
Chapter 3

Foundations of Refactoring:

Behaviour Preservation

In the previous chapter we described the notion of behaviour preservation and

hinted at the approach that will be adopted in this thesis. In this chapter

we present our approach to demonstrating behaviour preservation in detail

and apply it with full rigour to a concrete transformation.

In section 3.1 we describe our approach to defining primitive refactorings,

stating their pre- and postconditions, and arguing behaviour preservation.

In section 3.2 a method for the derivation of the pre- and postconditions of

composite refactorings is presented and applied to a concrete example. In

section 3.3 our approach is compared to other work in the field and finally,

in section 3.4, the results of this chapter are summarised. The approach

presented in this chapter has been published in [76].

32

3.1 Primitive Refactorings and Behaviour Preser-

vation

A primitive refactoring is a refactoring that is not decomposed into simpler

refactorings. Our transformation approach is based upon a layer of primitive

refactorings. Section 3.1.4 describes how we define a primitive refactoring,

while in appendix B.3 a list of the actual primitive refactorings used in this

work is provided.

As stated previously, it is necessary in defining a primitive refactoring to

state what the precondition of the refactoring is. In defining this precon-

dition, assertions are made about the program, for example, that a certain

class exists or a given name is not already in use. We define a set of analy-

sis functions to enable these assertions to be made. Analysis functions are

described further in section 3.1.2.

In developing higher-level refactorings we frequently need to extract cer-

tain information from the program, for example, to build an interface from

a class based on the signatures of its public methods. This type of function

does not affect the program in any way, but performs a more significant task

than what an analysis function does. These functions are referred to as helper

functions and are elaborated further upon in section 3.1.3.

Certain general assumptions are made about the program being trans-

formed and these are described in section 3.1.5. Also, the mathematical

preliminaries for this chapter are described in section 3.1.1.

3.1.1 Mathematical Preliminaries

We use the following notation based on [62], also used in [84]. This will be

used extensively in section 3.2 where it will be necessary to be precise about

33

the effect of a refactoring on a program.

• P : This is the program to be refactored.

• IP : Denotes an interpretation of first-order predicate logic where the

universe of discourse comprises the program elements of P , and the

functions and predicates of the calculus reflect the analysis functions

as applied to the program P .

• |=IP
preR: Denotes the evaluation of the precondition of the refactoring

R on the program interpretation IP .

• postR(IP): Denotes the program interpretation IP , rewritten with the

postcondition of the refactoring R.

• f [x/y]: Denotes an analysis function that is precisely the same as the

analysis function f , except that it maps the element x to y. This syntax

is used in postconditions to describe the effect of the refactoring on the

analysis functions. Note that the name of a new analysis function

produced as the result of applying a refactoring is written with a prime

(′), so stating that an analysis function f is updated with the new

element (x, y) would be written thus: f ′ = f [x/y].

• ⊥: Is used in a postcondition to mean an undefined value. For example,

if a transformation removes a method called m, the updating of the

classOf analysis function to indicate that m no longer belongs to any

class would be written thus: classOf ′ = classOf [m/⊥].

3.1.2 Analysis Functions

Analysis functions serve two related roles in our work. Firstly, they are used

as functions and predicates in the first-order predicate calculus expressions

34

that define the precondition of a refactoring. Secondly, they are implemented

as actual operations that can be applied to a Java program to extract some

information about the program, for example, to test if a method is in a certain

class or to find the signature of a given method. The relationship between

these two roles is that the latter is the implementation of the interpretation

of the former. We will simply speak of “analysis functions” and rely on the

context to make it clear whether we are referring to a function in first-order

predicate logic, or a concrete operation, or both.

The analysis functions used in this work are defined in appendix B.1.

There are also dependencies between the analysis functions and these are

described in appendix B.1.1. For example, if one class inherits from another

class, the type of the former class must also be a subtype of the type of

the latter class. In computing the precondition of a composite refactoring in

section 3.2, it will be necessary to make use of these dependencies.

Some of the analysis functions are obviously easy to evaluate, for example,

the classOf function that tests if a method is a member of a class. Others

are more difficult, and a number of them are generally undecidable. In the

latter case, there are three possible ways the situation can be dealt with:

1. An implementation may not be necessary. Some analysis functions

are only used in a precondition when a previous refactoring has al-

ready established the condition. This type of analysis function will

appear in precondition specifications, and in behaviour preservation

arguments, but the necessity for an implementation will never arise.

