that the at-
tributes values are independent of each other given the class
C. In the context of this work, the classification node would
represent a particular piece of code from the code reposi-
tory, whereas an attribute node represents each reusable li-
brary method that can be invoked. The conditional probabil-
ity of each attribute given the class C is learnt from training
data. Classification is then done by applying Bayes rule to
compute the probability of C given a particular instance of
attributes and then predicting the class with the highest pos-
terior probability. In this work, we wish to determine the
top kNN pieces of code that are most similar to the query
instances.

Figure 3: Naive-Bayes Network

Despite the Naı̈ve assumption of probabilistic indepen-
dence between attributes, Naı̈ve-Bayes classifiers in general
work reasonably well; indeed they have been shown to out-
perform BN [9]. This is surprising given that the attribute
assumption rarely holds in real world examples. In our do-
main we might expect that there would be a relationship be-
tween at least some of the methods in the reusable library;
we investigate if the Naı̈ve-Bayes BN can effectively clas-
sify source code whilst ignoring such relationships. Figure
3 displays an example of Naı̈ve-Bayes Network.

A general Bayesian Network (BN) [22] is a much more
powerful representation of probabilistic dependencies over
a set of random attributes; a BN can effectively model the
complex dependencies that exist in most real world prob-
lems. More formally, a BN is a directed acyclic graph with
nodes representing attributes and arcs representing depen-
dence between relations among the attributes. Probabilistic
parameters are encoded in a set of tables (Conditional Prob-
ability Tables), one for each attribute node, in the form of
logical conditional distributions of a attribute given its par-
ents. Using the independence statements encoded in the net-

Figure 4: Bayesian Network

work, the joint distribution is uniquely determined by these
logical conditional distributions. Figure 4 displays an ex-
ample of a general BN; unlike Naı̈ve-Bayes the classifica-
tion node is treated the same as the attribute nodes. As is
suggested by Cheng and Greiner [5], this lack of distinc-
tion between the classification and attributes nodes is not
always desirable in certain domains and thus we introduce
Bayesian Networks Augmented Naı̈ve-Bayes shortly.

Learning a BN based classifier is a computationally chal-
lenging problem; if the network is unrestricted then it is
a NP-hard problem. We need to find a network that best
matches the entire instances in the training data. Using a
scoring function we need to evaluate each learnt network
against the training data and determine the optimal network.

Several authors have proposed a compromise between
the computationally expensive Bayesian network model and
the over-simplified Naı̈ve-Bayes approach. The desire is to
merge the ability of BN to model attribute dependence with
the simplicity and efficiency of Naı̈ve-Bayes BN. Fried-
man et al. [9] define such structures as Augmented Naı̈ve
Bayesian Networks. Each attribute must have a class at-
tribute as a parent and each attribute may have one other
parent [15]. From figure 5, it can be seen that it is now pos-
sible to model dependency between attributes whilst main-
taining the simplicity of the Naı̈ve-Bayes BN. In general, as
stated earlier, learning an unrestricted network is a NP-Hard
problem. Friedman et al. [9] deal with this by restricting
the network to a tree topology; the result is known as a Tree
Augmented Naı̈ve-Bayes (TAN) as is specifically shown in
figure 5. There is an arc from getName() to setName()
and thus these two attributes are not independent given the
class.

Figure 5: TAN

Keogh and Pazzani [15] present a similar tree augmented
network but unlike TAN, which adds N − 1 arcs (where N
is the number of attributes), they add any number of arcs
up to N − 1. An arc is only added if it improves accuracy.
This same approach is defined by Sacha [24] as a Forest-
Augmented Network (FAN), as the augmenting arcs form
a forest of attributes (or a collection of trees); this is illus-
trated in figure 6.

