
Chapter 2

Background

In this chapter we explore the background to this research, with the aim of

putting our work in context. We survey the two research fields that form

the foundation of this work, namely program restructuring (2.1) and design

patterns (2.2). In section 2.3 we state precisely the gaps our work aims to

fill in the existing literature, and, in section 2.4, the chapter is summarised.

Detailed analyses of very closely related work and comparisons between

our work and others are not covered in this chapter, but appear in later

chapters.

2.1 Program Restructuring and Refactoring

2.1.1 Definitions

In their widely-used taxonomy of reengineering terms, Chikofsky and Cross

define restructuring in this way:

Restructuring is the transformation from one representation form

to another at the same relative abstraction level, while preserv-

9



ing the subject system’s external behaviour (functionality and

semantics).[19]

Program restructuring then is a source-to-source restructuring that preserves

the semantics and external behaviour of the program.

The first use of the term “refactoring” in the literature was in the work

of Opdyke and Johnson [78], though the practice was in use well before

this. Opdyke defines refactorings as “behaviour-preserving program restruc-

turings1,” which is the definition we use in this work. Fowler uses a similar

definition, though emphasizes that we expect the process of refactoring to

improve the design:

Refactoring is the process of changing a software system in such

a way that it does not alter the external behavior of the code, yet

improves its internal structure. [38, p.xvi]

Roberts changes the definition radically by also permitting “refactorings”

that change program behaviour [84]. While it is valuable to allow program

transformations that are not behaviour-preserving, the redefinition of a stan-

dard term seems very unnecessary, especially in a field that is already dogged

by confusing terminology [5].

We have used the term “behaviour preserving” without being specific as

to what is meant. Opdyke defined it in terms of observable behaviour, i.e.,

that the program must produce the same externally observable behaviour for

any legal input before and after the refactoring [77]. Roberts correctly points

out that if timing constraints are taken to be part of program behaviour, it

becomes extremely difficult to argue behaviour preservation. Other non-

functional properties of a program, for example memory usage or patterns

1This is tautological, since restructurings are, by definition, behaviour preserving.

10



Domain of Source Programs Domain of Program Behaviours

Figure 2.1: Graphical Image of Refactorings

of network access, would also be very difficult to maintain in a refactoring2.

For these reasons, we do not consider in this work programs where timing

constraints or other non-functional requirements are part of their specifica-

tion.

2.1.2 A Global View of Refactoring

Figure 2.1 is a graphical depiction of refactoring and what it aims to achieve.

The domain on the left is the set of all source programs (e.g., all legal Java

programs) while the domain on the right depicts the set of all possible pro-

gram behaviours. The shaded subset on the left is a set of programs that all

exhibit the same behaviour, depicted by their all mapping to the same point

in the behaviour domain.

Refactoring research aims to show how, given a program in the shaded

set, it is possible to transform it to other programs in the same set. Of

2In a practical sense, the behaviour of a program that has been optimised to run in a

particular hardware/software environment could be affected by refactoring.

11



control

getInput process output

Figure 2.2: A Generic Structure Chart

course, it is not interesting to do this in a random fashion3; the aim is to

improve the design of the program according to some criteria. Refactoring

research aims then to build the “train tracks” that connect one program

to another program with the same behaviour. In the diagram, applying

a composition of refactorings is equivalent to moving along the track to a

possibly very different program structure, but one that nevertheless exhibits

the same external behaviour.

Refactoring research has really only taken place in the past decade, and

has been focused on the transformation of object-oriented programs. To

understand why it never received much attention in the context of structured

programming, consider the generic structure chart depicted in figure 2.2, and

what sort of refactorings could be applied to it. It is hard to propose much,

other than that data that is passed around the chart a lot could be moved

to a shared data structure. The problem to be solved has been factored into

a number of functions and these have been fixed in a tight control structure

where little movement is possible.

By way of contrast, consider the generic class diagram of figure 2.3. Even

without any knowledge of the actual application, many possible refactorings

3A quirky notion would be to apply refactorings to a program pseudo-randomly, perhaps

using simulated annealing, and use some metrics suite to decide if the design was improved.