An example of this is the createsSameObject analysis function, that

tests if a given method and constructor return identical objects given

the same arguments. It is necessary to implement a refactoring (in fact

makeAbstract, a helper function, see section 3.1.3) that sets up this

35

condition, but this is a straightforward task.

2. A conservative estimation can be made. For some undecidable analysis

functions a useful conservative estimation exists. For example, the

uses(method1, method2) analysis function that determines if method1

may invoke method2 can only be determined precisely by using an

expensive dynamic analysis of the program. However, a conservative

estimation that probably includes some false positives can be easily

made based on the program text.

3. The programmer may be queried. Asking the programmer to assess

if a given precondition holds is not an unreasonable approach. They

would have to make this assessment anyway were they to perform the

refactoring by hand, so their workload is not being increased. Indeed,

this approach encourages them to think about program conditions that

they might otherwise have overlooked.

Program Entities

In describing a refactoring or its precondition, it is necessary to refer to

various program elements: classes, methods, interfaces etc. The principle

elements that we make use of, and their interrelationships, are depicted as

a UML class model in figure 3.1. Other program entities that are used in

defining refactorings and analysis functions are: Interface, Argument, Objec-

tReference, Field, Parameter, Expression, Variable and MethodInvocation.

For any entity X, we also define an entity SetOfX that represents a set

of entities of the type X. Note that for purposes of brevity, a program entity

and its name may be used interchangeably. For example, a refactoring that

operates on a Class may instead be passed a String that represents a class

36

Class ObjectCreationExprn*1 *classCreated

Method

*

1

*

1

contains

Signature
1

*

1

*
sigOf

Constructor

*1 *

contains

1
*

1
*

constructorInvoked

0..10..* 0..10..* createsSameObject

1

*

1

*
sigOf

1

1

Figure 3.1: Principal Program Entities and their Relationships

name. getClass(String) could be used to make this relationship precise, but

this adds unnecessary bulk to the descriptions.

3.1.3 Helper Functions

In describing a refactoring it may be necessary to extract richer content from

the program code than is provided by the analysis functions. For example,

we may wish to build an interface from a class based on the signatures of

its public methods. Helper functions are used to perform this type of task.

Because they are not at the primitive level of the analysis functions, we

provide them with a pre- and postcondition. Helper functions are proper

functions without side-effects on the program, so the postcondition invariably

involves the return value of the helper function itself. The complete list of

helper functions used in this work is presented in appendix B.2.

37

3.1.4 Primitive Refactorings

The aim of this work is to develop composite refactorings that introduce de-

sign patterns, not to develop a complete set of primitive refactorings as such.

For this reason, we have not defined refactorings that we assessed might tran-

spire to be useful; rather we have defined a new refactoring only when the

need for it arose. The complete list of refactorings used in this work is pre-

sented in appendix B.3. Some of them are standard and would be part of any

refactoring suite, for example, addClass. Others are idiosyncratic and quite

peculiar to the present work, for example, replaceObjCreationWithMethInvo-

cation, which replaces a given object creation expression with an invocation

of a given method using the same argument list.

Each primitive refactoring is described in the following way:

• Name, return type, argument types and informal description: The re-

turn and argument types may be boolean or void, or one of the program

entities described in section 3.1.2. Name and informal description are

self-explanatory.

• Precondition: This is an assertion, written in first-order predicate logic,

that must be true in order for the refactoring to be behaviour preserv-

ing. If a precondition fails, and the transformation is nevertheless per-

formed, the resulting program may not be legal Java or may behave

differently from the original program.

• Postcondition: This is a mapping from analysis functions to analysis

functions. It describes the effect of applying the refactoring in terms

of changes to the analysis functions defined in appendix B.1.

• Behaviour preservation argument : Opdyke [77] presents behaviour preser-

vation arguments in terms of seven program properties that he proposes

38

are easily violated during refactoring1. We take a similar approach, but

rather than limiting the properties that are maintained to a fixed few,

we consider what properties can possibly be violated by each individual

refactoring and argue that they are not. The arguments are non-formal

in style and cannot guarantee that no behaviour violations occur, but

they are rigorous and are intended to be stronger than the argument

a programmer would typically make internally were they to perform

the refactoring by hand. A key advantage to our approach is that

the behaviour preservation argument is made only once by the creator

of the primitive refactoring, and need not be repeated by the many

programmers who will apply the transformation in practice.

