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Abstract. The high cost of software maintenance could potentially be reduced by
automatically improving the design of object-oriented programs without altering
their behaviour. We have constructed a software tool capable of refactoring object-
oriented programs to conform more closely to design quality models based on a set
of metrics, by formulating the task as a search problem in the space of alternative
designs. However, no consensus exists on a single quality model for object-oriented
design, since the definition of ‘quality’ can depend on the purpose, pedigree and
perception of the maintenance programmer. We therefore demonstrate here the flex-
ibility of our approach by automatically refactoring several Java programs to con-
form with quality models based on the metric values of example programs. Results
show that an object-oriented program can be automatically refactored to reduce its
dissimilarity in terms of a set of design metrics to another program having some
desirable trait, such as ease of maintenance.
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1. Introduction

One measure of the quality of an object-oriented design is the level of difficulty en-
countered in carrying out maintenance programming. This is because the object-oriented
approach is geared towards producing designs which are understandable, flexible, and
modular. However, it is not uncommon to encounter designs that have become weakened
as a side-effect of the repeated addition of functionality during development (a problem
referred to as design erosion or software decay [16]), or have not been properly main-
tained in the past. Such designs can require significant refactoring in order to increase
their maintainability to an acceptable level, thus increasing the cost of carrying out main-
tenance tasks.

The ideal solution to this problem would be the automation of some portion of the
refactoring step by the application of an automated design improvement tool. Such a tool
would take the current set of classes as input and output a set with the same external
behaviour, but having a design that is more easily comprehended, adapted or extended.
In this context, the application of refactorings can be considered movement in the space
of alternative designs.
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Our novel approach to automated design improvement is the formulation of the
refactoring task as a search problem; given a design quality model we apply automated
refactorings to a program in order to move through the space of alternative designs and
search for those of highest quality. However, no consensus exists on a single model of
object-oriented design quality, and none is likely to develop since the perceived quality
of a design is highly subjective. In other words, that which makes a design understand-
able may depend on the skills of the programmer, that which makes a design flexible
may depend on his/her purpose, and that which makes a design reusable may depend on
the nature of the proposed reuse.

Previous search-based refactoring work by the authors has shown that object-
oriented programs can be automatically refactored in order to conform more closely to a
given quality model [27]. However, because the priorities of the maintenance program-
mer can change from day to day and best programming practice can vary between do-
mains, it is unlikely that a single quality model can be defined that will maximise the
effectiveness of search-based refactoring across the board. The programmer wishing to
take advantage of search-based refactoring is therefore left with the problem of devel-
oping a suitable quality model. This paper shows how that complex process can be cir-
cumvented by basing a quality model on the characteristics of some other program in
the problem domain that is known to exhibit the desired property. Therefore, if any one
program is found to have a desirable trait such as high maintainability or reusability other
programs can be quickly refactored to more closely resemble the example, using our
approach.

2. Related Work

2.1. Search-Based Software Engineering

Search-Based Software Engineering (SBSE) can be defined as the application of search-
based approaches in solving optimisation problems in software engineering [17]. Such
problems include module clustering, where a software system is reorganised into loosely
coupled clusters of highly cohesive modules to aid reengineering [14,18,20,23], test data
generation [21], automated testing [31] and project management problems such as re-
quirements scheduling [1] and project cost estimation [9,13]. An overview of such work
and comprehensive recent references can be found in [12] and [17] respectively. Of par-
ticular relevance to this work is [17], in which Harman proposes ‘Metrics as Fitness
Functions’ (MAFF). Harman states that a metric can be used as the evaluation function
driving a search-based software optimisation; our approach involves using a combination
of a set of metric values to guide a search for optimal design.

2.2. Automated Design Improvement

Previous approaches to the fully automated restructuring of software have focussed on
improving one particular aspect of design, such as method reuse or code factorisation.
However, since object-oriented design involves numerous trade-offs, this narrow focus
could result in overall quality loss. Examples of such work include that of Casais [10],
who proposed algorithms to restructure class hierarchies in order to maximise abstrac-



tion, and Moore [24], who proposed a system where existing classes are discarded and
replaced with a new set where methods are optimally factored – meaning code duplica-
tion is minimised.

