
1

Dynamic Adaptive Search Based Software
Engineering Needs Fast Approximate Metrics

Mark Harman∗, John Clark† and Mel Ó Cinnéide‡
∗University College London, CREST centre, UK

†University of York, UK.
‡University College Dublin, Ireland.

Abstract—Search Based Software Engineering (SBSE) uses
fitness functions to guide an automated search for solutions to
challenging software engineering problems. The fitness function
is a form of software metric, so there is a natural and close
interrelationship between software metics and SBSE. SBSE can
be used as a way to experimentally validate metrics, revealing
startling conflicts between metrics that purport to measure the
same software attributes. SBSE also requires new forms of
surrogate metrics. This topic is less well studied and, therefore,
remains an interesting open problem for future work. This
paper1 overviews recent results on SBSE for experimental metric
validation and discusses the open problem of fast approximate
surrogate metrics for dynamic adaptive SBSE.

I. INTRODUCTION
Search Based Software Engineering (SBSE) is concerned

with the development of techniques, based on computational
search, to solve hard problems in software engineering. The
term ‘search based software engineering’ was introduced in
2001 [1]. Since then there has been an explosion of activity in
this area. Many different computational search algorithms have
been used including genetic algorithms, simulated annealing,
hill climbing, and genetic programming.
SBSE has been applied to a wide variety of software

engineering problems spanning the entire spectrum of activities
that can be broadly characterised as software engineering,
including requirements analysis, project management, software
design and redesign, coding and implementation, testing, bug
fixing, maintenance, reengineering and refactoring [2].
SBSE involves reformulating software engineering problems

as search problems [3]. This reformulation requires a
representation of the problem to be solved and a fitness
function with which we can measure progress towards the
achievement of the overall software engineering objective
[4]. Naturally, as software engineers, we have many different
candidate representations for our problems, and usually a
number of these are amenable to the SBSE approach. Also,
because of the rich and vibrant research of the software
metrics and measurement community, the would-be search
based software engineer does not have far to look when
selecting a fitness function: In 2004, Harman and Clark argued
that ‘metrics are fitness functions too’ [5]. In this paper, we
seek to develop this agenda of metrics as fitness functions.
The 2004 paper [5] focused largely on the observation

that search based software engineering could be used as a
mechanism for investigating the validity of software metrics.
1This short paper is an invited paper, written to accompany the keynote

given by Mark Harman at the 4th International Workshop on Emerging
Trends in Software Metrics (WeTSOM 2013). It overviews joint work with
John Clark and Mel Ó Cinnéide on metrics as fitness functions, SBSE for
experimental metric validation and Dynamic Adaptive SBSE.

The goals of this research programme have been further
developed since 2004, notably in work on search based
transformation and refactoring [6], [7], [8], [9], [10].
Recently, Ó Cinnéide et al. [11] demonstrated a practical

system that exploits search based refactoring as a means of
dynamically validating software metrics.
In this position paper we overview the work in this research

programme. This strand of work can be characterised as
‘SBSE for metrics’. We also consider the other side of this
coin, showing that the metrics community has a lot to offer
the SBSE research agenda: ‘Metrics for SBSE’.
Specifically, we will explain why we believe a new

form of metrics research is required to develop surrogate
fitness functions for the emergent paradigm of Dynamic
Adaptive Search Based Software Engineering [12]. This is a
comparatively less well studied topic and one that the authors
believe deserves greater attention.

II. METRICS ARE FITNESS FUNCTIONS TOO
In a recent paper at the 6thACM/IEEE International

Symposium on Empirical Software Engineering and
Measurement (ESEM), we (Ó Cinnéide et al. [11]) developed
the idea of metrics as fitness functions, specifically using
search based refactoring as a means to evaluate metrics. This
work was a development of an idea first put forward in
2004 [5], but which remained unimplemented, and therefore
unevaluated, until the 2012 ESEM paper. This section presents
an overview of this approach and some of our recent findings.
Our approach to metric validation uses SBSE to search

for sequences of refactorings, experimentally examining the
degree of agreement and disagreement between metrics’
assessments of the sequence of refactored versions of the code.
We do not evaluate a metric in isolation. Rather, we compare
the effect of one metric (when used as a fitness function) with
the effects on other metrics. Our search process only applies
a refactoring if it improves at least one of the metrics under
consideration. The other metrics may improve, disimprove or
remain the same. This allows us to explore the relationship
between different metrics.
If the metrics are measuring the same thing, then should they

