
Composite Refactorings for Java Programs

Mel Ó Cinnéide1 and Paddy Nixon2

1 Department of Computer Science, University College Dublin, Dublin 4, Ireland.
mel.ocinneide@ucd.ie

http://www.cs.ucd.ie/staff/meloc/default.htm
2 Department of Computer Science, Trinity College Dublin, Dublin 2, Ireland.

paddy.nixon@cs.ucd.ie

Abstract. There has been much interest in refactoring recently, but lit-
tle work has been done on tool support for refactoring or on demonstrat-
ing that a refactoring does indeed preserve program behaviour. We pro-
pose a method for developing composite refactorings for Java programs
in such a way that a rigorous demonstration of behaviour preservation
is possible.

1 Introduction

A refactoring is a change made to the internal structure of software that im-
proves it in some way but does not alter its observable behaviour [2]. Refactoring
has increased in importance as a technique for improving the design of existing
code, especially with the advent of methodologies such as Extreme Program-
ming [1] that involve little up-front design and multiple iterations through the
software lifecycle. The earliest significant work on refactoring was the suite of
C++ refactorings developed by William Opdyke [4]. This work was hampered by
the low-level complexities of the C++ language and was never developed into a
practical tool. It did however form the basis for the development of the Smalltalk
Refactory Browser [6]. Smalltalk is a much cleaner language than C++ and this
refactoring tool has been very successful. Its principal limitation is probably
that Smalltalk is not a very widely-used language outside of academia. These
experiences suggest that the Java programming language may be a promising
language to serve as a domain for refactoring development. In spite of the ob-
vious syntactic similarities, it is a much simpler language than C++ and has
become extremely popular in the past number of years.

The ultimate aim of our work is the development of a methodology for the
construction of program transformations that introduce design patterns to a
Java program [3]. The algorithm that describes a design pattern transformation
is expressed as a composition of refactorings using sequencing, iteration and con-
ditional constructs. This type of transformation must not change the behaviour
of the progam, and so it is necessary to be able to calculate if a given composition
of primitive refactorings is itself behaviour preserving. Each primitive refactoring
has a precondition and a postcondition. When applied to a program for which



the precondition holds, the resulting transformed program exhibits the same
behaviour as the original, and the postcondition holds for this program. This
paper describes a technique that, given a composition of refactorings, computes
whether it is a refactoring, and what its pre- and postconditions are.

2 Preliminaries

Is this section we describe the mathematical notation we use and outline the
basic elements of our approach.

2.1 Notation

We use the same notation as Roberts in his refactoring work [5]:

– P : This is the program to be refactored.
– IP : Denotes an interpretation of first-order predicate logic where the domain

of discourse is the program elements of P.
– |=IP preR: Denotes the evaluation of the precondition of the refactoring R

on the interpretation IP .
– postR(IP ): Denotes the interpretation IP , rewritten with the postcondition

of the refactoring R.
– f [(x, y)/true]: Denotes the function f , extended with the new element (x, y).

This syntax is used in postconditions to describe the effect of the refactoring
on the analysis functions.

2.2 Analysis Functions

We do not explicitly build an internal representation of the program; rather the
required information is extracted when needed. Analysis functions are used to
extract this information. They serve a dual role in that they are used both in
specifying the preconditions to the refactorings and as an transformation de-
signer’s view of the program being transformed. An example of the specification
of an analysis function is as follows:

Boolean contains(c:Class, m:Method): Returns true iff the class c con-
tains the method m.

2.3 Helper Functions

In describing a refactoring it may be necessary to extract richer content from
the program code than is provided by the analysis functions. Helper functions
are used to perform this type of task. As they are not at the primitive level of
the analysis functions, we provide them with pre- and postconditions. Helper
functions are proper functions without side-effects on the program, so the post-
condition invariably involves the return value of the helper function itself. For
example the makeAbstract helper function is specified as follows:



Method makeAbstract(c:Constructor, newName:String): Returns a method
called newName that, given the same arguments, will create the same
object as the constructor c.
pre: None.
post: createsSameObject′ = createsSameObject[(c,m)/true] ∧

nameOf′ = nameOf[(m,newName)/true], where m is the returned method.