12



B

y

foobar()

A

x

foo()

Figure 2.3: A Generic UML Class Diagram

come to mind. An interface could be added to the class B and the class A

updated to access B only via this interface. The method foo could be moved

from the class A to the class B and replaced by a delegating method. Perhaps

foo could be moved to another class entirely and A updated to inherit it from

that class. Similar refactorings could be applied to the method foobar. We

could even contemplate replacing the aggregation relationship from A to B

with an inheritance relationship in the same direction. The fact that so many

potential refactorings spring from a simple class diagram is a consequence of

the much richer set of abstractions available in the object-oriented approach

when compared with the structured approach.

2.1.3 Formal and Informal Approaches to Behaviour

Preservation

It is theoretically impossible for a refactoring technique to relate all programs

that exhibit the same behaviour. In practice, we have to be very modest in

our aims. Few industrial languages have a formal semantics. Even rarer are

those that have a formal semantics and a compiler that verifiably implements

those semantics. Even given a formal semantics for an industrial language,

the complexity of the behaviour preservation proofs for non-trivial transfor-

mations will be intractable. Approaches based on a formal semantics of the

programming language cannot therefore be currently expected to produce a

13



working software tool4.

Existing refactoring work has generally relied on either a semi-formal

demonstration of behaviour preservation [77], or indeed no demonstration of

behaviour preservation at all [38]. The former approach is appealing, in that

it mimics to some degree what a disciplined programmer will do in prac-

tice when refactoring a program. They will certainly not just change it and

hope for the best; they will reason logically that the change they intend to

make is behaviour preserving. This is an interesting middle-ground between

a fully-formal approach to proving behaviour preservation and ignoring the

issue completely. By constructing a semi-formal proof of behaviour preserva-

tion we improve our confidence that the transformations we build are indeed

refactorings. Also, if in testing an error is found in that a supposed refactor-

ing changes the behaviour of the program it has been applied to, the error

can be traced back to the proof and corrected there.

This notion of behaviour preservation admits many simple program refac-

torings. Assuming certain pre-conditions are met by the program being trans-

formed, classes, methods and interfaces may be added or removed; invoca-

tions of a method may be replaced by invocations of another method; access

to a field may be replaced by a method invocation, and so on. We will see

later in this work how such simple refactorings can be combined to produce

complex transformations that have a profound effect on program structure.

4For an interesting example of a formal, correctness-preserving approach to program

restructuring applied to a small-scale software engineering problem, see [42]. This approach

requires significant work in reverse engineering the program, and it is not apparent whether

the transformations used can be automated.

14



2.1.4 Existing Work in Automated Refactoring

So far we have discussed refactoring in general, but the main focus of this

thesis is specifically automated refactoring. Obviously automation is valu-

able: once the programmer decides that a certain refactoring should take

place, much of what remains is tedious and error-prone work. Such work

should, where possible, be automated. At the simplest level, the program-

mer should be able, for example, to rename a class, and have the refactoring

tool check that the new name is not already in use and update all uses of

the old class name to the new class name. At a much more complex level,

the programmer should be able to select a number of program elements and

apply a sophisticated, high-level restructuring to them; this is the direction

this thesis will take.

The work of Opdyke and Roberts forms the basis for the automated

refactoring approach taken in this thesis. Opdyke defined a set of refactorings

that could be applied to a C++ program [77] and in further work showed

how they could be used to construct higher-level refactorings, for example,

to convert an inheritance relationship to an aggregation one, and vice versa

[51]. Roberts [84] extended Opdyke’s work by providing a more formal basis

for composing refactorings, and examined the use of dynamic information in

refactoring. This work will be extensively cited throughout this thesis, so it

is not discussed further here. In the following subsections we consider some

of the other approaches that have been taken to automated refactoring. In

many cases the term refactoring has not actually been used, but the work

nevertheless involves behaviour preserving restructuring of object-oriented

programs.