Figure 6: FAN

The final BN we consider is the Bayesian Network Aug-
mented Naı̈ve-Bayes (BAN). This extends TAN by allow-
ing attributes to form an arbitrary graph, rather than just a
tree, as is shown in figure 7. This is similar to the original
general BN but in this case the classification node is treated
differently from the rest of the attribute nodes. It is hoped
that the BAN will more richly model relationships between
attributes but this will likely come at a computational cost.
A more detailed comparison of Bayesian networks can be
found in [5].

Figure 7: BAN

Excluding general BN’s and FAN’s, all the above net-
works were constructed using the popular WEKA [27] ma-
chine learning tool. We used a repeated hill climbing
searching algorithm (maximum of 5 runs) and the BDeu
scoring function. As general BN’s do not distinguish be-
tween class and attribute nodes, we decided to implement
the more efficient BAN instead; the number of parent nodes
was limited to 4. For the FAN implementation we used the
Java Bayesian Network Classifier (JBNC) toolkit [14]. All
training data was normalised and discretised to have 3 val-
ues; for example, the method setName() may be invoked
either between 0 and .33 times, between 0.34 and 0.66 times
or finally between 0.67 to 1 times.

4 Experiments

4.1 Dataset

In these preliminary experiments, we used relatively
small datasets. We produced almost 6000 recommenda-
tions from approximately 350 methods mined from Source-
forge [8]. Recommendations were produced solely at the
method level and not the class level as in previous work
[18]. Further to this, each method had on average 16 invo-
cations. Recommendations were made for both the SWING
and AWT libraries; in total there was 697 Swing and AWT
library methods that were invoked at least once in our code
repository. Although the data is small for this domain, 697
instances and 350 classes is comparatively large with ex-
periments carried out in machine learning literature. Since
we have the completed source code, we can automatically
evaluate recommendations for a piece of code by checking
whether the recommended method was called subsequently.

For each of the 350 methods, several recommendations
were made. For example, if a fully developed method had
10 Swing invocations, then we removed the 10th invoca-
tion from that method and a recommendation set was pro-
duced for the developer based on the preceding 9 invoca-
tions. Following this recommendation, the 9th invocation
was removed and a new recommendation set was formed
based on the preceding 8 invocations. This process was
continued until just 1 invocation remained. Each recom-
mendation set contained a maximum of 7 items.

4.2 Evaluation

Precision and Recall are the most popular metrics for
evaluating information retrieval systems. Precision is de-
fined as the ratio of relevant recommended items to the total
number of items recommended; P = nrs/ns, where nrs

is the number of relevant items selected and ns is the num-
ber of items selected. This represents the probability that
a selected library method is relevant. A library method is
deemed relevant if it is used by the developer for whom the
recommendation is being sought. Recall is defined as the ra-
tio of relevant items selected to the total number of relevant
items; R = nrs/nr, where nrs is the number of relevant
items selected and nr is the number of relevant items. This
represents the probability that a relevant library method will
be selected.

It is particulary important that RASCAL recommends
methods in a relevant order i.e. the invocation order. We
will evaluate this using a simple binary Next Recommended
(NR) metric; NR = 1 if we successfully predict or rec-
ommend the next method a developer will use, otherwise
NR = 0. In these investigative experiments we focused

(a) (b) (c)

Figure 8: (a) Precision (b) Recall (c) Next Found

solely on the above 3 metrics whilst ignoring computational
complexity.

4.3 Results

All results are displayed as a percentage value. A base-
line result is included; this was produced using the Vector
Space Model (VSM) as detailed in previous work [4]. From
figure 8, it is immediately identifiable that the VSM base-
line result produced the best results in general. While this
may not have been the desired outcome, there is still insight
to be gained from the results.

Precision is displayed in figure 8(a). VSM vastly out-
performs all of the Bayesian techniques; for example, the
average FAN precision is 33% which compares poorly with
45% when using VSM. Recall is shown in figure 8(b);
again VSM outperforms all other techniques. We notice
that Naı̈ve-Bayes (NB) and the Forest-Augmented Net-
work (FAN) produce similar results and that these are both
marginally better than the Tree Augmented Network (TAN)
and the BN Augmented Naı̈ve-Bayes (BAN).