3.1.5 Assumptions and Limitations

It is assumed that certain constraints hold on the Java programs that are

transformed in this work. The assumptions we make are as follows:

1. The initial program must compile correctly. If this was not the case,

then, for example, the refactoring addMethod could change the pro-

gram behaviour by causing an illegal program to become a legal one.

2. Reflective programs cannot be transformed safely using the approach

in this work. For example, the following code invokes a method called

foo() on object obj:

obj.getClass().getMethod(”foo”,null).invoke(obj);

It is clear that if the program is transformed to rename the method

1Tokuda and Batory use an approach based on Opdyke’s, and point out that at least

three more program properties are necessary to maintain program behaviour [96].

39

foo, this code excerpt will not execute as before, but will throw an

exception.

3. We have assumed that objects are only created using the new operator.

The issues surrounding object cloning have not been dealt with in detail

in this work2.

4. Private classes are not considered. We disallow the creation of a new

class if its name clashes with an existing class, even if the existing class

is private and no real clash exists.

5. Packages are not dealt with in this work, so a class or interface can be

safely identified by just its name.

6. The interface to a method is described by its name, return type, and pa-

rameter types. Exceptions also form part of the interface to a method,

but for simplicity we have ignored them in this work.

The first two constraints are fundamental to our approach, the third involves

an issue that we have not yet addressed, while the last three are simplifica-

tions that would be burdensome to do without, but are not essential to our

approach.

3.2 Composite Refactorings

The ultimate goal of this work is to use the refactorings, helper functions, and

analysis functions described in the last section to define behaviour preserving

2For example in a new expression, the class of the created object is given explicitly.

However, in a clone expression, the class of the created object is not known statically,

but depends on the type of the receiving object. This would be an issue when designing

transformations for creational patterns, as they have an impact on how objects are created.

40

design pattern transformations. As will be presented in the next chapter, the

process of constructing a design pattern transformation is essentially a top-

down one, but there is also an element of bottom-up composition of existing

refactorings. In this section we describe the way in which we compose refac-

torings, and present a technique for computing the pre- and postconditions

of a composite refactoring. The importance of these techniques lies in the

fact that they allow us to implement a design pattern transformation as a

composition of refactorings and then to check the legality of the composition

and calculate its overall precondition.

We could avoid the necessity of calculating the overall precondition of

a composite refactoring by checking the precondition for each component

refactoring just before it is applied. If a precondition fails, we simply rollback

to the starting point and inform the user. This approach is undesirable

whether the composition is legal or illegal:

• If the composite refactoring is legal, testing its precondition will nor-

mally be faster, and never slower, than testing the precondition of each

component refactoring separately.

• If the composite refactoring is illegal, testing its precondition will be

considerably faster than applying several of the component refactorings

and then being obliged to rollback to the starting point. Note that some

refactorings are not undoable, so supporting rollback would involve

checkpointing.

Since we aim to build refactorings statically, the program P is not available

for a “try it and see if it works” approach. No assumptions can be made

about P , other than those described in section 3.1.5.

In our work, we have discovered that there are two ways in which we need

41

to compose refactorings:

1. Chaining.

2. Set iteration.

Chaining is where a sequence of refactorings are applied one after the other.

For example, the following chain adds methods foo and goo to the class c.

addMethod(c,foo)

addMethod(c,goo)

Set iteration is where a refactoring or a refactoring chain is performed on a

set of program elements. For example, the following set iteration copies all

the methods of the class a to the class b.

ForAll m:Method, classOf(m)=a {
addMethod(b,m)

}

Other forms of composition are possible as well of course, the most obvious

one being a selection statement. Although this is straightforward to deal

with, it is omitted here as we have found that in the construction of design

pattern transformations in this work, chaining and set iteration suffice.

3.2.1 Computing Pre- and Postconditions for a Chain

of Refactorings

A chain of refactorings may be of any length, but we can simplify the com-

putation of its pre- and postconditions by observing that we need only solve

the problem for a chain of length 2. This procedure can then be iteratively

applied to the remaining chain until the full pre- and postconditions have

42

been computed. For a chain of length n, n-1 applications of this process will

be required.