15



Approaches to Inheritance Hierarchy Reorganisation

One of the significant contributions of the object-oriented approach was that

it made inheritance a firm part of mainstream software development. Design-

ing a class hierarchy is a difficult task however, so many attempts have been

made to provide automated support for this process. Probably the earliest

work that addressed this issue was that of Pun and Winder [80]. When a

designer adds a class to a hierarchy, the design of the hierarchy may cause

the class to inherit unwanted attributes. This indicates that the hierarchy

should be reorganised to separate the attributes that the designer would like

to be inherited from the undesirable ones. Pun and Winder show how this re-

organisation process can be automated and partly formalise their work using

an algebraic manipulation system.

Casais solves the “inheritance of unwanted features” problem in a some-

what different way, specifying both global and incremental algorithms that

reorganise a class hierarchy so as to remove the inheritance of unwanted fea-

tures [16, 17]. This improves on Pun and Winder’s work in that it allows

incremental reorganisation of a class library whenever a class is added to it.

Casais also defines how to automate this restructuring algorithm precisely

and, in [18], presents the results of applying his restructuring algorithms to

the Eiffel libraries. His restructurings are intended to operate in automatic

mode, which has the benefit that they can be applied to very large hierar-

chies, but the disadvantage that they will, in some cases, produce a result

that is either incomprehensible, or of no software engineering impact.

Lieberherr, Bergstein and Silva-Lepe describe an algorithm that learns

a class library from a set of object examples, and minimises the number of

aggregation and inheritance relationships5 in this library, while preserving the

5These are the usual interpretation of the construction and alternation relationships in

16



set of objects defined by the library [59, 7]. This work is based on the accepted

philosophy that abstractions are discovered rather than invented [50], so it

makes sense to allow a designer to define the concrete objects they want to

use, and then to learn the class hierarchy from these examples. More recent

work by Hürsch and Seiter in the same area describes a set of behaviour-

preserving transformations that can be applied to a class library [45]. This

work has never achieved popularity in mainstream software development,

probably due to the fact that it is tightly bound to the seldom-used adaptive

software model, where class structure (the class graph) is modelled separately

from behaviour (propagation patterns). This contrasts strongly with the

work of Opdyke and Roberts, and the work presented in this thesis, that

simply assumes the class library to be specified in a mainstream programming

language6.

Ivan Moore has developed a tool called Guru that can analyse and restruc-

ture an inheritance hierarchy expressed in the Self programming language

[67, 69]. The inheritance hierarchy is optimised in a certain way, whilst pre-

serving program behaviour. Optimal is taken to mean that duplicate methods

are removed, method sharing is maximised, and redefinition of methods is

avoided. Moore found that in general some manual intervention was neces-

sary to produce a good result, and that given an incompetently-developed hi-

erarchy as input, the restructuring could not improve it (“garbage in, garbage

out”). There is also the risk with this sort of automated restructuring that

the essential abstractions that the programmer defined in the hierarchy will

be removed by the restructuring, if they have not yet actually been made

use of. In [68] Moore extends this restructuring algorithm to refactor meth-

the Demeter notation.
6Opdyke’s refactorings transformed C++ programs, Roberts developed the Smalltalk

Refactoring Browser, while this thesis will focus on transforming Java programs.

17



ods by moving common expressions to separate methods and invoking them

there. While this method-level refactoring can reduce the amount of code in

the application and increase reuse, the new methods it introduces will not

necessarily appear cohesive to the programmer.

Snelting and Tip propose reengineering class hierarchies using concept

analysis [91]. When a designer creates a class hierarchy, they are in effect

describing their perception of the key classes and relationships in the domain

they are modelling. A programmer who uses this hierarchy may find that

the classes provided are not quite what are required in their application,

and this will appear as anomalies in their code. For example, a class may

not use all the functionality of its superclass, or the application may create

several objects of the same class, but use different subsets of the class’s

functionality in different contexts. In both these examples, the user of the

hierarchy requires different classes (or concepts) from the ones provided by

the designer of the hierarchy. In this work a concept lattice is constructed

that highlights the concepts that the programmer has actually made use of.

This provides valuable guidance in reengineering the class hierarchy; in the

examples described above, the classes in question probably need to be split.

The type of transformations this analysis produces would have the effect of

making the class hierarchy represent more truly the programmers’ view of

the domain. In the context of this thesis, the reengineering described in this

paper could be undertaken prior to the introduction of a design pattern.