The next found metric is displayed in figure 8(c). Using
NB, there is a 48% likelihood that RASCAL would be able
to correctly predict the next library method that a developer
would invoke; such a prediction would provide significant
help to a developer who was unfamiliar with a particular
library. In general, this is an encouraging result yet it is
relatively poor when compared with the VSM 64% average.

4.4 Discussion

From this exploratory research on using Bayesian net-
works to recommend library methods, we can make some
interesting observations. Firstly we discover that FAN and
NB produce similar results for all metrics. This would sug-
gest that the FAN added very few links as these did not
improve classification. We also notice the similarities be-
tween TAN and BAN; again this would suggest that the

BAN was very similar to the TAN created and that there
is no benefit to having multiple parents. In the context of
this work, this can be interpreted as there being very few
relationships between library methods and hence a Naı̈ve-
Bayes network will produce better recommendations. Fur-
ther work is needed to verify this. In addition to this, further
investigation is needed in the area of searching and scoring
techniques to ensure they are ideally suited to this domain.

Generally, we notice two different trends in precision
and recall. Precision tends to decrease as we know more
information about the active method while recall tends to
increase. This result perhaps requires clarification. Con-
sider a developer who invokes in total 10 methods. When
we make a recommendation for that developer when they
have only used 1 method, there is a set of 9 possible meth-
ods to recall. The chances of recalling all relevant methods
is quite low and hence the recall result is low in earlier rec-
ommendations. However, when this developer has used 9
methods and there is only 1 possible method to recall, then
the chances of this method being in the recommendation set
is quite high. In contrast, the more invocations the devel-
oper has made, the fewer there are to correctly recommend
and hence precision decreases in latter recommendations.

5 Related Work

Traditional retrieval schemes focused generally on tech-
niques such as Keyword Search and Signature Matching
[19]. More recently several Semantic-Based retrieval tools
have been proposed [26, 10]; these allow a developer to
specify queries using natural languages. Unlike traditional
retrieval, the domain information, developer context and
component relations are considered. Empirical results indi-
cate that these tools are superior to traditional approaches.

ComponentRank [13] is a promising component retrieval
technique which is useful for locating reusable components.
Similar to Google [21], this approach ranks components

based on analysing use relations among the components and
propagating the significance of a component through the use
relations. Preliminary results indicate that this technique is
effective in giving a high rank to stable general components
which are likely to be highly reusable and a lower rank to
non-standard specialised components. Similarly, Hummer
and Atkinson [12] have carried out a general study on using
the web as a reuse repository; they evaluate several search
engines such as Google, Yahoo and Koders. They identify
some of the advantages of web based approaches such as
scalability and efficiency but also note limitations such as
security, legal concerns and implicit classes.

The use of software agents for supporting and assisting
library browsing have been proposed by Drummond et al.
[6]. An active agent attempts to learn the component which
the developer is looking for by monitoring the developers’
normal browsing actions. Based on experimental results,
40% of the time the agent identified the developers’ search
goal before the developer reached the goal. By providing
non intrusive advice that accelerates the search, this work is
intended to complement rather than replace browsing.

A major limitation with all of the retrieval techniques
above is that the developer must initiate the search process.
However, in reality developers are not aware of all avail-
able components or methods in a library. If they believe
a reusable component for a particular task does not exist
then they are less likely to search the component reposi-
tory; none of the above schemes attempt to address this im-
portant issue. Thus to effectively and realistically support
component reuse it is tremendously important that com-
ponent retrieval be complemented with component deliv-
ery/recommendation.