The two refactorings to be composed are referred to as R1 and R2. For

a general refactoring Ri, its precondition and postcondition are denoted by

preRi
and postRi

respectively. See figure 3.2.

R
2

R
1

preR1 preR2postR1 postR2

precomposite postcomposite

Figure 3.2: A Composite Refactoring with Pre- and Postconditions

The näıve approach to computing the precondition is simply to logically

AND the preconditions, i.e.,

precomposite = preR1 ∧ preR2 ,

however there are several problems with this. Firstly, postR1 may guaran-

tee preR2 which means that an unnecessarily strong precondition results (or

indeed typically a contradictory precondition), for example,

addClass(c)

addMethod(c,m)

ANDing the preconditions produces, among other clauses, ¬isClass(c) ∧
isClass(c), even though this chain is perfectly correct. The source of this

contradiction lies in the fact that the two preconditions should be valid at

different points in the transformation.

Secondly a composition may be simply illegal, e.g.,

43

deleteClass(c)

addMethod(c,m)

ANDing the preconditions here gives simply isClass(c) even though this

chain is illegal! Although the precondition for addMethod is valid at the

start of the chain, deleteClass breaks it so this composition of refactorings

can never be legal.

The precondition of the chain is computed first3. During this computation

it may emerge that the chain is in fact illegal. If the chain is legal, the

postcondition is then computed. We describe how these computations are

performed in the following two subsections.

Legality test and precondition computation

Assuming the chain is legal, its precondition is obtained by logically ANDing

preR1 with whatever parts of preR2 that are not guaranteed by postR1 . The

parts of preR2 that are not guaranteed by postR1 are obtained by evaluating:

|=postR1
(IP) preR2

If a contradiction arises in this evaluation, the chain is illegal. The post-

condition of the first refactoring sets up a condition that contradicts the

precondition to the second refactoring.

The precondition of the complete chain is obtained by evaluating:

preR1∧ |=postR1
(IP) preR2

A contradiction can arise in this evaluation as well, and this also means

that the chain is illegal. In this case the precondition to the first refactoring

3It is valuable to compute the precondition first, because if the chain requires a stronger

precondition than simply preR1 , it can be useful to use this stronger condition in later

computations.

44

demands a certain condition that contradicts the precondition to the second

refactoring, and the first refactoring does not change this condition.

Postcondition computation

In our approach4 a postcondition is described as a set of updates to analysis

functions in the following form:

f ′ = f [x/y]

g′ = g[p/q]

...

Any analysis function not mentioned in the postcondition is implicitly not

affected by the refactoring.

The postcondition of a refactoring chain is obtained by concatenating

the function updates described in the postconditions. For example, if postR1

contains the mapping:

classOf ′ = classOf [foo/c1]

and postR2 contains the mapping:

classOf ′ = classOf [foo/c2]

then naturally classOf ′ = classOf [foo/c2] becomes part of the postcondi-

tion of the chain. Denoting this concatenation operation as | we state the

postcondition of the chain to be:

postR1 | postR2

Table 3.1 describes how this operator works in general.

A complete example of the application of this algorithm is given in section

3.2.3.
4I am grateful to Dr. John Boyland of the University of Wisconsin for pointing out

problems in my original approach to postcondition computation.

45

postR1 postR2 postR1 | postR2

f ′ = f [x/y] g′ = g[p/q] f ′ = f [x/y] g′ = g[p/q]

f ′ = f [x/y] f ′ = f [p/q] f ′ = f [x/y][p/q]

f ′ = f [x/y] f ′ = f [x/z] f ′ = f [x/z]

Table 3.1: Concatenation of Postconditions

3.2.2 Computing Pre- and postconditions for a Set It-

eration

A set iteration has the following format:

ForAll x:Entity, Pred(x,. . .) {
R(x,. . .)

}

where Entity is some type of program entity, Pred is some predicate and

“. . .” denotes the program entities that are arguments to the predicate and/or

arguments to the refactoring. If the set of x of type Entity that satisfies

Pred(x, . . .) is given as {x1, x2, . . . , xn}, and writing Ri as a shorthand for

R(xi, . . .), then this iteration may be viewed as the following chain:

R1, R2, . . . , Rn

However this is a set iteration, so the refactorings could take place in any

order. That is to say, they must be able to commute and this fact enables us

to define when a set iteration is legal and what its pre- and postconditions

should be.