Our approach has two main advantages over previous fully automated refactoring
work. Firstly, and most significantly, the use of evaluation functions consisting of combi-
nations of various metric values allows us to employ much richer quality models than the
single-goal approaches mentioned above, which do not take into account the numerous
trade-offs involved in object-oriented design. Secondly, by careful choice and precise
definition of the refactorings employed we can make design-quality affecting changes
to an object-oriented program without loss of domain-specific information such as class
and member names; a particular disadvantage of [24].

In addition to previous fully-automated approaches to design improvement, semi-
automated approaches that require user interaction have been reported. Such semi-
automated approaches mainly involve the use of metric-based rules to identify areas in
need of improvement, the onus then being on the programmer to make the necessary
changes. Such ‘bad smell’ detection has been proposed by Van Emden [15], and by
Tahvildari [30], whose system also recommends ‘meta-pattern transformations’ that can
be applied to ameliorate the defect. Another aspect of semi-automated design improve-
ment is simply the automation of application of refactorings, with the particular refactor-
ings performed determined entirely by the user [28]. The drawback of all semi-automated
tools is, of course, that they reduce the level of programmer intervention required some-
what less than fully-automated tools have the potential to do.

Seng et. al. [29] describe a similar approach to ours [25,26,27] but use a genetic
algorithm rather than local search or simulated annealing to solve the combinatorial op-
timisation problem. The evaluation function employed is novel rather than previously
validated, but is based on well-known metrics such as Response For a Class (RFC) and
Weighted Methods per Class (WMC) from Chidamber & Kemerer’s MOOSE suite [11],
among others. The authors report success in automatically repositioning displaced meth-
ods in the class structure, not limited to movement within inheritance hierarchies. How-
ever, only the Move Method refactoring is considered so the extent of change within the
class structure is limited.

3. Experimental Methodology

3.1. CODe-Imp

We have constructed a prototype automated design-improvement tool called CODe-Imp2

in order to facilitate experimentation with search-based software maintenance. CODe-
Imp takes Java 1.4 source code as input and extracts design metric information via a
Java Program Model (JPM), calculates quality values according to an evaluation function
and applies refactorings to the Abstract Syntax Tree (AST), as required by the search
technique employed. Output consists of the refactored input code as well as a design
improvement report including quality change and metric information.
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3.2. Refactorings

Many refactorings are described in the literature, in particular by Fowler [16]. The pre-
cise definition of refactorings is an area of research by itself [28]. Fowler, among oth-
ers, defines refactorings in natural language, so a degree of interpretation is required in
automating these refactorings. In addition, language-specific features such as ‘package’
visibility in Java must be taken into account.

The refactoring configuration of CODe-Imp for the experiments reported here con-
sisted of the fourteen refactorings described below. We have selected complementary
pairs of refactorings so that changes made to the input design during the course of the
search could be reversed. This is necessary for some search techniques such as simulated
annealing to move freely through the solution space, though not for the hill-climbing
approach employed here.

The CODe-Imp refactorings are, in general, based on a Fowler refactoring of the
same name. Some reverse refactorings were added, as were some obvious alternative
refactorings. Refactorings were selected according to the criteria below:

1. GRANULARITY – only refactorings operating at the level of methods/ attributes
and higher were accepted. Lower-level refactorings are generally concerned with
rectifying implementation mistakes, and do not have a large impact on the design
of a program. An example refactoring that does not meet this criterion is Intro-
duce Assertion ([16], p.267), in which an ‘assert’ statement is added at the start
of a method to ensure some necessary conditions hold.

2. REVERSIBILITY – only refactorings that could be reversed by some other ac-
ceptable refactoring were accepted. The preconditions for all accepted refactor-
ings were formulated to ensure this property. An example refactoring that cannot
be applied in a reversible fashion, and so fails to meet this criterion, is Remove
Parameter ([16], p.277).

3. AUTOMATION – the motivation for some refactorings necessitates programmer
input; for example, the refactoring Extract Method ([16], p.110) is useful be-
cause the name given to a new method replacing a complex statement tells the
programmer what the statement does. An extracted method with a meaningless
name would actually make the code harder to understand. For this reason, some
refactorings were not selected simply because it does not make sense to automate
them.