Ye and Fischer [28] identify the cognitive and social
challenges faced by software developers who reuse and also
present a tool named CodeBroker which address many of
these challenges. CodeBroker infers the need for compo-
nents and pro-actively recommends components, with ex-
amples, that match the inferred needs. The need for a com-
ponent is inferred by monitoring developer activities, in par-
ticular developer comments and method signature. This
solution greatly improves on previous approaches but the
technique is not ideal. Reusable components in the reposi-
tory must be sufficiently commented to allow matching and
developers must also actively and correctly comment their
code which currently they may not do. Notably, Ye and Fis-
cher remark that browsing and searching are passive mech-
anisms because they become only useful when a developer
decides to make a reuse attempt by knowing or anticipating
the existence of certain components.

Mandelin et al. [17] present an intelligent tool for un-
derstanding and navigating the API of a particular reuse li-
brary. They suggest developers often know the objects they
would like to use but are unaware of how to write the source

code to get the object; for example a developer may wish to
create a IF ile object from a ASTNode but may not be
aware of the code needed to do this. They provide a tool
named PROSPECTOR which can automatically assist a de-
veloper to better understand the library API by providing
code snippets relevant to the current task; for example, how
to convert between different data representation or travers-
ing object schemas.

Another notable tool for finding code examples is Strath-
cona [11]. The tool is used to find source code in an exam-
ple repository by matching the code a developer is currently
writing. Similarity is based on multiple structural match-
ing heuristics, such as examining inheritance relationships,
method calls, and class instantiations. These measures are
applied to the code currently being written by the developer
and matched examples from the repository are retrieved and
recommended.

Our work is similar to a number of the techniques men-
tioned above. Like CodeBroker [28], our goal is to rec-
ommend a set of candidate software components to a de-
veloper; however, our recommendations are not based on
the developers’ comments/method signature. In contrast
we produce recommendations using CF which is similar to
the example based techniques of Holmes and Murphy [11].
Like the PROSPECTIVE tool, we are interested in increas-
ing and supporting library reuse though we are attempt-
ing to predict in advance what a developer is attempting to
code. Like Drummond et al. [6] we use an active agent
to monitor the current developer though we are concerned
with pro-actively recommending suitable reusable methods
as opposed to assisting the search process.

6 Conclusions

We have presented a solution that automatically facil-
itates knowledge sharing within a community. We have
shown that just as people can be clustered in terms of their
preferences for various items, Java source code may also
be clustered based on the library methods invoked. We
note the importance of correctly identify the optimal tech-
nique for clustering source code; we investigated a number
of Bayesian techniques and compared these with our VSM
statistical baseline result.

In this work, we discovered conclusively that Bayesian
Networks are less useful at clustering source codes than
VSM and ultimately have a negative effect of recommen-
dation performance. Further and larger experimentation
is needed to generalise this finding though; in particular
we need to evaluate more search and scoring techniques.
Bayesian techniques do still offer promising opportunities
for us; for example, modeling relationships between library
methods, classification or clustering of library methods as
opposed to classifying entire source codes as is presently

done and finally applying the discussed Bayesian tech-
niques to pure model-based CF.

Our recommendation scheme addresses various short-
comings of previous solutions to the library retrieval prob-
lem; RASCAL considers the developer context and prob-
lem domain but uniquely does not place any additional re-
quirements on existing library components or developers.
Unlike many typical reuse tools, RASCAL is proactive and
constantly suggests library methods to reuse.

Recommender systems are a powerful technology that
can cheaply extract knowledge for a software company
from its code repositories and then share this knowledge to
the benefit of future developments. We have demonstrated
that RASCAL offers real promise for allowing developers
discover and easily access reusable library components but
that care needs to be taken when choosing the clustering
technique.

7 Acknowledgements

Funding for this research was provided by the Irish Re-
search Council for Science, Engineering and Technology
(IRCSET) under grant RCS/2003/127.

References

[1] Apache. Bytecode engineering library (2002-2003). http:
//jakarta.apache.org/bcel. 2003.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press / Addison-Wesley, 1999.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical anal-
ysis of predictive algorithms for collaborative filtering. In
Proceedings of the Fourteenth Annual Conference on Un-
certainty in Artificial Intelligence, pages 43–52, 1998.