2.4 Primitive Refactorings

Composite refactorings are built upon a layer of primitive refactorings. Each
primitive refactoring is given a precondition written in first-order predicate logic
and a postcondition that describes the effect of applying this refactoring in terms
of changes to the relevant analysis functions. An argument that behaviour is
preserved by this transformation is also provided. This is not formal, but it is
at least as strong as the argument a programmer would make internally were
they to perform the refactoring by hand. Also, this argument is only made once
by the designer of the primitive refactoring and is effectively reused each time
a new composite refactoring uses the primitive refactoring. As an example, the
addMethod refactoring is specified as follows:

addMethod(c:Class, m:Method): Adds the method m to the class c.
A method with this signature must not already exist in this class or its
superclasses. This refactoring extends the external interface of the class.

pre: isClass(c) ∧ ¬defines(c, nameOf(m), sigOf(m))
post: contains′ = contains[(c,m)/true] ∧

∀ a:Class, a �=c, if equalInterface(a,c) then
equalInterface′ = equalInterface[(a,c)/false].

behaviour preservation: Since a method with the same name and
signature as the method being added is not defined in the class, there
can be no name clashes and no existing invocations of this method.

3 Composite Refactorings

In this section we describe the way in which refactorings are composed, and
present a technique for deriving the pre- and postconditions of a composite
refactoring. The importance of this technique lies in the fact that it allows us
to build complex transformations as a composition of primitive refactorings and
then to check the legality of the composition and calculate its pre- and postcon-
ditions. Here we consider two ways in which refactorings are composed, namely
chaining and set iteration.

Chaining is where a sequence of refactorings are applied one after the other.
For example, the following chain adds methods foo and foobar to the class c.

addMethod(c,foo)
addMethod(c,foobar)



Set iteration is where a refactoring or a refactoring chain is performed on a
set of program elements. For example, the following set iteration copies all the
methods of the class a to the class b.

ForAll m:Method, classOf(m)=a {
addMethod(b,m)

}
A selection statement can also be used. For space reasons we omit it here.

3.1 Computing Pre- and Postconditions for a Chain of Refactorings

A chain of refactorings may be of any length, but we can simplify the compu-
tation of its pre- and postconditions by observing that we need only solve the
problem for a chain of length 2. This procedure can then be repeatedly applied to
the remaining chain until the full pre- and postconditions have been computed.

The two refactorings to be composed are referred to as R1 and R2. For a
general refactoring Ri, its precondition and postcondition are denoted by preRi

and postRi respectively. Figure 1 presents a graphical depiction of this. The

R
2

R
1

PreR1 PreR2PostR1 PostR2

Precomposite Postcomposite

Fig. 1. A Refactoring Chain

precondition of this chain is not simply the conjunction of preR1 and preR2 .
Firstly, postR1 may guarantee preR2 which means that an unnecessarily strong
precondition would result. Secondly, although the precondition for R2 may be
made part of the precondition for the chain, the refactoring R1 may break it
meaning that this composition of refactorings can never be legal.

The technique we present first attempts to compute the precondition of the
chain. During this computation it may emerge that the chain is illegal. Assuming
the chain is indeed legal, its postcondition is computed.

1. Legality test and precondition computation: First we compute the parts of
preR2 that are not guaranteed by postR1 :

|=postR1 (IP ) preR2

If a contradiction arises in this evaluation, the chain is illegal. The post-
condition of the first refactoring creates a condition that contradicts the
precondition to the second refactoring.
The precondition of the complete chain is obtained by evaluating:



preR1∧ |=postR1 (IP ) preR2

A contradiction can arise in this evaluation as well, and this also means
that the chain is illegal. In this case the precondition to the first refactoring
demands a certain condition that contradicts the precondition to the second
refactoring, and the first refactoring does not change this condition.