Other Approaches

Ducasse, Rieger and Demeyer describe a technique for detecting duplicated

code based on simple string comparisons to detect identical lines of code,

and the use of a scatter plot to visualise the results of the comparisons [28].

18



For a program with n lines of code, the corresponding scatter plot would be

an n-by-n matrix where a dot is present at location (i, j) only when line i

in the program is identical to line j. This work is used as a basis in [29],

where a preliminary proposal is made for tool support for refactoring to

remove duplicated code. They suggest that full automation is possible only

in simple cases of exact code cloning, and that programmer intervention will

be required in most cases.

Sweeney and Tip developed an automated approach to detecting dead

data members in C++ applications [95]. A data member m is defined to

be dead if there is no object in the program that contains m such that the

value of m can affect the program’s external behaviour. Naturally, detecting

such dead data members paves the way for a simple refactoring that removes

them. This type of refactoring appears unremarkable but the results achieved

were dramatic. On the benchmarks tested, an average of 12.5% of the data

members were found to be dead, and the average occupancy of run-time ob-

ject space by dead data was found to be 4.4%. This suggests that refactoring

research is still in its infancy, and that a lot can still be achieved with quite

simple techniques.

Maruyama and Shima present an approach to method refactoring based

on the usage patterns of a framework [63]. The basis is that a method in a

framework has dependencies on other framework methods that to a greater or

lesser degree match how programmers using the framework will override the

method. If the method is normally overridden in such a way as to preserve

these dependencies, it suggests that the interaction with the other methods

is invariant and can be captured in a template method. Conversely, if the

method is normally overridden in such a way as to destroy these dependen-

cies, it suggests that the method represents a “hot spot” [79] and is better

19



modelled as a hook method. In the first case, the transformation will mean

that a programmer using the framework has less code to write; in the latter

case it will mean that the programmer has less code to read. Experimental

results presented in [63] produced a reduction of up to 22% in the num-

ber of statements a programmer has to write when using the framework to

develop new applications. Because the refactoring process operates in au-

tomatic mode, it exhibits the attendant problem of creating new methods

that may appear meaningless to the programmer. Nevertheless the results of

this approach seem very valuable, probably because using the modification

histories of the methods in the framework is in effect giving the programmer

indirect control over what refactorings take place.

2.1.5 Categorisation of Refactoring Approaches

There are a number of attributes that can be used for categorising approaches

to refactoring. The most significant ones are as follows:

• Method of Application: In a fully-automated approach a software tool

is used that applies a large scale restructuring to the program. A semi-

automated approach also involves a software tool, but involves the user

choosing what refactorings are to be applied. Finally, the user can

simply apply the refactoring by hand.

• Approach to Behaviour Preservation: The simplest approach is where

no proof of behaviour preservation is presented; it is simply taken for

granted or assumed to be obvious. A semi-formal proof means that

some formal model (usually first-order predicate logic) is used to sup-

port the behaviour preservation arguments, but the reasoning used is

not limited to syntactic deduction. In a fully formal approach, a formal

20



model is used that reflects the semantics of the programming language

sufficiently strongly that an entire behaviour preservation proof can be

constructed in the formal domain.

• Method of Composition: A refactoring approach that provides a suite of

refactorings will usually also provide a method for composing them. In

dynamic composition the user is allowed to combine refactorings freely

as they are working on the code, while static composition approaches

provide the user with a set of higher-level (composite) refactorings.

For example, Fowler presents a catalogue of refactorings [38] that are to be

applied by hand, no proof of behaviour preservation is provided, and nothing

is said about composing these refactorings. On the other hand Robert’s

refactorings [84] are applied semi-automatically (the user states where to

apply them), a semi-formal proof of behaviour preservation is provided, and

a dynamic method of refactoring composition is provided.

In general, the fully automatic method of application has the advantage

that it may be left run in batch mode on a large system without requiring

user intervention. It may however perform refactorings that are of little or

no real significance, and the ultimate results may be hard to comprehend.

As discussed earlier, a behaviour preservation argument is desirable, though

the fully-formal approach is not promising.

