
Recommending Library Methods: An Evaluation
of the Vector Space Model (VSM) and Latent

Semantic Indexing (LSI)⋆

Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick

School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland

{frank.mccarey, mel.ocinneide, nick}@ucd.ie

Abstract. The development and maintenance of a reuse repository
requires significant investment, planning and managerial support. To
minimise risk and ensure a healthy return on investment, reusable com-
ponents should be accessible, reliable and of a high quality. In this paper
we concentrate on accessability; we describe a technique which enables
a developer to effectively and conveniently make use of large scale li-
braries. Unlike most previous solutions to component retrieval, our tool,
RASCAL, is a proactive component recommender.

RASCAL recommends a set of task-relevant reusable components to a
developer. Recommendations are produced using Collaborative Filtering
(CF). We compare and contrast CF effectiveness when using two in-
formation retrieval techniques, namely Vector Space Model (VSM) and
Latent Semantic Indexing (LSI). We validate our technique on real world
examples and find overall results are encouraging; notably, RASCAL can
produce reasonably good recommendations when they are most valuable
i.e., at an early stage in code development.

1 Introduction

Successful software reuse has been to shown to improve software quality and
developer productivity whilst reducing defect density [1] and time-to-market
[2]. Despite this, reuse has not been adopted widely. Ye et al. [3] identifies the
significant cost and commitments required from an organisation to institute a
reuse program. To maximise reuse, minimise risk and ensure a healthy return
on investment, reusable components should be accessible, reliable and of a high
quality. In this paper we concentrate on effective tool support to increase the
accessibility and use of reusable libraries.

Poulin [4] suggests that the best libraries contain around 30, but in rare cases
up to 250, components. In reality however, it is possible that a library could
contain many thousand components; for example the Java 1.4 API library has
2,723 classes. To avail of all the reusable components in such a large library,
⋆ Funding provided by the IRCSET under grant RS/2003/127.

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 217–230, 2006.
c⃝ Springer-Verlag Berlin Heidelberg 2006

218 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

it is essential that adequate tool support be provided. Indeed it has been the
inadequacy of conventional tools that has long hampered reuse. Frequently, the
time taken to locate a component in a particular repository and the subsequent
integration of that component with existing code will be perceived as too costly
and outweighing any potential reuse benefits.

The importance of reuse support tools is reflected in the shift from initial
software reuse research which focused on techniques to develop reusable compo-
nents and component libraries to a focus on supporting reuse through intelligent
storage and retrieval strategies, for example [5]. Each solution attempts to assist
developers in discovering or locating components in which they are interested.
These approaches share a common shortcoming though; the developer must ini-
tiate the retrieval process. Pragmatic issues such as time constraints, limited
conversancy with the library and lack of developer motivation will determine
the likelihood of a developer searching a library. In reality, if a developer be-
lieves a reusable component for a particular task does not exist or they do not
anticipate the need to reuse such a component, then they are less likely to query
the component repository; no retrieval schemes address this important issue.

In our work, we focus on complementing component retrieval with component
recommendation. We describe a technique that can produce recommendations
and we develop a reuse tool, named RASCAL, to investigate our approach. We
believe recommendations will assist and encourage developers in making full
use of large component libraries in an efficient manner and in turn will help to
promote software reuse. RASCAL is a proactive tool; no additional requirements
are placed on a developer and it is applicable to any existing code libraries.

Similar to many commercial recommenders, we produce a set of personalised
recommendations for an individual. However, unlike other domains where per-
haps a set of books or movies may be presented to a customer, RASCAL rec-
ommends a set of task relevant methods to a particular developer. Like most
recommendation tasks, RASCAL recommends software components that the
developer is interested in. Recommendation in our tool is complicated though
because we wish to recommend components which we believe the developer may
be unfamiliar with or unaware of. Another interesting distinction between our
recommender system and most mainstream recommenders is that we are trying
to predict, in order, the next likely items a developer will employ. Many typical
recommender systems only predict a vote for items which the user has not yet
tried. Our aim is to predict the next library method a developer should invoke;
it is quite likely that the developer will have invoked this method previously.

We compare two information retrieval approaches commonly used in text
retrieval and explain how these techniques can be adapted to our domain in
order to produce recommendations. Firstly, we employ a Collaborative Filtering
(CF) [6] algorithm using the popular Vector Space Model(VSM) [7]. We then
compare this approach with recommendations produced using CF and the more
advanced retrieval technique Latent Semantic Indexing (LSI) [7, 8, 9]. To validate
our work we produce over 32,000 recommendations for almost 1500 open-source
Java classes.