not tend to agree on the impact of refactorings? In a perfect
world, the answer to this question would always be ‘yes’. How-
ever, metrics can never reside in a perfect world; there are too
many imponderables. We used SBSE to explore just how imper-
fect is the world of metrics, focussing specifically on cohesion
metrics. Our results revealed a startling level of disagreement
between metrics, all of which claim to measure cohesion.
Our previous work demonstrated the way in which SBSE can

be used to assess metric agreement in a rigorous experimental



2

setting and to pinpoint areas of weakness and divergence of
outcomes. Our approach provides a way to experimentally
assess metrics using a relative form of the standard foundational
‘representation condition’ of software measurement [13]. That
is, we cannot easily assess how well metrics conform to
the judgement of human experts (the absolute form of the
representation condition), but we can assess their relative
conformance to each other using Search Based Refactoring.
We applied our approach to five popular cohesion metrics,

evaluating them on eight real-world Java systems consisting
of approximately 300KLoC. The metrics studied were five
cohesion metrics: Tight Class Cohesion (TCC) [14], Lack of
Cohesion between Methods (LCOM5) [15], Class Cohesion
(CC) [16], Sensitive Class Cohesion (SCOM) [17] and
Low-level Similarity Base Class Cohesion (LSCC) [18].
In order to experimentally evaluate metrics using SBSE,

we introduced ‘metametrics’ to measure the performance of
metrics. These metametrics are ‘metrics that measure metrics’.
We believe many such metametrics might be defined and that
this may be a profitable avenue for future research in software
metrics and, in particular, for metrics validation. In this brief
overview, we present some results from our previous study of
one such metametric: volatility.
As defined in our ESEM paper
“A volatile metric is one that is changed often by
refactorings, whereas an inert metric is one that is
changed infrequently by refactorings”.

Volatility is a measure of how sensitive (or fine-grained)
a metric is. Volatility may have a number of applications
and ramifications. For example, should a metric be found
to be volatile, then a software developer may not be so
concerned by minor differences in metric outcomes between
different software systems. By contrast, large changes in a
comparatively inert metric between two successive releases of
a system would be more worrying.
Table I (taken from our ESEM 2012 paper) shows the

volatility of the 5 metrics we studied, averaged across all
systems. Our results revealed that LSCC, CC and LCOM5
are all highly volatile metrics. Almost all (in fact 99%) of the
refactorings applied affect them. TCC is notably different. The
TCC metric displays far less volatility (in general) than LSCC,
CC and LCOM5.
Therefore, in general, perhaps developers concerned

about cohesion should take more notice of relatively small
fluctuations in TCC between successive releases than similar
fluctuations observed for LSCC, CC and LCOM5. In this way,
our experimental metric validation can be useful to researchers
investigating the properties of metrics and their performance
and also to developers, guiding their interpretation of the
significance of changes in metrics’ values.
Our results indicate that volatility is not merely a property

of metrics, but, as one might expect, it is a product of metric
and system measured. This observation can be useful in
practice: a developer can use our approach to pre-determine
whether a metric is volatile for the application on which they
are working, and this can inform decisions made about the
outcome of subsequent measurements of the application.
Table II (also from the ESEM 2012 paper) shows the

correlation between increases and decreases in one metric
outcome and the others as the system is refactored to optimise

LSCC TCC SCOM CC

TCC 0.60
SCOM 0.70 0.58
CC 0.10 0.01 -0.28
LCOM5 -0.17 -0.21 -0.46 0.72

TABLE II
SPEARMAN RANK CORRELATION COEFFICIENTS BETWEEN EACH PAIR OF
METRICS ACROSS ALL REFACTORINGS AND ALL APPLICATIONS. NOTICE

THAT LCOM5MEASURES lack OF COHESION, SO A NEGATIVE CORRELATION
COEFFICIENT INDICATES A POSITIVE CORRELATION. THESE RESULTS TAKEN

FROM THE PREVIOUS ESEM 2012 PAPER [11].

