

 A Problem-Based Approach to Teaching Design

Patterns

Mel Ó Cinnéide and Richard Tynan
Department of Computer Science

University College Dublin
Ireland.

mel.ocinneide@ucd.ie, richard.tynan@ucd.ie

Abstract

The traditional lecture-based approach to course delivery is particularly inappropriate in teaching design
patterns effectively. In this paper we describe our efforts to develop a problem-based approach to the
introduction of design patterns in the undergraduate curriculum. Our principal contribution is the
development of a set of pattern exercises that enables students to experiment with patterns and to clearly
see the advantages accrued by using patterns.

Keywords

Design patterns. Problem-based learning.

1. Introduction

Design patterns have been one of the most significant developments in software design in the past decade,
so it not surprising that many undergraduate curricula now include exposure to them [e.g., 5, 6, 7], in some
cases even in the first year [1, 7]. Our experience in teaching design patterns to final-year Computer
Science students has indicated that the traditional lecture-based approach to course delivery is wholly
inadequate in conveying a real feeling for design patterns to students. We have also found that although the
introduction of UML-level exercises ameliorated the situation, the students still did not clearly grasp how
patterns become code.

This led us to endeavour to develop a set of programming exercises that highlight the benefits of design
patterns in a concrete way. Our work has been motivated by ideas from Problem-Based Learning as
applied to Software Engineering [2]. Problem-Based Learning is a method of teaching that uses real-world
situations and exercises that focus a student on a particular area that the tutor wishes to emphasize. In
solving the problems the student will not only understand what the instructor is trying to convey in a
theoretical sense, but will also see a practical application of the newfound knowledge.

The pure Problem-Based Learning approach involves using real-world problems that are not constrained
for pedagogic purposes and which expose the student to the full complexity of a thorny problem that does
not admit just one clean solution. We took a more limited approach where we used guided programming
exercises to highlight the flexibility provided by design patterns. For each pattern we developed two
functionally-identical applications, one that exploited the pattern and one that did not. The students were
requested to extend both applications with a series of new requirements. Each requirement was of course
chosen so as to illustrate the flexibility of the pattern. In this way we aimed to let the student see how the
pattern is implemented, to appreciate the flexibility provided by the pattern and to work with patterns at an
implementation level.

In section 2 we describe a number of the design pattern exercises we developed, while in section 3 we
present the results of a class questionnaire and finally conclude in section 4.

 1

2. Design Pattern Exercises

In this section we describe in some detail two of the design pattern exercises we used to validate the
usefulness of our approach to the teaching of design patterns. As well as the Observer and Abstract Factory
patterns described here, we also developed exercises for Adapter, Composite, Factory Method, Strategy,
Template Method and Visitor.

Each of the following examples was developed for Java 1.2 using Swing for the user interface. We decided
that using realistic user interfaces would provide a more compelling and perhaps more enjoyable context
for the students in working with the code.

2.1. Observer

The Observer pattern [4] allows an object (an Observer) to register its interest in another object’s internal
state (the Subject). Whenever the Subject changes state, each registered Observer object is notified of the
change and can act accordingly. This pattern enables a number of objects to elegantly maintain consistent
state.

In our approach we used a similar example to the motivating example described in [4], namely an
application that provides a graphical view of a simple data model. Figure 1 presents the interface we used:
a bar chart representation of the number of students taking various courses (Physics, Chemistry, etc.). The
values in the underlying model can be changed using an intuitive slider interface for each course. As the
slider is moved to the right, the number of students taking that course is increased, and consequently the
bar chart is changed appropriately.

Figure 1: Interface to the Observer pattern example

As described earlier, we provided the students with two functionally-identical programs, one that used an
ad-hoc approach to maintaining the consistency between the model and the views, and one that used the
Observer pattern to maintain this consistency.

In the non-pattern example the coupling between the Subjects and Observers was written in an ad-hoc
fashion. It was not intentionally obfuscated, but was written using an approach that a competent
programmer who had not encountered patterns might take. The model and controller were amalgamated

 2

together, and as the sliders change the bar chart is updated directly. In the pattern example, each course
was represented as a Subject and each bar in the bar chart was modelled as an Observer attached to the
appropriate Subject.

The first requirement involved extending both implementations by providing another proportional view of
the data, in this case a pie chart. In the non-pattern example the students were forced to understand the
precise flow of control within the program to decide where exactly to insert the code that provides the pie-
chart view. Extending the design pattern implementation was much simpler. All that was necessary was to
attach the pie-chart object to the model and allow the usual Observer interaction to synchronise this view
with the data. In both cases nearly identical code excerpts needed to be inserted, however, in the pattern
example, it was far clearer where this code should be inserted. Complex control flow in the non-pattern
example made it extremely difficult to determine exactly what code should be put where.

A further extension was given to the students to enable an observer to control the state of the model. They
were asked to produce a table representation of the model which can be updated through valid user inputs
to the table. The tables would display, for each course, the number of students taking it in textual form.
Valid numbers could be entered into the table directly to update the model. The sliders and table now
become both observers and controllers. The complex interaction between objects could be integrated
elegantly in the pattern code but led to complex, bulky code in the non-pattern version.