Recommending Library Methods 219

The remainder of this paper is organised as follows. In the next section we
review related works. An overview of RASCAL’s implementation is presented in
section 3. In section 4 we detail our recommendation techniques followed by a
comparative analysis of the experimental results in section 5. Finally we discuss
how RASCAL can be extended and draw general conclusions in section 6.

2 Related Work

We discuss related research in software reuse tool support and recommender
systems using information retrieval (IR), and we describe how IR techniques
can be adapted to support software reuse.

2.1 Reuse Tool Support

The development of reusable components and component libraries has been an
active research area for some time but this alone will not encourage reuse. “A
classified collection is not useful if it does not provide a search-and-retrieval
mechanism to use it” [10]. Mili et al. [11] classify traditional search and retrieval
methodologies into four categories, namely Keyword Search, Faceted Classifi-
cation, Signature Matching and Behavioral Matching. Each of these retrieval
schemes has a number of limitations that result in less than adequate retrievals.

More recently, several Semantic-Based retrieval tools have been proposed; typ-
ically while querying the repository the developer specifies component require-
ments using natural languages which are interpreted using a language ontology
as a knowledge base. Components in the repository will also have a natural lan-
guage description. Both the developer query and component descriptions are
formalised and closeness is computed. A set of candidate components can be
ranked based on their closeness value. Unlike the approaches mentioned above,
domain information, developer context and component relationships are all con-
sidered. Empirical results indicate that such schemes are superior to traditional
approaches [12, 13].

Drummond et al. [14] present the use of a learning software agent to support
the browsing of software libraries. The active agent attempts to learn the compo-
nent the developer is looking for by monitoring the developers’ normal browsing
actions. Based on experimental results, 40% of the time the agent identified the
developers’ search goal before the developer reached the goal. By providing non
intrusive advice that accelerates the search, this work is intended to complement
rather than replace browsing.

A major disadvantage with all of the retrieval techniques above is that the
developer must initiate the search process. However, in reality developers are
not aware of all available components. If they believe a reusable component for
a particular task does not exist then they are less likely to search the compo-
nent repository; none of the above schemes attempt to address this important
issue. Thus to effectively and realistically support component reuse it is tremen-
dously important that component retrieval be complemented with component
delivery/recommendation.

220 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

Ye and Fischer [3] identify the cognitive and social challenges faced by soft-
ware developers who reuse and also present a tool named CodeBroker which ad-
dress many of these challenges. CodeBroker infers the need for components and
pro-actively recommends components, with examples, that match the inferred
needs. The need for a component is inferred by monitoring developer activities,
in particular developer comments and method signature. This solution greatly
improves on previous approaches, however the technique is not ideal. Reusable
components in the repository must be sufficiently commented to allow match-
ing and developers must also actively and correctly comment their code which
currently they may not do. Active commenting is an additional strain placed on
developers which is likely to make the use of CodeBroker less appealing. Notably,
Ye and Fischer remark that browsing and searching are passive mechanisms be-
cause they become only useful when a developer decides to make a reuse attempt
by knowing or anticipating the existence of certain components.

2.2 IR and Recommenders System

Sarwar et al. [15] describe a collaborative filtering recommender system with
Latent Semantic Indexing (LSI). Collaborative filtering works by matching cus-
tomer preferences to other customers in making recommendations. LSI is a tech-
nique commonly used to infer meaning or concepts in texts. Recommendations
are produced for two datasets: a movie dataset and a e-commerce dataset. Sev-
eral limitations of CF algorithms are identified such as sparsity, scalability and
synonymy. In an attempt to address these issues, LSI is applied; recommenda-
tions using this technique can be performed much faster than pure CF. Recom-
mendations using the LSI approach performed less well than pure CF for the
e-commerce dataset but in some cases performed better than CF on the Movie
dataset.

LSI is commonly used in natural language domains though some of the prop-
erties of source code, such as comments and identifiers, make it suitable for LSI
also. Marcus et al. [16] apply LSI to recover documentation-to-source-code links.
LSI is used to extract meanings from documentation and source code, this infor-
mation is then used to identify traceability links based on similarity measures.
The results of this approach are promising; the LSI technique has performed at
least as well as the traditional Vector Space Model (VSM) however much less
preprocessing of the source and documentation is required. This work follows on
from a LSI source code clone detection tool [17].