As regards composition of refactorings, the dynamic approach is the freer

and more expressive one. However the static approach allows powerful refac-

torings to be developed, tested extensively and then presented to the user as

a reliable refactoring option.

The approach we take in this thesis is to statically develop semi-automated,

composite refactorings, and to develop for each one a semi-formal proof of

behaviour preservation.

21



2.2 Design Patterns

Patterns have been one of the most significant developments in software

engineering in the past decade. The aim of this field is to identify and cat-

alogue the knowledge and expertise that has been built up over many years

of software engineering. Patterns can be identified in all parts of the de-

velopment process: architecture, analysis, design, coding, reengineering, as

well as in specific application areas such as real-time programming or user

interface construction. Patterns are in no way invented; they are discovered

or “mined” from existing systems. The motivation is to uncover proven de-

signs that experts have already used and reused, and to distill from these

the essence of the solution with domain-specific detail removed. The result-

ing nugget of design wisdom can then be documented and made generally

available. This pattern can be assimilated by other designers and applied in

other domains.

The notion of a pattern in software was borrowed from the work of the

architect Christopher Alexander, who described the process of architecting

living space (be it the corner of a room or an entire city) in terms of patterns.

He defined the notion of a pattern in the following way:

Each pattern is a three-part rule, which expresses a relation be-

tween a certain context, a problem, and a solution. [1, p.247]

Varying definitions of the term pattern abound, but this “three-part” version

suits our current purposes. Richard Gabriel puts the Alexandrian definition

into a software context in this way:

Each pattern is a three-part rule, which expresses a relation be-

tween a certain context, a certain system of forces which occurs

22



repeatedly in that context, and a certain software configuration

which allows these forces to resolve themselves. [39]

This thesis is concerned with the automated application of design pat-

terns. We choose to work with patterns at the design level for two reasons:

• It is a richer set than the program-language specific patterns found at

the coding level.

• They are more concrete than those found at the analysis level so au-

tomating their application to source code is realistic.

The notions of formalisation and automation are not generally welcomed in

the patterns community. Jim Coplien expressed this distaste clearly:

Patterns aren’t designed to be executed or analyzed by comput-

ers, as one might imagine to be true for rules: patterns are to

be executed by architects with insight, taste, experience, and a

sense of aesthetics. [23]

We concur with this position in terms of the first two parts of the Alexan-

drian definition. Deciding that a context is appropriate for the application

of a pattern and assessing that the forces acting in this context will be re-

solved by the pattern is a matter of “insight, taste, experience, and a sense of

aesthetics.” However, the third part of the pattern definition, that of apply-

ing the software configuration that resolves the forces, is clearly a potential

candidate for automation. In chapter 4 we will present a methodology for

the development of automated design pattern transformations where the de-

signer defines the context to which the pattern is to be applied and the actual

application of the software structure is automated. Other work in the area

of automated pattern application is considered in that chapter as well, so in

23



this chapter we focus on other uses of formalisation and automation in the

context of design patterns.

2.2.1 Formalisation of Design Patterns

Anthony Lauder and Stuart Kent argue that existing pattern descriptions

suffer from being expressed in informal language and being overly-dependent

on a specific example to convey the essence of the pattern [56]. They conse-

quently develop a formal three-part model to describe a pattern, viz:

• Role model. This is the most abstract representation of the pattern.

The actors involved in the pattern are identified as well as their abstract

state and the essential collaborations between them. These definitions

are abstract and imply constraints that any refinement of the pattern

must respect.

• Type model. This is a refinement of the role model where roles are

replaced by domain-specific types that define concrete syntax for oper-

ations and add to the abstract semantics of the role model.

• Class model. This final refinement is the actual deployment of the

pattern in terms of concrete classes.

In each model, system dynamics can be expressed using a variant of the

UML sequence diagram. As each of the three models is formalised in terms

of sets and constraints, it has the potential to be used in the development of

automated tool support for patterns.

Amnon Eden et al have developed a declarative language called LePUS

that is specifically geared towards expressing the object-oriented motifs that

typically recur in design patterns [33, 32]. In LePUS a program is modelled as

24



sets of entities (classes and methods) and various relationships/collaborations

between these entities (inheritance, method invocation, method forwarding

etc.). In [33] LePUS is used to describe a set of the Gamma et al design

patterns [41] and to explore the relationships between patterns.