The refactorings implemented in CODe-Imp are:

1. Push Down Field – moves a field from some class to those subclasses that require
it. This refactoring is intended to simplify the design by reducing the number of
classes that have access to the field ([16], p.329).

2. Pull Up Field – moves a field from some class(es) to the immediate superclass.
This refactoring is intended to eliminate duplicate field declarations in sibling
classes ([16], p.320).

3. Push Down Method – moves a method from some class to those subclasses that
require it. This refactoring is intended to simplify the design by reducing the size
of class interfaces ([16], p.328).



4. Pull Up Method – moves a method from some class(es) to their immediate su-
perclass. This refactoring is intended to help eliminate duplicate methods among
sibling classes, and hence reduce code duplication in general ([16], p.322).

5. Extract Hierarchy – adds a new subclass to a non-leaf class C in an inheri-
tance hierarchy. A subset of the subclasses of C will inherit from the new class.
This refactoring is intended to help improve class cohesion and modularity by
increasing abstraction in the class hierarchy.

6. Collapse Hierarchy – removes a non-leaf class from an inheritance hierarchy.
This refactoring is intended to reduce design complexity by removing superfluous
classes from the design.

7. Increase Field Security – increases the security of a field from public to pro-
tected, from protected to package or from package to private. This refactoring
increases data encapsulation.

8. Decrease Field Security – decreases the security of a field from private to pack-
age, from package to protected or from protected to public. This refactoring re-
duces data encapsulation.

9. Replace Inheritance with Delegation – replaces an inheritance relationship be-
tween two classes with a delegation relationship; the former subclass will have a
field of the type of the former superclass. This refactoring is used to rectify a sit-
uation where a subclass does not use enough of a superclass’s features to justify
the specialisation relationship ([16], p.352).

10. Replace Delegation with Inheritance – replaces a delegation relationship be-
tween two classes with an inheritance relationship; the delegating class becomes
a subclass of the former delegate class. This refactoring can be used in a situa-
tion where a delegating class is using enough features of a delegate class that a
specialisation relationship would be more appropriate ([16], p.355).

11. Increase Method Security – increases the security of a method from public to
protected, from protected to package or from package to private. This refactoring
can reduce the size of the public interface of a class ([16], p.303).

12. Decrease Method Security – decreases the security of a method from private to
package, from package to protected or from protected to public. This refactoring
can increase the size of the public interface of a class.

13. Make Superclass Abstract – declares a constructorless class explicitly abstract.
This increases some measures of abstraction, and can facilitate other refactorings.

14. Make Superclass Concrete – removes the explicit ‘abstract’ declaration of an
abstract class without abstract methods. This decreases some measures of ab-
straction.

We have deliberately chosen refactorings that operate at the method/field level of
granularity and higher because our focus is on the automatic improvement of the design
encapsulated in a program rather than implementation issues such as correct factorisation
of methods.

One of the functions of CODe-Imp’s Java Program Model (JPM) is to determine
where refactorings can legally be applied – in other words, where the corresponding code
alterations can be made without altering program behaviour. In order to achieve this we
have employed a system of static precondition checking, the details of which are beyond
the scope of this paper.



3.3. Dissimilarity Function

Several metric suites were considered, as described below, but QMOOD was selected in
order that the results of this work could be readily compared with the results of previous
search-based refactoring approaches [27].

3.3.1. CK

The Metrics Suite for Object-Oriented Design (known as CK) of Chidamber and Ke-
merer [11] is a seminal work in object-oriented quality measurement and is still fre-
quently cited today. Metrics are defined for properties such as complexity, inheritance,
coupling, cohesion and messaging. The CK metrics and subsequent modifications by
Li et al. [32] have been independently validated as indicators of such characteristics as
fault-proneness [3], but no attempt has been made to combine them in the form of an
evaluation function. Several interpretations exist of some CK metrics, such as Lack of
Cohesion of Methods (LCOM).

3.3.2. MOOD2

The MOOD (Metrics for Object-Oriented Design) metrics suite [7] was introduced by
Fernando Brito e Abreu et al. in 1994 and was subsequently evaluated by the author [6]
and others [19]. Because some deficiencies were identified, namely the lack of measures
of reuse, polymorphism and external coupling, the MOOD suite was superseded by the
MOOD2 metrics suite in 1998 [4]. The MOOD2 metrics are also defined in an English–
language paper [5] through extended OCL and the GOODLY design language [8].

