
Securing Java through Software Watermarking

D. Curran
Information Hiding Laboratory

Computer Science
Department

University College Dublin
Dublin 4, Ireland

David.Curran@ucd.ie

N. J. Hurley
Computer Science

Department
University College Dublin

Dublin 4, Ireland

Neil.Hurley@ucd.ie

M. Ó Cinnéide
Computer Science

Department
University College Dublin

Dublin 4, Ireland

Mel.Ocinneide@ucd.ie

ABSTRACT
An important advantage of Java is its portability due to its
use of bytecode. However the use of bytecode allows decom-
pilation of Java programs to gain access to their source code.
This makes it easier to pirate Java programs, infringing their
copyright. This is a disadvantage of Java in comparison with
programming languages that compile to native object code.

Software watermarking is a relatively new approach to
the problem of copyright protection that involves embed-
ding ownership information in an executable program. Wa-
termarking has been extensively researched in the context of
multimedia and significant progress has been made toward
the development of robust and secure techniques. In this
paper we investigate a new software watermarking scheme.
This is derived from signal detection theory which is used
in multimedia watermarking.

Keywords
Copyright infringement, java protection, software watermark-
ing, spread spectrum watermarking

1. INTRODUCTION
Software piracy is a major obstacle to the wider use of

Java [8]. The ability to prove ownership of pirated Java
programs would ease copyright concerns over Java programs.

Software watermarking entails altering a program to in-
clude ownership information. In this paper we describe cur-
rent state of the art in software watermarking and how sig-
nal detection theory can improve our knowledge of software
watermarking. We present a watermarking scheme that is
based on signal detection theory.

1.1 The Basics of Watermarking
Steganography is the art and science of communicating in

a way which hides the existence of the communication. In
short, a secret message is hidden in a host message. Wa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2003,16-18 June 2003, Kilkenny City, Ireland.
Copyright 2003 ISBN: 0-9544145-1-9 ...$5.00.

termarking is a special case of steganography. The purpose
of watermarking is to securely embed information in host
content. A watermark should be robust against deliberate
attempts to remove it.

The effectiveness of a watermark can be described by three
traits. When applied to software watermarks, these are de-
scribed as follows:

• Robustness represents the ability of a watermark to
withstand an attack by an adversary. In general, a
software watermark must at least be able to with-
stand common transformations such as optimization,
decompilation-recompilation, obfuscation, etc. Robust-
ness requires that a watermark is not only present but
also detectable after an attack. Areas of watermark
producing code should not be easily separable from
other program code so as to increase robustness [4].

• Capacity is the amount of information that can be em-
bedded in the watermark.

• Perceptibility is a measure of how apparent a water-
mark is in the target program. A watermark that
alters the quality of the host message is perceptible.
In the case of software watermarking negative alter-
ations to functional program behavior, memory usage
and maintainability increase the perceptibility of the
watermark.

There is a trade-off between capacity, robustness and per-
ceptibly. For instance the more information that is present
in a watermark the more perceptible it tends to be.

2. SOFTWARE WATERMARKING
Software watermarking differs from multimedia watermark-

ing in that the watermark must be embedded into an exe-
cutable program, rather than passive data such as an image
or audio file.

The essential difficulty of copyright protection of digital
data is that prevention of copying of digital media is infeasi-
ble. This was aptly described by Bruce Schneier [6] when he
stated “Digital files cannot be made uncopyable, any more
than water can be made not wet.” A pirate cannot be pre-
vented from copying Java source code. Watermarking this
code to allow ownership to be proved is one method of copy-
right protection.

Software watermarking schemes can be split into two types,
static and dynamic.

145

2.1 Static Watermarks
Static watermarks are placed in the code or data of the

software being watermarked. They hide the watermark in
redundant areas of the program. This is similar to how
watermarks are hidden in redundant areas of multimedia
files, which humans cannot detect due to imperfections in
our perception.

Code watermarks are stored within the instructions of a
program. Program instructions contain two types of redun-
dant information that can be used to store such watermarks.