for a metric. As can be seen TCC, LSCC and SCOM
exhibit collective moderate positive correlation, while CC
and LCOM5 show mixed correlation ranging from moderate
positive correlation (LCOM5 and SCOM) to strong negative
correlation (LCOM5 and CC).
We further categorised each pair of metrics as follows:

Agreement:
Both metric values increase, both decrease, or both remains
unchanged.
Dissonant:
One value increases or decreases, while the other remains
unchanged.
Conflicted:
One value increases, while the other decreases.
Across the entire set of refactorings we studied, we found

that 45% were in agreement, 17% were dissonant and a
(surprisingly large) 38% were conflicted. The figure of 38%
for the conflicted category is startling; how can all these
metrics be measuring the same thing when they so often yield
conflicting outcomes? These findings illustrate the value of
our approach as a means of validating software metrics.
Our findings provide a technical underpinning for the

oft-expressed concern that the attributes we seek to measure
can be illusive and perhaps even partly unmeasurable. Such
a high degree of conflict for metrics that are designed to
measure the same thing, indicates that there is a problem.
Many a developer has reacted to a metrics programme with

a degree of concern bordering on outright hostility. Perhaps
such antagonism is justified. Our findings suggest that concern
is well-founded, at least in the case of cohesion measurement.
More generally, our approach provides a means to establish

the experimental scientific evidence to support (or refute)
concerns about a set of related metrics. Much more research
is needed to validate metrics and to identify those that can be
stable.
We use cohesion merely as an illustration. The approach to

experimental metric evaluation using ‘SBSE and metametrics’
can be applied to any set of software product metrics. SBSE
is increasingly applied, not only to software products, such as
code [19], [20], [21], designs [22], [23], [24], [25], [26] and
test cases [27], [28] but to software process problems such as
requirements analysis [29], [30] and project management [31],
[32]. Therefore, an interesting avenue for future work lies in the
use of SBSE on process simulations to experimentally compute
novel metametrics that assess software process metrics.
Our initial application of this approach may have yielded

findings that seem rather negative and dispiriting for the
metrics community, but there is a positive message in our
previous work. We believe that, armed with a means to



3

JHotDraw JTar XOM JRDF JabRef JGraph ArtOfIllusion Gantt All
(1007) (115) (193) (13) (257) (525) (593) (750) (3453)

LSCC 96 99 100 92 99 100 99 96 98
TCC 86 53 97 46 61 72 84 71 78
SCOM 79 70 93 92 79 89 77 80 81
CC 100 98 100 92 99 100 100 99 100
LCOM5 100 100 100 100 100 100 100 99 100

TABLE I
METRIC VOLATILITY AS A PERCENTAGE. THIS SHOWS THE PERCENTAGE OF REFACTORINGS THAT CAUSED A CHANGE IN A METRIC. THE NUMBER IN
PARENTHESES IS THE NUMBER OF REFACTORINGS THAT WERE PERFORMED ON THIS APPLICATION.RESULTS TAKEN FROM THE PREVIOUS ESEM 2012

PAPER [11].

evaluate metrics in a rigorous experimental context, we can
move forward our understanding of what aspects of software
can be measured and how best to measure them.
We also believe that metrics have a significant — as

yet largely untapped — potential, even when they do not
completely faithfully capture the attribute they seek to measure.
This potential will be most keenly felt by the field of SBSE;
the very field of work that we used to quantify the doubts over
cohesion metrics. This is the potential of fast approximate
metric surrogates, a topic to which we turn in the next section.

III. METRICS ARE FITNESS FUNCTIONS TOO II: THE NEED
FOR DYNAMIC ADAPTIVE FAST APPROXIMATE METRICS

One of the foremost challenges for software metrics re-
searchers is to construct suitable metrics that capture precisely,
and as closely as possible, the attributes of software systems
they seek to measure. All applications of software metrics hith-
erto investigated broadly envisage a scenario in which the met-
ric guides the decision maker in their management of the soft-
ware development process or their assessment of the processes
and products involved in software development [13], [33].
As such, it makes sense for researchers to focus on

accurately and precisely capturing the attributes of concern.
Surely, it would be unthinkable to construct metrics that are
deliberately more abstract (less precise) than they need to be;
why would we want to define a metric that does not measure
exactly what we want it to measure?
However, the research agenda of dynamic adaptive search