The MOOD2 suite is a comprehensive, modern metrics suite including several mea-
sures each of coupling, reuse, polymorphism, data-hiding and inheritance. MOOD2 met-
rics are formally defined, and hence can be directly implemented without resolution of
ambiguity. However, nowhere in the literature are evaluation functions defined that com-
bine MOOD2 metric values to give an overall quality index. As a result MOOD2 does
not provide a complete quality model suitable for use in search-based refactoring.

3.3.3. QMOOD

The QMOOD (Quality Model for Object-Oriented Design) model of Bansiya [2] was
introduced in 2002 and consists of a hierarchy of four levels. The levels in descending
order are: Design Quality Attributes such as ‘understandability’, Object-Oriented De-
sign Properties such as ‘encapsulation’, Object-Oriented Design Metrics, and Object-
Oriented Design Components such as ‘class’.

For the purpose of search-based refactoring, the QMOOD model has the advantage
that it defines functions from metric values to Quality Attribute Indices (QAIs) for such
design attributes as flexibility, reusability and understandability. This provides an ex-
cellent foundation for experimentation in automatically refactoring a design to conform
to this quality model. However, while QMOOD provides a detailed model of object-
oriented design quality, it is lacking in the area of effective metric definition. Metrics in
QMOOD literature [2] are defined in natural language, and are in some cases ambiguous.
In order to implement the QMOOD metrics for replicable studies it is necessary to define
them more precisely. The QMOOD metrics are as follows:



1. Design Size in Classes (DSC)– “A count of the total number of classes in the
design.”[2] Interpreted as excluding imported library classes. Corresponds to the
object-oriented design property of ‘design size’ in QMOOD.

2. Number Of Hierarchies (NOH)– “A count of the number of class hierarchies in
the design.”[2] Interpreted as excluding hierarchies that consist of a specialised
class within the design and a generalised class outside. Corresponds to the object-
oriented design property of ‘Hierarchies’ in QMOOD.

3. Average Number of Ancestors (ANA)– “The average number of classes from
which each class inherits information.”[2] Corresponds to the object-oriented de-
sign property of ‘Abstraction’ in QMOOD.

4. Number of Polymorphic Methods (NOP)– “A count of the number of the meth-
ods that can exhibit polymorphic behaviour.”[2] Interpreted as the sum over all
classes, where a method can exhibit polymorphic behaviour if it is overridden
by one or more descendent classes. Corresponds to the object-oriented design
property of ‘Polymorphism’ in QMOOD.

5. Class Interface Size (CIS)– “A count of the number of public methods in a
class.”[2] Interpreted as the average over all classes in a design. Corresponds to
the object-oriented design property of ‘Messaging’ in QMOOD.

6. Number Of Methods (NOM)– “A count of all the methods defined in a class.”[2]
Interpreted as the sum over all classes in a design. Corresponds to the object-
oriented design property of ‘Complexity’ in QMOOD.

7. Data Access Metric (DAM)– “The ratio of the number of private (protected)
attributes to the total number of attributes declared in the class.”[2] Interpreted
as the average over all design classes with at least one attribute, of the ratio of
non-public to total attributes in a class. Corresponds to the object-oriented design
property of ‘Encapsulation’ in QMOOD.

8. Direct Class Coupling (DCC)– “A count of the number of different classes that
a class is directly related to. The metric includes classes that are directly related
by attribute declarations and message passing (parameters) in methods.”[2] In-
terpreted as an average over all classes when applied to a design as a whole;
a count of the number of distinct user-defined classes a class is coupled to by
method parameter or attribute type. We exclude imported library classes from the
computation. Corresponds to the object-oriented design property of ‘Coupling’
in QMOOD.

9. Cohesion Among Methods of Class (CAM)– “The relatedness among methods
of a class, computed using the summation of the intersection of parameters of a
method with the maximum independent set of all parameter types in the class.”[2]
Interpreted as an average over all classes having at least one method. We have
excluded constructors and implicit ‘this’ parameters from the computation. Cor-



responds to the object-oriented design property of ‘Cohesion’ in QMOOD.