1. Legality test : A set iteration is illegal if the precondition of any compo-

nent refactoring depends on the postcondition of another component

46

refactoring. It is also illegal if the postcondition of any component

refactoring contradicts the precondition of another component refac-

toring5. Both these conditions are captured by requiring that for any

refactoring Ri in the set iteration, the evaluation of the precondition is

not affected by the prior application of any sequence of Rj, j 	= i. We

express this using the notation of section 3.1.1 as:

∀Ri, i ∈ {1..n}, |=IP
preRi

= |=IP ′ preRi

where P ′ = postRjm
(. . . postRj2

(postRj1
(IP))),

jm ∈ {1..n} − {i}, jx = jy ⇒ x = y

Roberts [84] looks at the issue of commutativity of general refactorings

in detail, however we are only concerned with the constrained case

of set iterations. A very conservative approach to take is to demand

that the postcondition of a component refactoring in a set iteration

should not refer to the analysis functions used in its precondition. This

has transpired to be too constraining to be of use, so it will often

prove necessary to examine the semantics of the iteration performed to

ascertain if the above property holds. The legality test performed on

page 50 is an example of this.

2. precondition computation: Any of the Ri could be the first in the chain.

Since the precondition of the first refactoring of a chain must form part

of the precondition for the whole chain, the precondition of the set

iteration must be at least the ANDing of the preconditions of each

of the component refactorings. Nothing stronger is required, so the

5The component postconditions could be allowed to contradict each other. However

the postcondition notation would have to be extended to allow disjunction between the

function updates.

47

precondition for the above chain can be expressed as:

i=n∧

i=1
preRi

or in a more useful form as:

∀x : Entity, P red(x) • preR(x,...)

3. postcondition computation: By a similar argument, the postcondition

for the above chain can be expressed as:

postR1 | postR2 | . . . | postRn

We have described how pre- and postconditions can be computed for refac-

toring sequences and set iterations. In the next section we apply these tech-

niques to a non-trivial example.

3.2.3 A Worked Example

In this section we take a typical composite transformation that involves both

chaining and set iterations and compute its pre- and postconditions. The

calculations are performed in all detail in this example, but in future we will

only summarise the derivation.

The example we use is the algorithm that describes how to apply the

EncapsulateConstruction minitransformation6. The purpose of this

minitransformation is to loosen the binding between one class (creator) and

another class that it instantiates (product). It does this by adding new con-

struction methods to the creator class that perform the creation of product

objects. Each new method is given the name createP, and all expressions that

6Minitransformations are described in detail in section 4.3. For the purposes of the

current chapter, they may be thought of simply as composite refactorings.

48

create product objects in the creator class are updated to use the appropri-

ate construction method. The impact of applying this minitransformation is

that extending the creator class to work with a new type of product class is

simply achievable by subclassing creator and overriding the createP method.

The algorithm for this minitransformation is defined as follows using the

analysis functions, helper functions and refactorings described in earlier sec-

tions:

EncapsulateConstruction(Class creator, Class product, String createP){
ForAll c:Constructor, classOf(c)=product {

Method m = makeAbstract(c, createP);

addMethod(creator, m);

}
ForAll e:ObjectCreationExprn, classCreated(e) = product ∧

containingClass(e) = creator ∧
nameOf(containingMethod(e)) 	= createP {

replaceObjCreationWithMethInvocation(e, createP);

}
}

Computing the pre-and postconditions of this composite refactoring proceeds

in several steps:

1. Compute pre and post for the chain in the first set iteration body

2. Compute pre and post for the first set iteration

3. Compute pre and post for the second set iteration

4. Compute pre and post for the overall chain

49

Computing pre and post for the chain in the first set iteration body

1. Legality test and precondition computation: This involves first rewriting

the precondition of addMethod(creator, m) with the postcondition of

makeAbstract(c, createP):

|=postmakeAbstract(IP) preaddMethod

= isClass(creator)∧¬defines(creator, nameOf [m/createP](m), sigOf(m))

= isClass(creator) ∧ ¬defines(creator, createP, sigOf(m))

and then ANDing this with the precondition for Method m = makeAb-

stract(c). The latter is simply true, so the final precondition for this

chain is:

isClass(creator)∧¬defines(creator, createP, sigOf(m))(3.1)

No contradiction occurred so the chain is legal.

