
Chapter 1

Introduction

Getting a design right first time is impossible. One of the major advances

in software development thinking in the past decade has been the notion

that the process of building a software system should be an evolutionary one

[10, 81, 48, 3]. Rather than the classical waterfall model where analysis is fully

completed before design, and design fully completed before implementation,

evolutionary approaches are based on building a simple version of what is

required and extending this iteratively to build a more complicated system.

As John Gall put it:

“A complex system that works is invariably found to have evolved

from a simple system that worked.” [40, p.50]

Or in Kent Beck’s inimitable style:

“Start stupid and evolve.” (quoted in [96])

We are interested in developing a particular type of automated transfor-

mation to provide support for software evolution. In section 1.1 we explain

more exactly what type of transformations we will focus on and describe this

in the context of software evolution. In section 1.2 we show how our approach

1



also addresses problems faced in the reengineering of legacy systems. In sec-

tion 1.3 we state both the thesis and principle contributions of our work, and

finally, in section 1.4, we provide a road map of this dissertation.

1.1 Evolutionary Approaches to Software De-

velopment

In an evolutionary approach to software development, a simple working sys-

tem is built which subsequently undergoes many evolutions until the desired

system is reached1. At each stage there is a working system which is to be

extended with a new requirement or set of requirements. It is very unlikely

that the design of the initial system will be flexible enough to elegantly sup-

port the later requirements to be added in. Consequently, it is to be expected

that when the system is to be extended with a new requirement, its design

will also have to be made more flexible in order to accommodate the new

requirement elegantly. Current thinking recommends breaking this process

of extending a system into two stages [5, 35, 45], [38, p.7]:

1. Program Restructuring: This involves changing the design of the pro-

gram so as to make it more amenable to the new requirement, while

not changing the behaviour of the program.

2. Actual Updating: Here the program is changed to fulfill the new re-

quirement. If the restructuring step has been successful, this step will

be considerably simplified.

1As remarked in [92], one can never speak of the “final” system. Useful systems tend

to evolve continually during their lifetime.

2



This thesis will present a novel approach to providing sophisticated auto-

mated support for the restructuring step.

Let us consider now what type of restructurings a designer may want to

perform in order to make a system more flexible and able to accommodate a

new requirement. A designer usually has an architectural view of how they

wish the program to evolve that is at a higher level than, for example, simply

creating a new class or moving an existing method. Probably the most inter-

esting and challenging category of higher-level transformation that a designer

may wish to apply comprises those transformations that introduce a design

pattern2 [41]. Design patterns typically loosen the coupling between program

components, thus enabling certain types of program evolution to occur with

minimal change to the program itself. For example, the instantiation of a

Product class within a Creator class could be replaced by an application of

the Factory Method pattern3. This would enable the Creator class to be

extended to instantiate a subclass of the Product class without significant

reworking of the existing code.

The restructurings we develop in this thesis will be those that automate

the introduction of design patterns to an existing object-oriented program.

The scenario we consider is as follows: An existing program is being extended

with a new requirement. After studying the code and the new requirement,

the designer concludes that the existing program structure makes the desired

extension difficult to achieve, and that the application of some particular

design pattern would introduce the necessary flexibility to the program. It is

at this point that we aim to provide automated tool support. The designer

selects the design pattern to be applied and the program components that

2See section 2.2 for a more detailed description of design patterns.
3See appendix A for a description the Factory Method pattern

3



are to take part in the restructuring, and our tool applies that design pattern

to the given program components in such a way that program behaviour is

maintained.

A key aspect of this approach is that the intellectual decision of what

design pattern to apply, and where to apply it, remains with the designer.

We are not attempting to formalise or automate quality; our aim is to remove

the burden of tedious and error-prone code reorganisation from the designer.

In this thesis we will present and validate a methodology for the development

of automated design pattern transformations.

1.2 Legacy Systems

Brodie and Stonebraker provide a widely-accepted definition of a legacy sys-

tem:

“[A legacy system is one] that significantly resists modification

and evolution to meet new and constantly changing business re-

quirements.” [12, p.xv]

Legacy systems frequently require restructuring in order to make them

more amenable to changes in requirements. This restructuring is performed

either by hand, or through the use of automated tools, for example, [6].