In order to help the students understand the inner workings of the pattern we then asked students to extend
further the pattern version. They were required to change the update model used by the Subjects. This was
originally implemented using the push model and we required the students to implement the pull model.
Having struggled with the non-pattern version, the simplicity offered by the Observer pattern was
highlighted to them in a real coded example, rather than just explained theoretically in a textbook.

2.2 Abstract Factory

The Abstract Factory pattern is used when the necessity exists to create diverse objects of the same general
family, e.g., various interface widgets. Clients of the Abstract Factory can request the creation of a member
of that family but need never know the concrete class they are dealing with. They can manipulate these
abstract members created by the factory and, simply by changing the abstract factory implementation, a
different but related family of objects will be created. This does not require any extensions to the client
code.

There are various components that are invariably used in the development of a text editor, e.g., menu bars,
tool bars, document views etc.. For this exercise we presented the students with a simple text editor, one
with similar functionality to Microsoft’s WordPad. An editor of this sort can have many different but
related components such as components with different look and feels for example. It had very limited
functionality, and so allowed the students to focus on the pattern and not get bogged down in
implementation details.

The non pattern example coupled the instantiation of the various components with some of the behaviour
and layout code for the editor. Our pattern version, on the other hand, decoupled this so the instantiation
was managed by a subclass of an abstract factory object. The client of the factory was responsible for the
layout and sizing of the components, effectively a framework. A screen shot of the simple editor we
developed is given below in figure 2.

 3

Figure 2: Simple text editor

We required only one extension from the students to highlight this pattern, namely to produce an editor that
can open HTML pages remotely, edit them and save them locally. The extension would require them to
update many of the components of the editor, e.g., the menu bar so the user could enter the URL and the
document so that it could read HTML remotely. In the non-pattern code this required tinkering with many
classes and figuring out the order of instantiations, which proved time consuming and tedious. The
alternative pattern framework took care of all these details and required only that students define a subclass
of the Abstract Factory to instantiate each of their HTML editor family of components.

3. Experiences and Survey Results

The pattern exercises took place in a closed laboratory context as part of a final-year Object-Oriented
Design unit. The students worked in pairs and were aided by the authors (the course lecturer and senior
tutor). Although there were no marks allocated for attending or participating, attendance at the laboratory
sessions was close to 100%.

All the students were able to complete the exercises in the 2-hour laboratory session. This was as
anticipated, since the exercises were not designed to be a programming challenge as such, but a challenge
in pattern comprehension. The atmosphere in the laboratory was extremely positive during these sessions
and from the questions asked it was clear that the benefits of patterns were sinking in.

To establish a quantitative basis for assessing this new venture, we asked the students to fill out a
questionnaire at the end of the series of exercises. The feedback we had received during the exercises
themselves was very positive; the results of the survey were less so1. 74% of students said they enjoyed the
exercises while almost 80% found them helpful in understanding patterns. One interesting aspect was that
only 20% of students found working with a partner to be useful, a fact that doesn’t augur well for the
future of pair programming. In designing these exercises we had been cautious about the use of the Swing
toolkit, as many students had not used it previously. However in the survey 88% said it made the examples
more interesting while only 6% said it made the examples harder to understand.

4. Conclusion

1 It was interesting to note in this context that in [3] a survey of students who had participated in a
problem-based learning approach to Requirements Engineering produced quite ambivalent results.

 4

Design patterns are essential material to cover in the CS curriculum, and offer the possibility a non-
traditional approach being taken to their presentation. We developed a set of programming exercises that
explore the flexibility and inner workings of patterns at a programming level, by placing them in stark
contrast to functionally-identical software that has been developed without patterns. We enjoyed the
experience of helping the students to work through the material and our class survey showed that the
students themselves gained a lot from the experience.

We are currently developing this material further by tidying up the existing examples, developing examples
for more patterns and porting the code and exercises to the Eclipse environment.

The code for these exercises is available by emailing the authors.

5. References

1. Alphonce, C, Pedagogy and Practice of Design Patterns and Objects First: A one-act play, ACM

SIGPLAN Notices, May 2004.
2. Armarego, J., Advanced Software Design: a case in problem-based learning, Proceedings of the 15th

Conference on Software Engineering Education and Training, Covington, Kentucky, February, 2002.
3. Armarego, J., Student perceptions of quality learning: evaluating PBL in Software Engineering,

Proceedings of the Teaching and Learning Forum, Murdoch University, 2004.
4. Gamma, E. et al, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley,

1995.
5. Hansen, S., The Game of Set – An Ideal Example for Introducing Polymorphism and Design Patterns,

Proceedings of the SIGCSE technical symposium on Computer Science Education, March 2004,
Norfolk, Virginia.

6. Nguyen, D., Wong, S., Design Patterns for Games, Proceedings of the SIGCSE technical symposium
on Computer Science Education, February, 2002.

7. Wick, M., Kaleidoscope: Using Design Patterns In CS1, Proceedings of the thirty-second SIGCSE
technical symposium on Computer Science Education, p.258-262, February 2001.

 5

	A Problem-Based Approach to Teaching Design Patterns
	Mel Ó Cinnéide and Richard Tynan

	Keywords