Our work is similar to a number of the techniques mentioned above. Like
CodeBroker [3], our goal is to recommend a set of candidate software components
to a developer; however our recommendations are not based on the developers’
comments/method signature. In contrast we produce recommendations using
collaborative filtering and LSI, akin to the work of Sarwar et al. [15] and Marcus
et al. [16], however in a different context. Like Drummond et al. [14] we use
an active agent to monitor the current developer though we are concerned with
pro-actively recommending suitable reusable components as opposed to assisting
the search process.

Recommending Library Methods 221

3 RASCAL Overview

RASCAL is currently implemented as a plugin for the Eclipse IDE, as illustrated
in figure 1. As a developer is writing code, RASCAL monitors the methods cur-
rently invoked and uses this information to recommend a candidate set of meth-
ods to this developer. Recommendations are then presented to the developer in
the recommendations view at the bottom right hand corner of the IDE window.
At present, RASCAL recommends methods from the Swing and AWT libraries.
An important consideration when implementing RASCAL is that recommenda-
tions must be produced in a real time environment; we discuss the implications
of this in section 5. Below we describe the main components of RASCAL, as
shown in figure 2.

We produce personalised recommendations for each individual Developer.
When producing a recommendation, we only consider the content of the current

Fig. 1. Prototype implementation of RASCAL

Fig. 2. RASCAL Overview

222 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

active method which this developer is coding. Recommendations are produced
for and based on the current active method. For clarity in future sections, we
introduce two terms:
User. The current active method which a developer is implementing.
Item. A reusable library method, ignoring signature, which is utilised by a user.

The Code Repository contains code from previous projects, external li-
braries, open-source projects etc; in our work we used the Sourceforge [18]
repository. This repository will be continually updated as new classes/systems
are developed. From such a repository, we can extract information about what
reusable items exist and also knowledge about how these are used. The Usage
History Collector automatically mines the code repository to extract item us-
age histories for all users. This will need to be done once initially for each user
and subsequently when a new user is added to the repository. We extract this
information using the Bytecode Engineering Library [19]. Item usage histories
for all the users are then transformed into an item-user preference database, as
detailed in section 4.1, which can be used to establish similarities between two
users. Finally the Recommender Agent actively monitors the method that
the developer is coding. The agent attempts to establish a set of neighbouring
users who are similar to the active user; a set of ordered library methods is then
recommended to the active user based on the neighbouring users.

4 Recommendations

In this section, we describe two information retrieval techniques; namely Vec-
tor Space Model and Latent Semantic Indexing. We explain how either of the
retrieval techniques can be used by a Collaborative Filtering (CF) algorithm
to produce recommendations. CF using the vector space model is commonly
referred to as ‘pure’ CF; we will use this terminology in latter sections.

4.1 Information Retrieval

Vector Space Model. In text retrieval, the Vector Space Model (VSM) [7]
is one of the most commonly used methods for representing a document as a
vector of terms. A collection of documents is represented as a term-by-document
matrix where the [i, j]th element indicates the association between the ith term
and jth document. This association reflects the ith term occurrence in document
j. A term can represent different text units; most commonly a word. Each term
can also be individually weighted allowing that term to become more or less
important within a document or the entire document collection as a whole. We
discuss weighting schemes below. The similarity between any two documents
can be computed by determining the cosine of the angle formed by their vectors.
This cosine will fall in the range [-1, 1]. A cosine of 1 indicates two documents
are identical whereas -1 denotes no similarities.

In the context of our work, a document is representative of a user and a term
represents an item. Table 1 displays an example item-user matrix derived using

Recommending Library Methods 223

Table 1. Non weighted Item-User matrix created using VSM

Item User User User User User
U1 U2 U3 U4 U5

JButton:getText 1 1 0 0 1
JButton:setText 2 1 0 0 0
JButton:setEnabled1 0 1 0 1
JPanel:setLayout 0 0 3 4 0
JPanel:grabFocus 0 0 1 2 0

VSM. Given such a matrix, we can query this to find the set of users similar to
user x. Firstly we need to create a query vector representative of user x. If a
weighted scheme has been applied to the VSM matrix then each non-zero element
in the query vector should be a weighted frequency. We can now calculate the
similarity between user x and any other user by determining the cosine of the
angle formed by their vectors.