In the latter case, the designer usually specifies certain operations to be

carried out, for example, to extract a method from existing code or to move

a method from one class to another, and the tool handles the mundane details

of performing the transformation itself.

There are clear similarities between a designer restructuring a program

that is still under development as described in the previous section, and the

restructuring of a legacy system. In both cases the following conditions exist:

4



• A new requirement (or requirements) has arisen that the program must

fulfill.

• The structure of the program is not flexible enough to accommodate

the new requirement(s) easily and elegantly.

• The existing program exhibits useful behaviour that must be main-

tained by any reorganisation that takes place.

The similarity between the forward engineering scenario and the restructur-

ing of a legacy system becomes even clearer when the following points are

considered:

• The notion of a legacy system usually evokes an image of an aged

system developed with now-defunct technology. However, in the above

definition there is no mention of age; a week-old program developed

using the latest technology can perfectly fit the definition of a legacy

system.

• An evolutionary-centric development methodology such as Extreme

Programming4 can be viewed as actually encouraging the creation of

a series of legacy systems. Little up-front design is performed, so with

each new requirement that is added, the program is restructured just

enough to elegantly accommodate the new requirement.

The conclusion is that evolutionary software engineering and legacy systems

reengineering are not such different processes. The design pattern transfor-

mations described in this thesis are applicable in both cases.

4Extreme Programming is discussed further on page 60.

5



1.3 Thesis and Contributions

In the last two sections we described how introducing design patterns to a

program is part both of forward software engineering and of reengineering

of a legacy system. The fundamental thesis of this work can be stated as

follows:

Automating the application of design patterns to an existing pro-

gram in a behaviour preserving way is feasible.

The following are the principle contributions of this thesis:

• A methodology for developing design pattern transformations. This is

the essential contribution of this work. The methodology we have de-

veloped has been applied with full rigour to seven common design pat-

terns5, and a prototype software tool has been built that can apply

these seven design patterns to Java programs6. The methodology has

also been applied to the remaining patterns in the Gamma et al pat-

tern catalogue [41], though these pattern transformations have not been

prototyped. The essence of our methodology has been published in

summary form in [74, 72], and more completely in [75].

• A minitransformation library. Design pattern transformations have a

strong degree of commonality and this has been captured in a set of

six minitransformations. These minitransformations have been imple-

mented and demonstrated to be widely applicable in developing design

pattern transformations.

5The seven design patterns to which the methodology has been fully applied are Ab-

stract Factory, Factory Method, Singleton, Builder, Prototype, Bridge and Strategy [41].
6We have used Java as the vehicle language for this work. The possibility of language

independent approaches is discussed on page 165 in section 6.2.

6



• A model for behaviour-preservation proofs. The transformations we

develop must be invariant with respect to program behaviour. In order

to prove this rigorously for the sophisticated program transformations

that we develop, we have extended existing refactoring work by allowing

the transformation definition to contain not only simple sequences, but

also iteration and conditional statements. This model has been applied

in full rigour to several examples, and has been published in [76].

1.4 Thesis Outline

This thesis is structured as follows:

Chapter 1 (this chapter) introduces the topic of automated design pattern

transformations and places it in the context of evolutionary approaches to

software engineering and legacy system reengineering.

Chapter 2 describes in detail the background to this work, namely program

restructuring and design patterns. Note that research that is very directly

related to our work is discussed in the relevant later chapter.

Chapter 3 presents our approach to demonstrating that a program trans-

formation preserves the behaviour of the program and applies it in full rigour

to a realistic example.

Chapter 4 describes our methodology for the development of automated

design pattern transformations by applying it in detail to a single flagship

example.

Chapter 5 applies the methodology to the entire Gamma et al design pat-

tern catalogue [41] and analyses the results.

Chapter 6 contains our overall conclusions and presents future work in the

area of automated design pattern transformations.

7



Appendix A contains a description of the Factory Method design pattern,

which is the subject of chapter 4.

Appendix B contains the complete specification of all analysis functions,

helper functions and primitive refactorings that are used in this work.

Appendix C describes briefly the minitransformations that we developed,

and provides a reference to the more detailed description in the main text.

Appendix D describes the architecture of the software prototype developed

in this work and presents an example of its application.

8