based software engineering [12] creates a use-case for software
metrics that has exactly this property: we need approximate
metrics that can act as surrogates for more computationally
expensive measurements. The surrogates we seek are metrics
that retain some of the essence of the more computationally
expensive metric, but which sacrifice some degree of precision
for computational performance. The surrogate can thus be
used to cheaply assess an approximate fitness to guide a search
based approach for dynamic adaptivity.
Most SBSE fitness functions measure software properties on

an ordinal scale [34]. It is rare to find examples of ratio or inter-
val scale metrics in search based software engineering applica-
tions. Indeed, perhaps it is, generally speaking, rare to find such
metrics in software engineering (search based or otherwise).
This prevalence of ordinal scale metrics means that we

are afforded a considerable degree of flexibility in the search
for approximate surrogate metrics. So long as we preserve
ordering we shall be faithfully retaining the guidance of the
more computationally expensive measurement.
Surrogate metrics for Speed: It has been repeatedly shown
that many SBSE algorithms are highly robust: so long as the

fitness function offers some guidance towards improvements
in fitness, it can serve as the guidance for the search process
[2]. A fitness function that is incorrect some of the time, but
correct for the majority of invocations, retains some selection
pressure towards fitter individuals; the search process will still
tend to reach optima but will do so less quickly.
In traditional applications of computational search, there is

a trade-off. We can use an approximate fitness function (that
can be computed cheaply) and this may still guide us towards
optima. We seek a suitable balance of the trade-off between the
faithfulness of the fitness function surrogates and the alacrity
with which they can be computed. With the right balance, the
less faithful surrogate search process will reach sufficiently high
quality results faster than the same search guided by the com-
putationally expensive but completely faithful fitness function.
Though the surrogate fitness function might even mislead

the search on some occasions, by promoting a less fit candidate
solution over a truly fitter alternative, the overall effect is still
positive due to the savings in fitness function computation
time. This saving can be considerable because fitness function
computation dominates the overall computational complexity
in many cases. This observation about the value of fast
surrogate fitness functions has motivated a great deal of work
within the optimisation and computational search community
targeting the definition of suitable fitness function surrogates
(for example the work of Branke et al. [35]).
Software Engineering is Different: One might think that
search based software engineering would be no different to
any other optimisation problem. That is, we would need fitness
function surrogates for precisely the same reasons. We would
seek to investigate similar trade-offs for software engineering
applications between faithfulness of fitness function surrogates
and the overall alacrity of the search process.
However, software engineering is unlike any other

engineering application of computational search. It has
previously been argued that the virtual nature of software
makes software engineering the ideal application for search
based techniques [36]. This motivates the study of SBSE as
a specific sub-discipline [37] at the interface of computational
search and software engineering.
The argument goes like this: Computer software is unlike

any other engineering material, due to its virtual nature (all
other engineering materials being physical). Fitness functions
can be computed directly on the engineering artefact to
be optimised. By contrast, other engineering applications of
optimisation require a simulation of a model of the engineering
artefact. For these non-software-based engineering applications,
fitness is computed, not on the engineering artefact itself, but
on these simulations.



4

Adaptivity Needs New Metrics: In this paper we would like
to extend this argument about the special ‘search-friendly’
nature of software further: it is not just the directness of fitness
computation that makes search based software engineering
so different from other potential engineering applications of
computational search. The inherent potential for adaptivity of
deployed software offers search based software engineering a
unique potential: the engineering artefact can be dynamically
optimised as it is being used. Few other engineering materials
can be optimised in such a manner: in-situ once deployed.
Any adaptivity in a physical engineering materials is tightly

constrained by the physical properties of the engineering
material and there has to be a physical mechanism to realise
the adaptation. Such adaptation will require considerable
pre-planning and its execution may draw heavily on energy
and other resources.
For example, some buildings adapt to the direction of

sunlight, but this is a very limited and pre-determined set of
changes (and may require mechanical work that consumes
considerable energy). By contrast, software can potentially
be adapted by dynamically re-configuring the code to meet
new operating environments. This is the research agenda
known as dynamic adaptive search based software engineering
(DASBSE) [12].
Any approach that seeks dynamic adaptivity must necessarily