The first exploits the lack of data or control dependencies
between statements. These statements are then reordered to
encode a watermark. A simple example of this is reordering
the case statements inside a Java switch statement. An-
other form of this watermark is reordering the control flow
graph of a method. These methods store information based
on which arrangement out of a number of possible arrange-
ments is used.

The second redundancy in program code exploits alter-
nate instructions or sets of instructions that have the same
resulting programming behavior. A form of static code wa-
termark is to find mutable instructions [5]. Mutable instruc-
tions are instructions that have two or more equivalent vari-
ants. This scheme has obvious connections to Java bytecode
which possesses many instructions that are equivalent in cer-
tain circumstances.

In the case of data watermarks, a copyright string is placed
in the areas of a program that do not contain instructions.
In Java classes one such area is as the constant pool that
can be altered to encode a watermark.

Static watermarks are not robust to distortive attacks
such as optimization and obfuscation.

2.2 Dynamic Watermarks
Dynamic watermarks create a watermark in the structures

created by the running program. They hide the watermark
in redundant computations of the program. Dynamic wa-
termarks are generated by the program during its execution,
usually on a particular input sequence. The four main types
of dynamic watermarks are:

2.2.1 Easter Egg Watermarks
An Easter Egg is a piece of code that gets executed for a

highly unusual input to the program and produces an obvi-
ous and easily recognisable output. See [1] for an example
of such an Easter Egg in Java. The obvious output of an
Easter Egg means once an attacker enters a correct input
the watermark is discovered, and so easily removable. A
more effective system is to create a watermark that is hard
to separate from normal program behavior, thus making it
harder to discover.

2.2.2 Dynamic Data Structure and Execution Trace
Watermarks

These involve a watermark that is inserted into the state
or trace (instructions, addresses or both) of the program
during execution. In contrast to Easter Eggs these water-
marks are not easily perceivable to the user. The watermark
is then extracted by examining the state after the input us-
ing a watermark detector such as a debugger.

An elementary example of a data structure watermark is
to store the watermark in the variables of a Java program,
e.g. char water[];

water[0]=‘C’;
water[1]=‘o’;
water[2]=‘p’;
water[3]=‘y’;
water[4]= . . .

An elementary execution trace watermark can store the
watermark in the operand stack of a method. By examining
what is popped from the operand stack the watermark can
be detected.

These types of watermarks are susceptible to distortive
attacks. For example arrays in a program can be split, val-
ues in an array/stack can be altered using obfuscation and
methods can be split into submethods. The weakness of
these methods is that dependencies do not exist within the
watermark, so the watermark is easy to disrupt.

2.2.3 Dynamic Graph Watermarks
These involve a watermark that is added to a program

by having it create a graph structure. This graph structure
enumerates a number that is the watermark. It is difficult
to find program behavior preserving transformations that
will alter this graph. This makes this form of dynamic wa-
termarking more robust than general data structure water-
marks [2].

This form of watermark is believed to be the most promis-
ing, type to withstand distortive attacks. Other graph wa-
termark attacking schemes require the analysis of the be-
havior of a program that can be difficult and impractical.
This is because detecting code that does not affect func-
tional program behavior is challenging. See [2] for a more
in-depth review of software watermarking.

In the next section we present a model that can be used
to argue about the effectiveness of a software watermark.

3. THE SIGNAL DETECTION APPROACH
The signal detection model of watermarking has been a

topic of much research in multimedia watermarking [3]. Us-
ing this approach significant progress has been made toward
the development of robust schemes. If software watermark-
ing can be modeled as a signal detection problem then the
knowledge gained from this research can be applied to soft-
ware watermarking.

Multimedia content can be represented as signals in space
and time. In general such content is watermarked by mod-
ulating a weak signal (the watermark signal) onto the orig-
inal host signal. Watermark detection is then the problem
of detecting this weak signal, even after signal transforma-
tions. A popular technique for modulating the watermark
signal on the host signal is Spread-Spectrum watermarking.
Stern et al [7] suggest a scheme using mutable instructions
that uses Spread-Spectrum watermarking. This shows that
multimedia watermarking models can be applied to software
watermarking.