10. Measure Of Aggregation (MOA)– “A count of the number of data declarations
whose types are user-defined classes.”[2] Interpreted as the sum of values for all
design classes. We define ‘user defined classes’ as classes defined in the source
code of the input program. Corresponds to the object-oriented design property of
‘Composition’ in QMOOD.

11. Measure of Functional Abstraction (MFA)– “The ratio of the number of meth-
ods inherited by a class to the number of methods accessible by member methods
of the class.”[2] Interpreted as the average over all classes in a design (with at
least one method available) of the ratio of the number of methods inherited by
a class to the total number of methods available to that class, i.e. inherited and
defined methods. Corresponds to the object-oriented design property of ‘Inheri-
tance’ in QMOOD.

The dissimilarity function itself gives the sum of absolute differences between the
quotients for subject program metric over example program metric and the identity value
of one. More precisely: the dissimilarity value d (PsPe) for a subject program Ps and
an example program Pe, where the metric value for metric m on program P is given by
m (P ), is defined as

d (PsPe) =
11∑

n=1

∣∣∣∣
mn (Ps)
mn (Pe)

− 1
∣∣∣∣

and is minimised by combinatorial optimisation in a refactored program Ps
′.

3.4. Search Technique

Previous work has shown that a steepest-ascent hill-climbing search is sufficient to pro-
duce consistently good results in automated refactoring, though simulated annealing is
more effective in some cases [27]. Hill climbing has also been found to be surprisingly
effective in solving similar combinatorial optimisation problems such as module clus-
tering [18,22]. For clarity, we have employed steepest ascent hill-climbing alone in this
study.

Steepest ascent hill-climbing (HCS) is a local search algorithm where the search
examines all neighbouring solutions and moves to the neighbour of highest quality. This
is repeated until no neighbour of higher quality can be found, at which point the search
terminates. A neighbour of a solution S is defined as a solution that can be generated by
one application of one refactoring to S.

3.5. Input

Input consisted of two open-source Java 1.4 programs of a maximum size of one hundred
classes randomly selected from SourceForge3 via java-source.net, and a self-contained

3http://sourceforge.net/



subset of the Spec-Benchmarks4 standard performance evaluation framework, to which
it was known a large number of refactorings could be applied. The programs selected
were:

1. Input A: Beaver, a parser generator

• 93 classes
• 4999 SLOC
• 9 inheritance hierarchies
• 177 refactorings could initially be applied

2. Input B: SpecCheck, a benchmarking program

• 41 classes
• 4836 SLOC
• 5 inheritance hierarchies
• 351 refactorings could initially be applied

3. Input C: Mango, a collections library

• 51 classes
• 1131 SLOC
• 0 inheritance hierarchies
• 28 refactorings could initially be applied

4. Results

4.1. Overview

The aim of the study described here was to demonstrate that Java programs can be au-
tomatically refactored to conform more closely to a quality model extracted from an ex-
ample program and defined in terms of a set of object-oriented metrics. No assumptions
were made as to the quality (or otherwise) of the input programs, nor was the range of
dissimilarity values controlled by selection of input programs, which was random. Each
of the three input programs was automatically refactored with CODe-Imp, using metric
values of the other two programs as alternative quality models.

Experiments were carried out on a 2.2GHz AMD Athlon powered PC with 1GB
CL2 RAM. Mean processing time per solution examined was approximately one sec-
ond, including model building, metric extraction, quality assessment, discovery of legal
refactorings, and actual (AST) refactoring. Total run-time varied between less than one
minute and 66 minutes, depending on the number of refactorings possible for the input
program and the number of refactorings applied. CODe-Imp was designed with robust-
ness rather than speed as a priority and makes no use of concurrent processes, so there is
potential to greatly decrease these run-times.