LePUS has both a graphical format and a textual one that closely resem-

bles Prolog. This latter fact makes it easy to implement a LePUS model as

a Prolog facts database and use it in various pattern activities [31]:

• Validation. Testing if a certain set of classes/methods fit a certain

pattern can be achieved by executing a query with these elements as

arguments to the query.

• Discovery. To discover an instance of a certain pattern in a model,

the query can be executed with variables instead of program elements.

This will attempt to match the pattern across the entire database.

• Application. Rather than searching for the pattern in the database,

the assertions representing the pattern are themselves added to the

database7.

A formal model of patterns certainly has potential to serve as a sound

foundation for automated pattern application. Work in this area is ongoing,

though as yet few working prototypes have been developed. One exception

is the work of Gert Florijn and his group, which is discussed on page 87.

2.2.2 Automated Detection of Design Patterns

Automated detection of design patterns is related to automated design pat-

tern application and has received some attention by researchers. The idea is

7Note that in our opinion this work does not fully address the issues involved in pattern

application, a position we outline in section 4.5

25



very tempting: leave an automated tool roam over a large software reposi-

tory and see what patterns it may find. There is potential to uncover new

patterns, or to find known patterns thus enhancing the comprehension of the

system.

Kyle Brown developed a tool that reverse engineers Smalltalk programs

and can recognise certain design patterns in the code [13]. In the tests he

conducted, it found several of the Gamma et al patterns [41] with good

success. In each case, the pattern structure it detected was later verified to

indeed be an instance of the relevant pattern. His case study was quite small

so it is hard to draw a firm conclusion from this.

Tonella and Antoniol use concept analysis to identify groups of classes

sharing common patterns of relationships, both structural (inheritance and

association) and non-structural (method invocation etc.) [98]. Their claim is

that these groupings are likely to represent design patterns that are present

in the code. In a case study, their approach successfully identified several

instances of the well-known Adapter pattern, and also aided in identifying

a domain-specific pattern related to input/output. Of course applying this

approach to poorly-written code would more likely uncover poor patterns

rather than good patterns.

Jahnke and Zündorf propose a method precisely for the identification

of poor patterns, with the intention of transforming them to good design

patterns8 [49]. They use Generic Fuzzy Reasoning Nets (GFRNs) to describe

the poor pattern structure that is to be transformed. Because it is “fuzzy,”

the description does not define one precise structure, but a more vague set

of structures that indicate that a certain pattern should be applied. The

poor pattern identification tool is intended to be used interactively: the user

8Their novel approach to pattern application is discussed in section 4.5.

26



identifies where they suspect a poor pattern to be and the GFRN uses fuzzy

inference to assess if the user is correct. They give an example of using their

approach to detect a set of global variables to which the Singleton pattern

could be applied, but otherwise this innovative work does not appear to have

been developed further.

Keller et al have developed the SPOOL environment for the reverse-

engineering of C++ code [52]. This is a collection of off-the-shelf tools

(parsers, browsers, layout generators etc.) that are combined to produce

an environment that can provide several abstract views of a software system.

In [52] SPOOL is used to recognise patterns during the process of reverse

engineering. They argue that rather than simply extracting a design from

source code, the rationale behind this design must also be uncovered9. Some

patterns can be recognised in a purely automatic way, while some require

user intervention. In [87] SPOOL is also used for the detection of hot spots

in a framework.

Considering pattern detection in terms of the three-part definition of pat-

tern given above, we see that fully automated approaches can only ever deal

with recognition of pattern structure. Pattern structure is insufficient in ex-

act design pattern recognition as the pattern structure may be present, but

not dynamic relationships or the intent. Also, several patterns have the same

pattern structure, and it is only the non-structural characteristics that differ-

entiate between them. Apart from the first approach above (that of Brown),

all the pattern recognition and detection work operates in a semi-automatic

way, where the user is involved in the process as well. This again brings the

“insight, taste, experience, and a sense of aesthetics” into play and means

9Extracting rationale as well as architecture is also the major theme in the work of

Woods et al [100].