compute many fitness evaluations between adaptations so
surrogate fitness computation will need to be fast. The time
between adaptations need not be instantaneous, but, depending
on the context, adaptive optimisation computation may have
to complete within days, hours, minutes or even seconds.
Example: Suppose we want to re-configure a system to
adapt to fluctuations in power and bandwidth available on
a smartphone. We can use multi-objective optimisation to
construct a ‘pareto program surface’: the space of potential
programs that trade off these different properties. This could
be done at compile time to explore the design space with
respect to non-functional properties [38].
However, what if we could compile that same optimisation

capability into the deployed software system, so that the
smartphone could dynamically adapt to changes in available
power and bandwidth during operation?
We would need to run the optimisation as some form of

background process. This process would need to evaluate
potential modifications with regard to their likely bandwidth
and power consumption. For either such property, it will not be
practical to execute the modification; we shall merely be able
to compute a fast approximate surrogate for these attributes.
This example is one of many in which non-functional

properties are paramount and for which we might seek surro-
gate metrics. This agenda also creates interesting connections
between software metrics, SBSE and predictive modelling [39].

IV. APPENDIX: FURTHER READING
For metrics researchers new to the field of SBSE and

Dynamic Adaptive SBSE, this appendix provides some
pointers to the literature.
There have been several surveys on of SBSE, each

focussing on different aspects such as requirements [29],
predictive modelling [40], SBSE for the cloud [41], machine
learning and AI [42], design [26] and testing [43], [44],
[45], [46]. Other recent surveys on mutation testing [47] and

regression testing [48] contain sections describing the use of
SBSE to attack the problems in these domains.
The relatively new area of Dynamic Adaptive SBSE is

described in the ESEM 2012 keynote paper [12], while a
more detailed description of the use of genetic programming
to construct pareto program surfaces can be found in the ASE
2012 keynote paper [38].
There are also papers that set out open problems and future

research agendas in SBSE for program comprehension [49],
software maintenance [50], predictive modelling [39], testing
[45], [51], bug fixing [52] and testability transformation [53].
A brief review of the growth in evolutionary computation

for software engineering can be found in the IEEE Computer
article [54]. For more comprehensive surveys of the whole field
of SBSE, there is a complete survey [2], [55], which maps the
entire SBSE area and provides trend analysis. While this paper
presents a complete survey, there is also a ten year retrospective
[37] that provides a shorter survey, focussed on a bibliometric
analysis of the literature. There is also a detailed analysis and
survey of the growth and development of SBSE in Brazil [56].
Finally, there are many tools that implement SBSE

techniques, covering a range of applications including test
data generation [27], [57], [58], [59], [60], modularisation
[25], refactoring [61], bug fixing [62], mutation testing [63]
and requirements optimisation [64].

V. THE DAASE PROJECT
The research agenda briefly outlined in this paper forms

the focus of the DAASE project (DAASE: Dynamic Adaptive
Automated Software Engineering, grant number EP/J017515).
DAASE is a major research initiative running from June

2012 to May 2018, funded by £6.8m from the Engineering
and Physical Sciences Research Council (the EPSRC). DAASE
also has matching support from University College London and
the Universities of Birmingham, Stirling and York, which will
complement the 22 EPSRC-funded post doctoral researchers re-
cruited to DAASE with 26 fully funded PhD studentships and 6
permanent faculty positions (assistant and associate professors).
The DAASE project is keen to collaborate with leading

researchers and research groups. We are also interested in
collaboration with industrial parters and other organisations
interested in joining the existing DAASE industrial partners
which include AirFrance/KLM, Berner & Mattner, British
Telecom, DSTL, Ericsson, GCHQ, Honda, IBM, Park Air
Systems, Microsoft and Visa Europe. We have a programme
for short and longer term visiting scholars (at all levels from
PhD student to full professor) and arrangements for staff
exchanges and internships with other organisations.
For more information, contact Lena Hierl, the DAASE

Administrative Manager (crest-admin@ucl.ac.uk) or
Mark Harman, the DAASE project director.



5

REFERENCES
[1] M. Harman and B. F. Jones, “Search based software engineering,” Infor-

mation and Software Technology, vol. 43, no. 14, pp. 833–839, Dec. 2001.
[2] M. Harman, A. Mansouri, and Y. Zhang, “Search based software

engineering: Trends, techniques and applications,” ACM Computing
Surveys, vol. 45, no. 1, p. Article 11, November 2012.