Tables 1– 3 show the total difference function values as defined in section 3.3 for
input program and refactored input program, as well as individual metric components
given by

4http://www.spec.org/



DSC NOH ANA DAM DCC CAM MOA MFA NOP CIS NOM d (PsPe)

input Beaver, example Spec-Check

Beaver 0.268 0.5 1.343 0.296 2.256 0.67 1.952 1 0.401 0.355 0.465 8.903

Beaver’ 0.268 0 0.952 0.156 2.417 0.059 2.061 0 0.066 0.334 0.422 6.736

change 0 -0.5 -0.390 -0.140 0.161 -0.009 0.109 -1 -0.335 -0.021 -0.043 -2.167

input Beaver, example Mango

Beaver 0.25 1 1 0.332 1.455 0.248 2.273 1 1 0.266 0.022 8.846

Beaver’ 0.25 1 1 0.193 1.455 0.216 2.273 0 1 0.258 0.022 7.667

change 0 0 0 -0.138 0 -0.0323 0 -1 0 -0.008 0 -1.178

Dissimilarity values for input program Beaver and refactored program Beaver’. Note that dissimilarity quo-
tients rather than actual metric values are shown, so the identity value 1 indicates a perfect match between
subject program and example program for that metric. Negative values in the ‘change’ rows indicate metrics
that have been brought closer to the desired value.

Table 1. Results for input program Beaver

DSC NOH ANA DAM DCC CAM MOA MFA NOP CIS NOM d (PsPe)

input Spec-Check, example Beaver

Spec-Check 0.367 0.333 0.573 0.421 0.693 0.063 0.661 1 0.286 0.550 0.869 5.816

Spec-Check’ 0.467 0.333 0.091 0.000 0.714 0.063 0.684 0.237 0.380 0.400 0.869 4.238

change 0.1 0 -0.482 -0.421 0.021 0 0.023 -0.763 0.094 -0.150 0 -1.578

input Spec-Check, example Mango

Spec-Check 0.025 1 1 0.050 0.246 0.296 0.109 0 1 0.137 0.827 4.690

Spec-Check’ 0.125 1 1 0.000 0.313 0.295 0.010 0 1 0.005 0.827 4.575

change 0.1 0 0 -0.050 0.067 -0.001 -0.099 0 0 -0.133 0 -0.115

Dissimilarity values for input program Spec-Check and refactored program Spec-Check’. Note that dis-
similarity quotients rather than actual metric values are shown, so the identity value 1 indicates a perfect
match between subject program and example program for that metric. Negative values in the ‘change’ rows
indicate metrics that have been brought closer to the desired value.

Table 2. Results for input program Spec-Check

dmn (PsPe) =
∣∣∣∣
mn (Ps)
mn (Pe)

− 1
∣∣∣∣

where dmn (PsPe) is the individual metric difference value of metric mn for a subject
program Ps and an example program Pe. Negative values in the ‘change’ rows indicate a
metric that has been brought closer to the desired value, positive values indicate a metric
that has been taken further from the desired value, and zero indicates no metric change.



DSC NOH ANA DAM DCC CAM MOA MFA NOP CIS NOM d (PsPe)

input Mango, example Spec-Check

Mango 0.0244 1 1 0.052 0.326 0.419 0.098 0 1 0.120 0.452 4.495

Mango’ 0.0244 1 1 0.052 0.326 0.419 0.098 0 1 0.120 0.452 4.495

change 0 0 0 0 0 0 0 0 0 0 0 0.000

input Mango, example Beaver

Mango 0.333 1 1 0.495 0.592 0.330 0.694 1 1 0.362 0.022 6.833

Mango’ 0.333 1 1 0.495 0.592 0.330 0.694 1 1 0.362 0.022 6.833

change 0 0 0 0 0 0 0 0 0 0 0 0.000

Dissimilarity values for input program Mango and refactored program Mango’. Note that dissimilarity quo-
tients rather than actual metric values are shown, so the identity value 1 indicates a perfect match between
subject program and example program for that metric. Negative values in the ‘change’ rows indicate metrics
that have been brought closer to the desired value.

Table 3. Results for input program Mango

4.2. Beaver

Results for the input program Beaver, a parser generator of 93 classes, are shown in ta-
ble 1. The dissimilarity value for this program, taking Spec-Check as example program,
decreased by 24.3%, from 8.903 to 6.736. Eight metrics were brought closer to the ex-
ample program values, while two moved farther away. These metric changes were ef-
fected by one Pull Up Field, two Push Down Method, seven Increase Field Security, one
Decrease Method Security and two Replace Inheritance with Delegation refactorings, so
very significant changes were made to the class structure.