Latent Semantic Indexing. Latent Semantic Indexing (LSI) is a vector space
model approach to conceptual information retrieval. LSI is commonly used to
overcome the synonymy and polysemy problem; it captures underlying latent se-
mantic relationships between terms and documents. LSI achieves this by dimen-
sion reduction, selecting the most important dimensions from a term occurrence
matrix, such as the matrix in table 1, using Singular Value Decomposition (SVD).
In the natural language text domain, LSI has outperformed standard lexical re-
trieval techniques [20], classified texts [22] and been shown capable of extracting
significant levels of meaning from words, sentences and documents [23].

SVD [7] is a powerful technique in matrix analysis. Once we have created
a item-user m x n matrix A, as described earlier, a rank−k approximation of
that matrix (k < min(m, n)) to A, Ak is computed using SVD, as illustrated in
figure 3. The SVD of the Matrix A is defined as the product of three matrices;
A = UΣV T , where U represents the original row entries as vectors of derived
orthogonal factor values, V represents the original column entities in the same

Fig. 3. Illustration of SVD. The shaded areas of U and V , as well as the diagonal
line of Σ, represent Ak, the reduced dimension representation of the original item-user
matrix.

224 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

way and Σ is a diagonal matrix containing scaling values such that when the
three matrices are multiplied, the original matrix is reconstructed. As illustrated
in figure 3, the first k columns of the U and V matrices and the first (largest)
k singular values of Σ are used to construct a rank−k approximation of A via
Ak = UkΣkV T

k .
Ak is the k−dimensional approximation of the original item-user matrix. By

reducing the dimensionality of this space, semantic relationships between users
are revealed and much noise is thought to be eliminated. Thus care must be taken
not to reconstruct A when choosing the dimensionality. The optimal dimension
is an open question and is usually determined experimentally; in our domain we
found 499 to be the most appropriate dimension. Like VSM, we can calculate the
similarity between any two users by determining the cosine of the angle formed
by their vectors.

Table 2. Original Item-User matrix with LSI SVD applied. The matrix has been
reduced in dimensionality from 5 to dimension 2 (A2 = U2Σ2V

T
2).

Item User User User User User
U1 U2 U3 U4 U5

JButton:getText 1.32 0.69 0.16 -0.11 0.53
JButton:setText 1.73 0.91 0.20 -0.16 0.69
JButton:setEnabled1.04 0.54 0.48 0.40 0.42
JPanel:setLayout 0.01 -0.05 2.93 4.05 0.06
JPanel:grabFocus -0.04 -0.04 1.29 1.79 0.01

In table 2 we briefly illustrate the power of the LSI SVD technique. We have
constructed a 2-dimensional approximation of the original item-user matrix in
table 1. Taking user u4 as an example, we see the original item values have
changed. Items setT ext and getT ext have now both taken on negative values
while setEnabled now has a value of 0.40. This new value for setEnabled can be
viewed as an estimate of how many times it would be used by each of an infinite
set of users who also use setLayout and grabFocus. The negative values ensure
user u4 will be less similar to users u1, u2 and u5 than may have previously been
the case.

Queries are performed on the reduced dimension user vector, Vk; a smaller
dimension can greatly increase query execution time. In the LSI model, queries
are formed into pseudo-documents that specify the location of the query in the
reduced document space [7]. Given a query vector q, identical to a VSM query
vector, the pseudo-document, q̂, can be represented by q̂ = qT UkΣ−1

k .
Thus, the pseudo-document consists of the sum of the item vectors (qT Uk)

corresponding to the terms specified in the query scaled by the inverse of the
singular values (Σ−1

k).

Weighting. Term weighting is frequently applied in natural language process-
ing; we investigate if such weighting is applicable to the source code domain.
The most simple weighting scheme is a local weight. For non zero frequencies,

Recommending Library Methods 225

this local weight is defined as tfij (frequency user i employs item j) dampened
by the log function: local weight = 1 + log(tfij). In text documents, this reflects
the fact that a term which appears in a document x times more than another
term is not x times more important.

We extend this simple local weighting scheme to log-entropy weighting as
recommended by [20]. Log entropy is local weighting times global weighting.
Global weighting is defined as 1−entropy. The log-entropy item weight for item
j by user i is:

log(1 + tfij) ∗

⎡

⎣1 −

∑
p ∈ Ij

(
tfpj

gfj
∗ log tfpj

gfj

)

log(numUsers)

⎤

⎦ (1)

where Ij is the set of all users who use item j, tfij is the frequency of use of
item j by user i and global frequency gfj is the total number of times item j is
used in the complete user set.