27



that full pattern recognition is possible.

2.2.3 Patterns in Reengineering, Reverse Engineering

and Evolution

Automated introduction of design patterns has a clear application in reengi-

neering. In making a system more flexible to cope with future developments,

introduction of a design pattern is a likely task to undertake. There can also

be patterns in the actual process of evolution and reengineering itself, and it

is this work that we look at in this section.

Foote and Opdyke propose a nascent pattern language to describe the

process of developing usable software [37]. The topmost pattern, “Develop

Software that Is Usable Today and Reusable Tomorrow,” gives rise to three

patterns on the next layer:

• “Prototype a First-Pass Design.”

• “Expand the Initial Prototype.”

• “Consolidate the Program to Support Evolution and Reuse.”

Their work focuses then on further patterns that form part of the consoli-

dation pattern, ultimately leading to the low-level refactorings proposed by

Opdyke [77]. Although not explicitly mentioned, the pattern “Apply a De-

sign Pattern” would be part of consolidation as well, and this thesis provides

automated support for this process.

Demeyer, Ducasse and Nierstrasz propose a pattern language for reverse

engineering [24]. They subdivide these patterns into four clusters:

• First Contact: what to do when first approaching an unknown software

system.

28



• Initial Understanding: how to obtain a preliminary understanding of

the software system, mainly based on class diagrams.

• Detailed Model Capture: how to obtain a detailed understanding of

(part of) the software system.

• Prepare Reengineering: since reverse engineering is normally a precur-

sor to reengineering, this cluster of patterns shows how to prepare for

subsequent reengineering.

The patterns developed include the self-explanatory “Read all the Code in

One Hour” and “Recover the Refactorings,” which aims to recover what the

original developers learned during the iterative process of development. This

pattern language expresses the reverse engineering expertise developed by

the authors over several years of academic and practical experience, and so

reflects a classic use of the pattern approach. In relation to this thesis, the

focus is on reverse engineering rather than software evolution or reengineer-

ing.

Stevens et al argue that one of the main reasons why software reengineer-

ing research has had little impact on software reengineering practice is the

difficulty in communicating the research results to the practicing community

[92, 26]. They consequently propose system reengineering patterns as an ap-

proach to package and transfer this expertise. For example, the Deprecation

pattern captures the well-established practice of updating an unsatisfactory

interface by defining the new interface but also leaving the existing interface

intact. A “deprecated” flag is added to the old interface, advising users to

move to the new one in preference. In time, the unsatisfactory deprecated

interface can be removed. As argued in section 1.2, this thesis can also be

viewed as providing automated support for the reengineering process.

29



2.3 Thesis Context

This thesis merges the two strands of research described in this chapter.

Program restructuring (section 2.1) is used in order to automate the appli-

cation of design patterns (section 2.2) to an existing program. This merging

is timely, as program restructuring research has suffered from the lack of a

firm basis for deciding what sort of structures it should be targetting. De-

sign patterns are solutions that have proven their worth in practice, and so

provide an excellent domain in which to find such target structures.

The existing work in program restructuring is inadequate for our pur-

poses. It is only that of Roberts [84] that deals with a rigorous approach to

refactoring composition. However he only allows compositions that are sim-

ple sequences of refactorings, and many design pattern transformations are

too complicated to be described this way. Accordingly we have extended his

method in several ways, the principle one being that we allow a set iteration

construct in the definition of a composite refactoring.

It is also clear that existing design pattern work is not sufficient for our

purposes. Building a restructuring that applies a design pattern leads us to

consider questions about the pattern that have not been addressed in existing

work. Firstly, it must be decided what the starting point of the transforma-

tion should be, i.e., what type of program structure the transformation can

be applied to. Secondly, the commonality between design patterns must be

identified and exploited in the development of the transformations, to avoid

the wholesale duplication in the transformation definitions that would occur

otherwise.

30



2.4 Summary

In this chapter we have described the two principle research fields upon which

this thesis is founded: program restructuring and design patterns. The aim

of this is to provide a general background to existing and ongoing research

in these areas. In subsequent chapters we present our own contributions in

more detail, and also present detailed analysis of our approach in comparison

to closely related work.

31