[3] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd,
“Reformulating software engineering as a search problem,” IEE
Proceedings — Software, vol. 150, no. 3, pp. 161–175, 2003.

[4] M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search based software
engineering: Techniques, taxonomy, tutorial,” in Empirical software
engineering and verification: LASER 2009-2010, B. Meyer and
M. Nordio, Eds. Springer, 2012, pp. 1–59, LNCS 7007.

[5] M. Harman and J. Clark, “Metrics are fitness functions too,” in 10th Inter-
national Software Metrics Symposium (METRICS 2004). Los Alamitos,
California, USA: IEEE Computer Society Press, Sep. 2004, pp. 58–69.

[6] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler, “A novel
approach to optimize clone refactoring activity,” in GECCO
2006: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, vol. 2. Seattle, Washington, USA:
ACM Press, 8-12 Jul. 2006, pp. 1885–1892. [Online]. Available:
http://www.cs.bham.ac.uk/∼wbl/biblio/gecco2006/docs/p1885.pdf

[7] D. Fatiregun, M. Harman, and R. Hierons, “Search-based amorphous
slicing,” in 12th International Working Conference on Reverse
Engineering (WCRE 05), Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, Nov. 2005, pp. 3–12.

[8] M. O’Keeffe and M. Ó Cinnédie, “Search-based refactoring: an empirical
study,” Journal of Software Maintenance, vol. 20, no. 5, pp. 345–364,
2008.

[9] M. Harman and L. Tratt, “Pareto optimal search-based refactoring at
the design level,” in GECCO 2007: Proceedings of the 9th annual
conference on Genetic and evolutionary computation. London, UK:
ACM Press, Jul. 2007, pp. 1106 – 1113.

[10] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination
of refactorings for improving the class structure of object-oriented
systems,” in Genetic and evolutionary computation conference
(GECCO 2006), vol. 2. Seattle, Washington, USA: ACM
Press, 8-12 Jul. 2006, pp. 1909–1916. [Online]. Available:
http://www.cs.bham.ac.uk/∼wbl/biblio/gecco2006/docs/p1909.pdf

[11] M. Ó Cinnédie, L. Tratt, M. Harman, S. Counsell, and I. H. Moghadam,
“Experimental assessment of software metrics using automated
refactoring,” in 6th IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2012), Lund, Sweden,
September 2012, pp. 49–58.

[12] M. Harman, E. Burke, J. A. Clark, and X. Yao, “Dynamic adaptive search
based software engineering,” in 6th IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM 2012), Lund,
Sweden, September 2012, pp. 1–8.

[13] M. J. Shepperd, Foundations of software measurement. Prentice Hall,
1995.

[14] J. M. Bieman and B.-K. Kang, “Cohesion and reuse in an object-oriented
system,” in Symposium on Software reusability (SSR ’95), 1995, pp.
259–262.

[15] L. C. Briand, J. W. Daly, and J. Wüst, “A unified framework for
cohesion measurement in object-oriented systems,” Empirical Software
Engineering, vol. 3, no. 1, pp. 65–117, 1998.

[16] C. Bonja, E. Kidanmariam, and E. Kidanmariam, “Metrics for class
cohesion and similarity between methods,” in ACM Southeast Regional
Conference, 2006, pp. 91–95.

[17] L. Fernández and R. P. Na, “A sensitive metric of class cohesion,”
Information Theories and Applications, vol. 13, no. 1, pp. 82–91, 2006.

[18] J. Al-Dallal, L. C. Briand, and L. C. Briand, “An object-oriented
high-level design-based class cohesion metric,” Information & Software
Technology, vol. 52, no. 12, pp. 1346–1361, 2010.

[19] A. Arcuri, D. R. White, J. A. Clark, and X. Yao, “Multi-objective
improvement of software using co-evolution and smart seeding,” in
7th International Conference on Simulated Evolution and Learning
(SEAL 2008), ser. Lecture Notes in Computer Science, X. Li, M. Kirley,
M. Zhang, D. G. Green, V. Ciesielski, H. A. Abbass, Z. Michalewicz,
T. Hendtlass, K. Deb, K. C. Tan, J. Branke, and Y. Shi, Eds., vol. 5361.
Melbourne, Australia: Springer, December 2008, pp. 61–70.