4.2 Collaborative Filtering

The goal of a Collaborative Filtering (CF) algorithm is to suggest new items
or predict the utility of a certain item for a particular user based on the user’s
previous preference and the opinions of other like-minded users [6]. CF systems
are founded on the belief that users can be clustered. Users in a cluster share
preferences and dislikes for particular items and are likely to agree on future
items. Collaborative filtering algorithms are used in mainstream recommender
systems such as Amazon [24]. In our work we use CF to recommend a candidate
set of items to a user.

Fig. 4. Illustration of the k Nearest Neighbour formation. The similarity/distance be-
tween the target user query and all users in the item-user matrix is computed and k
closest users are chosen as neighbours. k = 8 in this example.

Recommendation Algorithm. Recommendations are produced by examining
the item-user matrix created using either VSM or LSI. Vote vij corresponds to
the vote by user i for item j. The mean vote for user i is calculated as follows:

vi =
1
|Ii|

∑

j∈Ii

vi,j (2)

where Ii is the set of items the user i has voted on. The predicted vote using CF
for the active user a on item j, cfaj, is a weighted sum of the votes of the other
similar users:

226 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

cfaj = va + N
∑

i∈kNN

sim (a, i) (vi,j − vi) (3)

where weight sim(a, i) represents the correlation or similarity between the cur-
rent user a and each user i. kNN is the set of k nearest neighbours to the
current user, as illustrated in figure 4. A neighbour is a user who has a high
similarity value sim(a, i) with the current user. The set of neighbours is sorted
in descending order of weight. For experiments we used a value of k = 10. N
is the normalising factor such that the absolute values of the weights’ sum to
unity. From equation 3 we can now predict a users’ vote for any item in the
user-item preference database. Items are ranked based on their predicted vote
and the top n items are recommended to the user. In our experiments, we use a
value of n = 7.

We can calculate the similarity between the current user a and any user in the
item-user matrix, sim(a, i), by determining the cosine of the angle formed by
their vectors, as detailed in [25]. If we are using LSI, we can efficiently perform
vector similarity on the reduced user space, Vk.

5 Experiments

5.1 Dataset

We produced over 32,000 recommendations for 1410 Java classes taken from
over 60 GUI applications mined from Sourceforge [18]. Recommendations were
produced at the method level, and not the class level as in previous work [26]; in
total there was 3038 methods (users) or approximately just over 2 methods per
class. Further to this, each user had originally invoked on average 11 methods
(items). The items which we recommended were Swing and AWT methods; in
total there was 2407 items. Since we have the complete source code, we can
automatically evaluate the recommendations.

For each user, several recommendations were made. For example, if a fully de-
veloped method had 10 Swing invocations, then we removed the 10th invocation
from that user and a recommendation set was produced for the developer based
on the preceding 9 invocations. Following this recommendation, the 9th invo-
cation was removed from that user and a new recommendation set was formed
based on the preceding 8 invocations. This process was continued until just 1
invocation remained. Each recommendation set contained a maximum of 7 items.

5.2 Evaluation

Precision and Recall are the most popular metrics for evaluating information
retrieval systems. Precision is defined as the ratio of relevant recommended items
to the total number of items recommended; P = nrs/ns, where nrs is the number
of relevant items selected and ns is the number of items selected. This represents
the probability that a selected item is relevant. An item is deemed relevant if it is
used by the user for whom the recommendation is being sought. Recall is defined

Recommending Library Methods 227

as the ratio of relevant items selected to the total number of relevant items;
R = nrs/nr, where nrs is the number of relevant items selected and nr is the
number of relevant items. This represents the probability that a relevant item will
be selected. Several approaches have been taken to combine precision and recall
into a single metric. The F1 measure, initially introduced by van Rijsbergen [27],
combines both with an equal weight in the following form: F1 = 2PR/ (P + R).

It is particulary important that RASCAL recommends items in a relevant
order i.e. the invocation order. We will evaluate this using a simple binary Next
Recommended (NR) metric; NR = 1 if we successfully predict or recommend
the next method a developer will use, otherwise NR = 0.