2. Postcondition computation: The postcondition is obtained by “sequentially
ANDing” the postconditions. By this we mean that if postR1 ∧ postR2 leads
to a contradiction, the part of postR1 that causes the problem is dropped.
So if postR1 contains the mapping:

classOf ′ = classOf [(foo, c)/true]
and postR2 contains the mapping:

classOf ′ = classOf [(foo, c)/false]
then it is classOf ′ = classOf [(foo, c)/false] that becomes part of the post-
condition of the chain. Denoting this operator as ∧seq we state the postcon-
dition of the chain to be:

postR1 ∧seq postR2

3.2 Computing Pre- and Postconditions for a Set Iteration

A set iteration has the following format:

ForAll x:someProgElement, somePredicate(x,...) {
someRefactoring(x, . . . )

}
where “. . .” denotes the program entities that are arguments to the predicate
and/or arguments to the refactoring. If the set of x of type someProgElement
that satisfies somePredicate(x, . . .) is given as {x1, x2 . . . , xn}, then this itera-
tion may be viewed as the following chain:

someRefactoring(x1, . . .)
someRefactoring(x2, . . .)
. . .
someRefactoring(xn, . . .)

However this is a set iteration, so the refactorings can take place in any order.
In particular any of them can be first and this fact enables us to define when a
set iteration is legal and what its pre- and postconditions should be.

1. Legality test : A set iteration is illegal if the precondition of any component
refactoring depends on the postcondition of another component refactoring.
It is also illegal if the postcondition of any component refactoring contradicts
the precondition of another component refactoring.

2. Precondition computation: The precondition of the first refactoring of a chain
must form part of the precondition for the whole chain, so the precondition
of the set iteration must be at least the ANDing of the preconditions of
each of the component refactorings. Nothing stronger is required, so the
precondition for the above chain can be expressed as:



i=n∧

i=1

presomeRefactoring(xi,...)

3. Postcondition computation: By a similar argument, the postcondition for the
above chain can be expressed as:

i=n∧

i=1

postsomeRefactoring(xi,...)

The legality test for a set iteration is not as prescriptive as in the chaining
case. It is usually necessary to study the general postcondition carefully to ensure
that it has no impact on the precondition on another iteration. It has nevertheless
proved to be useful in the cases we have examined.

4 Conclusions

We have described a method for building composite refactorings based on a set
of primitive refactorings. Our layer of primitive refactorings are Java-specific,
though in principle they could be defined for another language as well. The
method of computing the pre- and postconditions of a composite refactoring is
similar to Roberts’ approach [5], but our work improves on this in several ways.
We explicitly calculate whether or not a composite refactoring is legal and we
also compute its postcondition as we want to be able to use this composite as
a component in future composite refactorings. Roberts also only permits chains
of refactorings and does not consider any type of iteration.

We have successfully designed and implemented several composite refactor-
ings that introduce design patterns to a Java program. The techniques described
here improved our confidence greatly that the transformations are behaviour pre-
serving. The computation of pre- and postconditions is currently performed by
hand by the designer of the design pattern transformation, but our aim is to
automate much of this work in the future. We believe that the layer of primi-
tive refactorings we have built coupled with the composition method provides a
useful support for further work in the area of refactoring of Java programs.

References

1. Kent Beck. Extreme Programming. Addison Wesley Longman, Reading, Massa-
chusetts, first edition, 2000.

2. Martin Fowler. Refactoring: improving the design of existing code. Object Technol-
ogy Series. Addison-Wesley Longman, Reading, Massachusetts, first edition, 1999.

3. Mel Ó Cinnéide and Paddy Nixon. A methodology for the automated introduction
of design patterns. In Hongji Yang and Lee White, editors, Proceedings of the Inter-
national Conference on Software Maintenence, pages 463–472, Oxford, September
1999. IEEE Press.

4. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD dissertation,
University of Illinois at Urbana-Champaign, Department of Computer Science, 1992.

5. Donald Roberts. Eliminating Analysis in Refactoring. PhD dissertation, University
of Illinois at Urbana-Champaign, Department of Computer Science, 1999.

6. Donald Roberts, John Brant, and Ralph Johnson. A refactoring tool for smalltalk.
Theory and Practice of Object Systems, 3(4), 1997.