Spread-Spectrum watermarking requires a vector r to be
extracted. Our approach is to extract this vector from the
properties of a running program. One simple way to do
this is to measure the call graph depth at distinct points
during the execution of the program on some particular in-
put. There are many other possible signals present in java
programs that could be watermarked, for example memory
usage.

The signal we add alters the call graph depth to encode
watermarking information. This is achieved by altering a

146

method so that for the detection input it calls itself at the
correct point. Normal method execution occurs after this
fake method call.

As an example of how a method is changed to create the
watermark while it is executing. The method func1 below
has been altered to encode a watermark bit on its first exe-
cution.

func1(int a, int b){
if(depth==0){

depth++;
func1(a,b);

}
else{
/* original method */
}

}
/*variable declaration*/
private static depth =0;

We now describe the Spread-Spectrum approach with ref-
erence to the method-depth scheme, first considering the
embedding and then the detection of the watermark. The
stages used in this scheme could be applied to watermark
other signals in Java programs.

3.1 Watermarking Embedder
Extract a central vector r of dimension N from the target

program s using the extraction function X(s) = r. In our
scheme, this can be achieved by storing distinct points of the
call depth of a Java program run on a particular input, then
subtracting their mean. We determine the calls to methods
during a program run using a debugger. For increased secu-
rity r can be permuted using a permutation key known by
the embedder and the detector.

Modulate a central, pseudorandom watermark signal w
on r with a mixing function F , producing rw = F (r,w). In
our scheme F (r,w) = r + w. The watermark w is a vector
that can be used to prove copyright ownership, for example
w = 0, 0, 1, 1, 0, 1, 0, ..., 0.

The additional depth of the method calls is given by

n∑
i=1

wi = c (1)

Hence we can define a quality constraint such that the wa-
termark should not add more than M calls to the call depth.
So c must be chosen so that c ≤ M .

Finally the vector rw is re-embedded into the program s
by applying the inverse of the extraction process.

In our scheme this stage involves altering the Java pro-
gram so that methods call themselves to alter the call graph
at the detection points.

3.2 Watermarking Detector
A program s′ may be a watermarked program which has

undergone transformations such as watermark attacks. We
extract a feature vector r′ which can be written as

r′ = r + w + n (2)

where n represents random noise that has been added due
to an attack on s

Detect presence of watermark by computing the correla-

tion of r′ with the central vector w′. Where w′ = w − µw.

d(r′) = (r + w + n).
w′

N
≈ |w′|2

N
(3)

here |w′|2
N

is a positive number that is the result of correlat-
ing on a watermarked program. Assuming that r and n are
uncorrelated with the watermark vector w then

(r + n).
w′

N
≈ 0 (4)

Hence it is desirable that r and w be as independent as
possible. If the program s′ has not been watermarked the
result of correlation should be near zero.

If this value d(r′) > T , a predetermined threshold of the
correlation, the watermark is said to be present. The value
of T is usually chosen, so that the probability of declaring
the unmarked content to be watermarked (i.e. probability
of false alarm (pfa)) is small. That is we require.

Prob(
r.w

′

N
> T) < pfa (5)

where pfa is some small fixed constant (e.g. 10−4). This
pfa provides an empirical measure of the quality of a water-
marking scheme.

Watermarking schemes are classified on the basis of what
information they require to be available to the detector. The
less information required by the detector the wider the pos-
sible usage of a scheme. The depth count scheme requires
the detector to know the secret watermark w though not
the original host data r. w and r must be kept secret from
attackers as it will allow them to remove the watermark.
This makes it a blind symmetric private scheme.

Some shortcomings of the method-depth scheme and other
insights gained from experience with Spread-Spectrum wa-
termarking are described in the next section.