2. postcondition computation: There is no analysis function updated in

both postaddMethod and postmakeAbstract so we can simply concatenate

the postconditions to obtain:

createsSameObject′ = createsSameObject[(c, m)/true]

nameOf ′ = nameOf [m/createP]

classOf ′ = classOf [m/creator]

∀a : Class, a 	= creator • equalInterface(a, creator) ⇒
equalInterface′ = equalInterface[(a, creator)/false] (3.2)

Computing pre and post for the first set iteration

1. Legality test : On first glance the postcondition of the body of this

iteration (3.2 above) appears to have no impact on the precondition

(3.1 above). However from appendix B.1.1 we know that

50

classOf(m) = creator ∧ nameOf(m) = createP

⇒ defines(creator, createP, sigOf(m))

and this may contradict the second conjunct of 3.1. This would only

occur if there were two methods m with the same signature. However,

m is a method whose signature is derived from iterating through the

constructors of the product class. Since no two constructors in the

same class can have the same signature, neither can two methods in

the set iteration have the same signature. This means that the value

for sigOf(m) will vary on each iteration so there is no risk that the

precondition will be violated.

2. precondition computation: On every iteration, the precondition must

be true, i.e.,

isClass(creator) ∧ ¬defines(creator, createP, sigOf(m))

must be valid for every constructor processed. The first conjunct is not

affected by the iteration, so it simply becomes part of the precondition

of the iteration. The second conjunct presents a problem as m is only

calculated in the body of the iteration and so cannot be used in the

precondition. However, sigOf(m) is the same as the signature of the

constructor being processed, so we can write the precondition as:

isClass(creator) ∧ ∀c : Constructor, c ∈ product •
¬defines(creator, createP, sigOf(c)) (3.3)

This precondition ensures that no method called createP already exists

in the creator class with a signature that matches any of the construc-

tors of the product class. If for practical reasons we prefer not to allow

51

a method called createP to exist in the creator class at all, then this

simpler precondition may be used:

isClass(creator) ∧ ¬defines(creator, createP)

3. postcondition computation: The postcondition for the body of this iter-

ation is given in (3.2) above. The iteration creates a new m each time,

so the full postcondition is:

∀c : Constructor, c ∈ product • ∃m : Method such that

createsSameObject′ = createsSameObject[(c, m)/true]

nameOf ′ = nameOf [m/createP]

classOf ′ = classOf [m/creator]

∀a : Class, a 	= creator • equalInterface(a, creator) ⇒
equalInterface′ = equalInterface[(a, creator)/false] (3.4)

Computing pre and post for the second set iteration

1. Legality test : The postcondition of the refactoring

replaceObjCreationWithMethInvocation(e,createP)

is that e is deleted, i.e.,

containingMethod′ = containingMethod[e/⊥].

This can only have an impact on the precondition7

createsSameObject(constructorInvoked(e),createP)∧
containingMethod(e) 	= createP

7Where there is a disjunctive in the precondition as here, it may be clear that only

one of the disjuncts is relevant and we can safely choose that one to work with. In

this case returnsSameObject(constructorInvoked(e), m) ∧ hasSingleInstance(product)

is dropped in favour of createsSameObject(constructorInvoked(e), m). The dropped

disjunct relates to the very rare case where the product class is only instantiated once.

52

if e refers to the same object creation expression. However, the set

iteration processes each product creation expression in the class creator,

so e will refer to a different expression on each iteration. This set

iteration is therefore legal.

2. precondition computation: For each object creation expression processed

in the iteration, there must be a suitable method called createP defined

in the creator class:

∀e : ObjectCreationExprn, classCreated(e) = product ∧
containingClass(e) = creator ∧
nameOf(containingMethod(e)) 	= createP •
∃m : Method, nameOf(m) = createP, defines(creator, m) such that

createsSameObject(constructorInvoked(e), m) (3.5)

Note that the precondition conjunct containingMethod(e) 	= m is

dropped as this is guaranteed by the fact that nameOf(m) = createP

and nameOf(containingMethod(e)) 	= createP .