[20] W. B. Langdon and M. Harman, “Evolving a CUDA kernel from an
nVidia template,” in IEEE Congress on Evolutionary Computation.
IEEE, 2010, pp. 1–8.

[21] W. Weimer, T. V. Nguyen, C. L. Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in International Conference
on Software Engineering (ICSE 2009), Vancouver, Canada, 2009, pp.
364–374.

[22] C. L. Simons, I. C. Parmee, and R. Gwynllyw, “Interactive, evolutionary
search in upstream object-oriented class design,” IEEE Transactions on
Software Engineering, vol. 36, no. 6, pp. 798–816, 2010.

[23] K. Praditwong, M. Harman, and X. Yao, “Software module clustering
as a multi-objective search problem,” IEEE Transactions on Software
Engineering, vol. 37, no. 2, pp. 264–282, 2011.

[24] M. Harman, S. Swift, and K. Mahdavi, “An empirical study of the
robustness of two module clustering fitness functions,” in Genetic and
Evolutionary Computation Conference (GECCO 2005). Washington DC,
USA: Association for Computer Machinery, Jun. 2005, pp. 1029–1036.

[25] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of
software systems using the bunch tool,” IEEE Transactions on Software
Engineering, vol. 32, no. 3, pp. 193–208, 2006.

[26] O. Räihä, “A survey on search–based software design,” Computer
Science Review, vol. 4, no. 4, pp. 203–249, 2010.

[27] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation
for object-oriented software,” in 8th European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE ’11). ACM, September 5th - 9th
2011, pp. 416–419.

[28] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: An open source tool
for search based software testing of C programs,” Journal of Information
and Software Technology, vol. 55, no. 1, pp. 112–125, January 2013.

[29] Y. Zhang, A. Finkelstein, and M. Harman, “Search based requirements
optimisation: Existing work and challenges,” in International Working
Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ’08), vol. 5025. Montpellier, France: Springer LNCS,
2008, pp. 88–94.

[30] M. O. Saliu and G. Ruhe, “Bi-objective release planning for evolving soft-
ware systems,” in Proceedings of the 6th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE) 2007,
I. Crnkovic and A. Bertolino, Eds. ACM, Sep. 2007, pp. 105–114.

[31] E. Alba and F. Chicano, “Software project management with GAs,”
Information Sciences, vol. 177, no. 11, pp. 2380–2401, June 2007.

[32] G. Antoniol, M. Di Penta, and M. Harman, “The use of search-based
optimization techniques to schedule and staff software projects: An
approach and an empirical study,” Software — Practice and Experience,
vol. 41, no. 5, pp. 495–519, April 2011.

[33] N. E. Fenton, Software Metrics: A Rigorous Approach. Chapman and
Hall, 1990.

[34] M. Harman, “The current state and future of search based software
engineering,” in Future of Software Engineering 2007, L. Briand and
A. Wolf, Eds. Los Alamitos, California, USA: IEEE Computer Society
Press, 2007, pp. 342–357.

[35] J. Branke and C. Schmidt, “Faster convergence by means of fitness
estimation,” Soft Computing, vol. 9, no. 1, pp. 13–20, 2005.

[36] M. Harman, “Why the virtual nature of software makes it ideal for search
based optimization,” in 13th International Conference on Fundamental
Approaches to Software Engineering (FASE 2010), Paphos, Cyprus,
March 2010, pp. 1–12.

[37] F. G. Freitas and J. T. Souza, “Ten years of search based software
engineering: A bibliometric analysis,” in 3rd International Symposium
on Search based Software Engineering (SSBSE 2011), 10th - 12th
September 2011, pp. 18–32.

[38] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and
J. A. Clark, “The GISMOE challenge: Constructing the pareto program
surface using genetic programming to find better programs (keynote
paper),” in 27th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2012), Essen, Germany, September 2012.

[39] M. Harman, “The relationship between search based software engineering
and predictive modeling,” in 6th International Conference on Predictive
Models in Software Engineering (PROMISE 2010), Timisoara, Romania,
2010.

[40] W. Afzal and R. Torkar, “On the application of genetic programming for
software engineering predictive modeling: A systematic review,” Expert
Systems Applications, vol. 38, no. 9, pp. 11 984–11 997, 2011.