4. LIMITATIONS OF THE SCHEME
Experience from multimedia watermarking provides in-

sight into methods that can be used to attack and defend
Spread-Spectrum watermarks.

An attacker can add to the method-depth count by adding
his own method calls to the call graph. This attack is similar
to multimedia attacks that involve adding white noise to the
signal.

This attack is based on the redundant nature of the in-
formation in which the watermark is placed. The scheme is
vulnerable because method-depth counts of a program can
be significantly altered without affecting how the program
operates. This is also what allows us to easily embed the
watermark.

As with other software watermarking schemes watermarked
programs should be altered using obfuscation and tamper-
proofing to make them more difficult to attack. A possible
defense against this form of attack is to tamperproof the
Java program by using reflection [2].

Our attempt to detect the watermark is hindered if a new
method is called during the watermark detection run. By
causing the program to call a new method the standard cor-
relation detection scheme can be defeated. Correlation is
sensitive to any new elements being added to the vector.
Such desynchronisation attacks are defended against in mul-
timedia watermarking by correlation on a number of vectors

147

or by embedding a synchronisation pattern in the host sig-
nal.

These defenses illustrate how work done in other multime-
dia watermarking can be applied to software watermarking
schemes based on the signal detection model.

Because the method depth system relies on dynamic pro-
gram execution it tends to be robust to optimization at-
tacks. For example the javac -O command doesn’t inline
watermarked methods as they are too large. Also sophisti-
cated dead code removal techniques are required to remove
the code added to the watermarked methods.

Future work involves investigating other watermarking
schemes that use the signal detection approach. This re-
quires new signals to be extracted from programs and the
more advanced Spread-Spectrum techniques that are used
in multimedia watermarking to be examined.

5. CONCLUSION
Software watermarking for Java is an important technol-

ogy with the possibility to combat one of the major criti-
cisms of the use of bytecode. This paper provided an intro-
duction to software watermarking and described why it is
of particular of interest to Java programmers. We defined
a signal detection model of software watermarking, provid-
ing a framework for a watermark embedding and detecting.
This model also allows us to argue about the quality of a
software watermarking system. We presented the method-
depth scheme that uses the signal detection approach and
showed how knowledge gained from other watermarking do-
mains that use this approach can be applied to software
watermarking.

6. ACKNOWLEDGMENTS
This project is supported by Enterprise Ireland Basic Re-

search Grant, SC/2001/178.

7. ADDITIONAL AUTHORS
B. O’Donovan, (email: Barry.Odonovan@ucd.ie) and G.

C. M. Silvestre (email: Guenole.Silvestre@ucd.ie).

8. REFERENCES
[1] The easter egg archive. In

www.eeggs.com/items/568.html.

[2] C. Collberg and C. Thomborson. Software
watermarking: Models and dynamic embeddings. In
Proceedings of POPL’99 of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 311–324, March 1999.

[3] I. J. Cox, M. L. Miller, and A. L. McKellips.
Watermarking as communications with side
information. Proceedings of the IEEE (USA),
87(7):1127–1141, 1999.

[4] J. Nagra, C. Thomborson, and C. Collberg. A
functional taxonomy for software watermarking. In
M. J. Oudshoorn, editor, Twenty-Fifth Australasian
Computer Science Conference (ACSC2002),
Melbourne, Australia, 2002. ACS.

[5] J. Pieprzyk. Fingerprints for copyright software
protection. In Proceedings of the 2nd Information
Security Workshop (ISW’99), volume 1729 of LNCS,
pages 178–190, November 1999.

[6] B. Schneier. The futility of digital copy prevention. In
CRYPTO-GRAM, cryptome.org/futile-cp.htm, 2001.

[7] J. P. Stern, G. Hachez, F. Koeune, and J.-J.
Quisquater. Robust object watermarking: Application
to code. In Information Hiding, pages 368–378, 1999.

[8] H. van Vliet. Mocha - the java decompiler in. In
www.brouhaha.com/∼eric/computers/mocha.html,
1996.

148