5.3 Results

All results are displayed as a percentage value. A baseline result is included;
these were produced by recommending the top 5 most commonly invoked items
at each recommendation stage. We display the F1 metric combined with the
NR metric for several different dimensions k in figure 5(a). This is the average
F1 and NR result for various stages of recommendation, i.e. when x% of items
are known. Without applying LSI SVD, the original dimension of the user-item
matrix was 2407. We find that applying relatively low dimensions can produce

(a) (b)

(c) (d)

Fig. 5. (a) K dimension (b) Precision (c) Recall (d) Next Recommended (NR)

228 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

reasonable recommendations. The optimal value for k, based on our dataset, is
499; this is the value used in the below experiments. We notice from figure 5(a)
that using term weighting has a negative effect on recommendations.

Figure 5(b) displays average Precision for four experiments; collaborative fil-
tering with and without term weighting using either LSI or VSM. The pure VSM
CF algorithm performs best, producing better results than the LSI model. Ex-
cluding, term weighting, the average CF VSM result is 36% compared with just
30% when using LSI. Precision, for all techniques, decreases as more items are
known; we discuss this in the following section. Both LSI and VSM produce sig-
nificantly better precision values than our baseline technique. We present Recall
in figure 5(c). Like precision, the CF VSM produces the best retrieval, averaging
at 52%. The result is followed closely by LSI where the average recall value is
50%. Term Weighting performs poorly. Figure 5(d) displays Next Recommended
(NR). Again, the CF VSM produces the best retrieval, averaging at 55%. LSI
performs well here with an average NR value of 52%.

5.4 Discussion

We make several interesting observations from these experiments. Firstly we note
that applying the log-entropy term weighting scheme to the item-user matrix has
a consistent negative effect on the recommendation results. This suggests that
items which are used by many users are as important as items which are used by
only a small number of users. To verify this, manual experimentation is required.
We also find that pure CF recommendations consistently outperform CF LSI
recommendations. However, it is important to recognise several other benefits
of using LSI; most notably performance efficiency which is crucial in a realtime
recommender. Using LSI with reduced dimension k = 499, RASCAL initialises
twice as fast and produces recommendations approximately three times faster
than the VSM approach. This will be important as we scale up our application.

Generally, we notice two different trends in precision and recall. Precision
tends to decrease as we know more information about a user while recall tends
to increase. This result perhaps requires clarification. Consider a user who uses
in total 10 items. When we make a recommendation for that user when they
have only used 1 item, there is a set of 9 possible items to recall. The chances
of recalling all relevant items is quite low and hence the recall result is low in
earlier recommendations. However, when this user has used 9 items and there
is only 1 possible item to recall, then the chances of this item being in the
recommendation set is quite high. In contrast, the more items we know about
the current user, the fewer there are to correctly recommend and hence precision
decreases in latter recommendations.

6 Conclusions

Just as people can be clustered in terms of their preferences for various items,
Java methods may also be clustered based on the methods they invoke. To

Recommending Library Methods 229

clusters methods, we investigated and compared two information retrieval tech-
niques, namely the vector space model and latent semantic indexing and found
the VSM most effective. Unlike many retrieval schemes, we found that prepro-
cessing or weighting of items negatively impacted retrieval. We also noted some
of the limitations with using VSM such as scalability and performance times,
and we explained how LSI can overcome these challenges.

Further work is needed to enhance RASCAL. Using LSI, we will investigate
significantly increasing the size of the library; we would expect this to improve
precision and recall whilst having a small impact on performance times. We
will also investigate the use of probability models to produce recommendations.
RASCAL offers unsolicited advice and we must be sensitive to this in our de-
livery of recommendations. We will extend our Eclipse plugin, complementing
and extending the existing context-sensitive list of methods recommended by
the Eclipse IDE. Our overall goal is to develop a recommender that seamlessly
integrates with the Eclipse IDE but more importantly allows reuse to become a
natural and convenient part of a developers daily routine.

Recommender systems are a powerful technology that can cheaply extract
knowledge for a software company from its code repositories and then exploit
this knowledge in future developments. We have demonstrated that RASCAL
offers real promise for allowing developers discover and easily access reusable
library components. When little information is known about the user we can
nevertheless make reasonably good recommendations and it is our belief that
future work will strengthen both recommendation accuracy and performance.