[41] M. Harman, K. Lakhotia, J. Singer, D. White, and S. Yoo, “Cloud engi-
neering is search based software engineering too,” Journal of Systems and
Software, 2012, to appear in print. Available online 23 November 2012.

[42] M. Harman, “The role of artificial intelligence in software engineering,” in
1st International Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering (RAISE 2012), Zurich, Switzerland, 2012.

[43] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Information and Software
Technology, vol. 51, no. 6, pp. 957–976, 2009.

[44] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test-case generation,” IEEE Transactions on Software
Engineering, pp. 742–762, 2010.



6

[45] M. Harman, “Automated test data generation using search based software
engineering,” in 2nd International Workshop on Automation of Software
Test (AST 07). Minneapolis, USA: IEEE Computer Society Press, May
2007, p. 2.

[46] P. McMinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–156,
Jun. 2004.

[47] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649 – 678, September–October 2011.

[48] S. Yoo and M. Harman, “Regression testing minimisation, selection and
prioritisation: A survey,” Journal of Software Testing, Verification and
Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[49] M. Harman, “Search based software engineering for program
comprehension,” in 15th International Conference on Program
Comprehension (ICPC 07). Banff, Canada: IEEE Computer Society
Press, 2007, pp. 3–13.

[50] M. D. Penta, “SBSE meets software maintenance: Achievements and open
problems,” in 4th International Symposium on Search Based Software
Engineering (SSBSE 2012), ser. Lecture Notes in Computer Science,
G. Fraser and J. T. de Souza, Eds., vol. 7515. Springer, 2012, pp. 27–28.

[51] P. McMinn, “Search-based software testing: Past, present and future,” in
International Workshop on Search-Based Software Testing (SBST 2011).
IEEE, 21 March 2011, pp. 153–163, keynote paper.

[52] C. L. Goues, S. Forrest, and W. Weimer, “Current challenges in automatic
software repair,” Software Quality Journal, 2013, to appear.

[53] M. Harman, “Open problems in testability transformation,” in
1st International Workshop on Search Based Testing (SBT 2008),
Lillehammer, Norway, 2008.

[54] ——, “Software engineering meets evolutionary computation,” IEEE
Computer, vol. 44, no. 10, pp. 31–39, Oct. 2011.

[55] M. Harman, A. Mansouri, and Y. Zhang, “Search based software
engineering: A comprehensive analysis and review of trends techniques
and applications,” Department of Computer Science, King’s College
London, Tech. Rep. TR-09-03, April 2009.

[56] T. E. Colanzi, S. R. Vergilio, W. K. G. Assuno, and
A. Pozo, “Search based software engineering: Review and

analysis of the field in Brazil,” Journal of Systems
and Software, 2012, available online. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121212002166

[57] N. Alshahwan and M. Harman, “Automated web application testing using
search based software engineering,” in 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), Lawrence,
Kansas, USA, 6th - 10th November 2011, pp. 3 – 12.

[58] M. Harman, Y. Jia, and B. Langdon, “Strong higher order
mutation-based test data generation,” in 8th European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE ’11). New York,
NY, USA: ACM, September 5th - 9th 2011, pp. 212–222. [Online].
Available: http://doi.acm.org/10.1145/2025113.2025144

[59] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: A tool for search
based software testing for the C language and its evaluation on deployed
automotive systems,” in 2nd International Symposium on Search Based
Software Engineering (SSBSE 2010), Benevento, Italy, September 2010,
pp. 101 – 110.

[60] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’04). Boston, Massachusetts, USA: ACM, 11-14 July
2004, pp. 119–128.

[61] I. H. Moghadam and Mel Ó Cinnéide, “Code-Imp: A tool for automated
search-based refactoring,” in Proceeding of the 4th workshop on
Refactoring Tools (WRT ’11), Honolulu, HI, USA, 2011, pp. 41–44.

[62] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[63] Y. Jia and M. Harman, “Milu: A customizable, runtime-optimized higher
order mutation testing tool for the full C language,” in 3rd Testing
Academia and Industry Conference - Practice and Research Techniques
(TAIC PART’08), Windsor, UK, August 2008, pp. 94–98.

[64] A. Ngo-The and G. Ruhe, “A systematic approach for solving the wicked
problem of software release planning,” Soft Computing - A Fusion of
Foundations, Methodologies and Applications, vol. 12, no. 1, pp. 95–108,
August 2008.