Taking Mango as example program, the dissimilarity value for Beaver decreased by
13.3%, from 8.903 to 7.667. Four metrics were brought closer to the example program
values, with none moved farther away. These metric changes were effected by two Pull
Up Field, one Push Down Method, six Increase Field Security and one Decrease Method
Security refactorings, so significant changes were made to the class structure.

4.3. Spec-Check

Results for the input program Spec-Check, a benchmarking program of 41 classes, are
shown in table 2. The dissimilarity value for this program, taking Beaver as example pro-
gram, decreased by 27.1%, from 5.816 to 4.238. Surprisingly, given the large decrease
in dissimilarity value, the same number of metrics were brought closer and moved away
from the example program values (4). However, the magnitude of absolute metric quo-
tient change was much greater in the negative/closer changes, with metrics such as ANA
and DAM changing from approximately half the desired value to within 1%. These met-
ric changes were effected by one Pull Up Field, three Extract Hierarchy, eleven Decrease
Field Security and six Increase Method Security refactorings, so very significant changes
were made to the class structure.

Taking Mango as example program, the dissimilarity value decreased by only
2.45%, from 4.690 to 4.575, although the input/example dissimilarity value was close to



the lowest observed, in this case. Nevertheless, four metrics were brought closer to the
example program values while two were taken farther away. These metric changes were
effected by one Pull Up Method, four Extract Hierarchy, four Increase Field Security,
one Decrease Field Security and six Increase Method Security refactorings, so despite
the small change in dissimilarity value very significant changes were made to the class
structure.

4.4. Mango

Results for the input program Mango, a collections library of 51 classes, are shown in
table 3. No decrease in dissimilarity value between the input and refactored program
was observed for this input, with either example program. However, only 28 refactorings
were possible for this program, compared to 190 for Beaver and 351 for Spec-Check.
This lack of instances where the preconditions for potential refactoring were met in the
Mango program is the most likely explanation for the failure of CODe-Imp to reduce
the dissimilarity value. Inspection of the Mango program revealed that its designers had
made no use of the inheritance mechanism. Since most of CODe-Imp’s refactorings op-
erate on inheritance hierarchies, this explains the small number of possible refactorings
for this program.

4.5. Summary

Of three input programs automatically refactored by CODe-Imp, one was made signifi-
cantly more similar in terms of the metrics suite employed to two example programs, one
was made significantly more similar to one example program and slightly more similar
to the other, and one was not made any more similar to either example program. Un-
surprisingly, the greatest reductions in dissimilarity value were observed where a large
number of refactorings were possible for the input program, and there was a relatively
high dissimilarity value between input program and example program.

5. Conclusions & Future Work

In this study we have demonstrated that Java programs can be automatically refactored to
reduce their dissimilarity to other programs in terms of a set of object-oriented metrics,
provided the subject program in question makes use of object-oriented features such as
inheritance that make refactoring possible. This work has the potential to contribute to
the development of domain-specific object-oriented quality models, which will be of use
in both traditional and search-based software maintenance.

Future work will include repeating these experiments with larger input programs,
alternative search techniques and other metric suites. The limitations of this work centre
around the fact that similarity between programs as measured by a metrics suite may
not match with the human perception of similarity, particularly in the case of ontological
artifacts such as design patterns. We plan to further explore this relationship in the future
by supplementing the metrics suite with pattern-detection routines, in order to extract
richer quality models from example programs.
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Algorithm 1 Steepest Ascent Hill-Climbing
1: currentNode = startNode;
2: madeAscent = TRUE;
3: while madeAscent do
4: madeAscent = FALSE;
5: L = NEIGHBOURS(currentNode);
6: bestNeighbour = null;
7: bestNeighbourEval = -INFINITY;
8: for all x in L do
9: if (EVAL(x) > bestNeighbourEval then

10: bestNeighbour = x;
11: bestNeighbourEval = EVAL(bestNeighbour);
12: end if
13: end for
14: if bestNeighbourEval > EVAL(currentNode) then
15: currentNode = bestNeighbour;
16: madeAscent = TRUE;
17: end if
18: end while
19: return currentNode;