[4] F. M. Carey, M. O. Cinnéide, and N. Kushmerick. Recom-
mending library methods: An evaluation of the vector space
model (vsm) and latent semantic indexing (lsi). In 9th Inter-
national Conference on Software Reuse, Italy, 2006.

[5] J. Cheng and R. Greiner. Comparing bayesian network clas-
sifiers. In Proceedings of UAI, pages 101–108.

[6] C. G. Drummond, D. Ionescu, and R. C. Holte. A learning
agent that assists the browsing of software libraries. IEEE
Trans. Softw. Eng., 26(12):1179–1196, 2000.

[7] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. John Wiley and Sons, New York, 1973.

[8] J. Ebert. Storm - a user story tool. http://xpstorm.
sourceforge.net. 2002.

[9] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian net-
work classifiers. Machine Learning, 29(2-3):131–163, 1997.

[10] M. Girardi and B. Ibrahim. Using english to retrieve soft-
ware. Journals of Systems and Software, 30(3):249, 1995.

[11] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engi-
neering, pages 117–125, New York, NY, USA, 2005. ACM
Press.

[12] O. Hummel and C. Atkinson. Using the web as a reuse
repository. In Proceedings of the 9th International Confer-
ence on Software Reuse, pages 298–311. Springer, 2006.

[13] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. Component rank: relative signif-
icance rank for software component search. In Proceedings
of the 25th International Conference on Software Engineer-
ing, pages 14–24. IEEE Computer Society, 2003.

[14] J.P.Sacha. Java bayesian network classifier (jbnc) toolkit.
http://jbnc.sourceforge.net. 2004.

[15] E. Keogh and M. Pazzani. Learning augmented bayesian
classifiers: A comparison of distribution-based and
classification-based approaches, 1999.

[16] P. Langley, W. Iba, and K. Thompson. An analysis of
bayesian classifiers. In National Conference on Artificial
Intelligence, pages 223–228, 1992.

[17] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the API jungle. SIGPLAN No-
tices, 40(6):48–61, 2005.

[18] F. McCarey, M. O. Cinnéide, and N. Kushmerick. Knowl-
edge reuse for software reuse. In Proceedings of the
17th International Conference on Software Engineering and
Knowledge Engineering, July 2005.

[19] A. Mili, R. Mili, and R. T. Mittermeir. A survey of software
reuse libraries. Annals of Software Engineering, 5:349–414,
1998.

[20] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz.
An empirical study of software reuse vs. defect-density and
stability. In ICSE ’04: Proceedings of the 26th Interna-
tional Conference on Software Engineering, pages 282–292,
Washington, DC, USA. IEEE Computer Society.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project, 1998.

[22] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1988.

[23] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles.
Collaborative filtering by personality diagnosis: A hybrid
memory and model-based approach. In UAI ’00: Proceed-
ings of the 16th Conference on Uncertainty in Artificial In-
telligence, pages 473–480, CA, USA, 2000.

[24] J. Sacha. New synthesis of Bayesian network classifiers and
interpretation of cardiac SPECT images. Ph.d. dissertation,
University of Toledo, 1999.

[25] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-
based collaborative filtering recommendation algorithms. In
World Wide Web, pages 285–295, 2001.

[26] V. Sugumaran and V. C. Storey. A semantic-based ap-
proach to component retrieval. SIGMIS Database, 34(3):8–
24, 2003.

[27] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. 2nd Edition, Morgan Kauf-
mann, 2005.

[28] Y. Ye and G. Fischer. Reuse-conducive development en-
vironments. International Journal of Automated Software
Engineering, 12:199–235, 2005.

[29] K. Yongbeom and E. Stohr. Software reuse: Survey and
research directions. Management Information Systems,
14(4):113–147, Spring 1998.