References

1. Mohagheghi, P., et al.: An empirical study of software reuse vs. defect-density
and stability. In: ICSE ’04: Proceedings of the 26th International Conference on
Software Engineering, Washington, DC, USA, (IEEE Computer Society) 282–292

2. Yongbeom, K., Stohr, E.: Software reuse: Survey and research directions. Man-
agement Information Systems 14(4) (1998) 113–147

3. Ye, Y., Fischer, G.: Reuse-conducive development environments. International
Journal of Automated Software Engineering 12 (2005) 199–235

4. Poulin, J.: Reuse: Been there done that. Communications of the ACM 42(5) (1999)
5. Inoue, K., et al.: Component rank: relative significance rank for software component

search. In: ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, Washington, DC, USA, IEEE Computer Society (2003) 14–24

6. Sarwar, B.M., Karypis, G., Konstan, J.A., Reidl, J.: Item-based collaborative
filtering recommendation algorithms. In: World Wide Web. (2001) 285–295

7. Letsche, T.A., Berry, M.W.: Large-scale information retrieval with latent semantic
indexing. Inf. Sci. 100(1-4) (1997) 105–137

8. Landauer, T., Foltz, P., Laham, D.: An introduction to latent semantic analysis.
Discourse Processes 25 (1998) 259–284

9. Deerwester, S., et al.: Indexing by latent semantic analysis. Journal of the American
Society for Information Science 41 (1990) 391–407

10. Prieto-Diaz, R., Freeman, P.: Classifying software for reuse. IEEE Software 4(1)
(1987) 6–16

230 F. McCarey, M. Ó Cinnéide, and N. Kushmerick

11. Mili, A., Mili, R., Mittermeir, R.T.: A survey of software reuse libraries. Annals
of Software Engineering 5 (1998) 349–414

12. Sugumaran, V., Storey, V.C.: A semantic-based approach to component retrieval.
SIGMIS Database 34(3) (2003) 8–24

13. Girardi, M., Ibrahim, B.: Using english to retrieve software. Journals of Systems
and Software 30(3) (1995) 249–270

14. Drummond, C.G., Ionescu, D., Holte, R.C.: A learning agent that assists the
browsing of software libraries. IEEE Trans. Softw. Eng. 26(12) (2000) 1179–1196

15. Sarwar, B.M., et al.: Application of dimensionality reduction in recommender
systems–a case study. In: Proceedings of ACM WebKDD Workshop. (2000)

16. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: ICSE ’03: Proceedings of the 25th In-
ternational Conference on Software Engineering, Washington, DC, USA, IEEE
Computer Society (2003) 125–135

17. Marcus, A., Maletic, J.I.: Identification of high-level concept clones in source code.
In: ASE ’01: Proceedings of the 16th IEEE International Conference on Automated
Software Engineering, Washington, DC, USA, IEEE Computer Society (2001) 107

18. Ebert, J.: Storm - a user story tool. http://xpstorm.sourceforge.net . (2002)
19. Apache: Apache software foundation - bytecode engineering library (2002-2003).

http://jakarta.apache.org/bcel/index.html . (2003)
20. Dumais, S.: Improving the retrieval of information from external sources. Behavior

Research Methods, Instruments and Computers 23(2) (1991) 229–236
21. Dumais, S.: Latent semantic indexing (lsi) and trec-2. The Second Text REtrieval

Conference (TREC2), National Institute of Standards and Technology Special Pub-
lication 500-215. (1994) 105-116

22. Zelikovitz, S., Hirsh, H.: Using lsi for text classification in the presence of back-
ground text. In: CIKM ’01: Proceedings of the tenth international conference on
Information and knowledge management, New York, ACM Press (2001) 113–118

23. Berry, M.: Large scale singular value computations. Int. Journal of Supercomputer
Applications 6 (1992) 13–49

24. Bezos, J.: Amazon.com plc. seattle, wa 98108-1226, usa www.amazon.com. (2004)
25. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms

for collaborative filtering. In: Proceedings of the Fourteenth Annual Conference on
Uncertainty in Artificial Intelligence. (1998) 43–52

26. McCarey, F., Cinnéide, M.O., Kushmerick, N.: Knowledge reuse for software reuse.
In: Proceedings of the 17th International Conference on Software Engineering and
Knowledge Engineering. (2005)

27. van Rijsbergen, C.: Information Retrieval. Butterworths, London (1979)

	Introduction
	Related Work
	Reuse Tool Support
	IR and Recommenders System

	RASCALOverview
	Recommendations
	Information Retrieval
	Collaborative Filtering

	Experiments
	Dataset
	Evaluation
	Results
	Discussion

	Conclusions
	References