3. postcondition computation: All the product creation expressions in the

creator class that are not in a method called createP have been re-

moved:

∀e : ObjectCreationExprn, classCreated(e) = product ∧
containingClass(e) = creator ∧
nameOf(containingMethod(e)) 	= createP •
containingMethod′ = containingMethod[e/⊥] (3.6)

53

Computing pre and post for the overall chain

1. Legality test and precondition computation: Precondition 3.5 must be

rewritten with postcondition 3.4 and the remaining conjuncts made

part of the precondition of the whole minitransformation. Before this

can be performed, postcondition 3.4 must be massaged to a suitable

form.

Postcondition 3.4 makes a universally quantified statement about all

the constructors of the class product. For every product creation ex-

pression in the creator class there is a corresponding constructor in

the product class. We can therefore safely replace the quantification

over the constructors of the product class with quantification over the

product creation expression in the creator class. If the product class

has constructors that are not used in the creator class, this change

will weaken the postcondition. Using a weaker postcondition than is

actually guaranteed is fortunately a safe substitution.

Postcondition 3.4 may therefore be rewritten thus8:

∀e : ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator • ∃m : Method such that

createsSameObject′ =

createsSameObject[(constructorInvoked(e), m)/true]

nameOf ′ = nameOf [m/createP]

classOf ′ = classOf [m/creator]

The transformation of the classOf relationship may be replaced by a

similar transformation to the defines relationship (see section B.1.1) to

8The final part of the postcondition has been dropped as it is clear that the effect of

this refactoring on the equalInterface analysis function is irrelevant in this context.

54

give:

∀e : ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator • ∃m : Method such that

createsSameObject′ =

createsSameObject[(constructorInvoked(e), m)/true]

nameOf ′ = nameOf [m/createP]

defines′ = defines[(creator, m)/true] (3.7)

This postcondition is now in a suitable format to rewrite precondition

3.5 as follows:

∀e : ObjectCreationExprn, classCreated(e) = product ∧
containingClass(e) = creator ∧
nameOf [m/createP](containingMethod(e)) 	= createP •
∃m : Method, nameOf [m/createP](m) = createP,

defines[(creator, m)/true](creator, m) such that

createsSameObject[(constructorInvoked(e), m)/true](constructorInvoked(e), m)

Simplifying this out gives:

∀e : ObjectCreationExprn, classCreated(e) = product ∧
containingClass(e) = creator ∧
nameOf(containingMethod(e)) 	= createP •
∃m : Method, true

This simplifies to just true, so in fact the precondition for the second

set iteration is fully guaranteed by the postcondition of the first set

iteration. This means that the precondition of the second set iteration

does not contribute anything to the overall precondition for this mini-

55

transformation, so the overall precondition is simply the precondition

to the first set iteration, namely precondition 3.3.

2. postcondition computation: The postcondition for the first set iteration

(3.7) and the second (3.6) are combined as follows:

∀e : ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator • ∃m : Method such that

createsSameObject′ =

createsSameObject[(constructorInvoked(e), m)/true]

nameOf ′ = nameOf [m/createP]

defines′ = defines[(creator, m)/true]

∀e : ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator,

nameOf(containingMethod(e)) 	= createP •
containingMethod′ = containingMethod[e/⊥] (3.8)

Note that the first set iteration adds a construction method to the

creator class, regardless of whether it used in the product class or not.

Constructors of the product class that are not used in the creator class

could be omitted from the transformation, but this was not done as it

is likely that a future evolution of the program would make it necessary

to include them again.

It is interesting to observe that in the overall precondition the product

class was not required to exist. This is correct, in that the Encapsulate-

Construction transformation reduces in this case to the null transforma-

tion, which is of course behaviour preserving. However, for this transforma-

tion to be useful, the product class must indeed exist. For this reason we will

sometimes add such extra conditions to the precondition of a transformation.

56

3.2.4 Commentary

We have demonstrated that if precondition 3.3 holds in a given program,

then the EncapsulateConstruction transformation can be safely ap-

plied without changing the behaviour of the program. Also, in the final

program state, postcondition 3.8 will be valid.

The argument was non-trivial and required a considerable amount of ef-

fort. However this need only be done once, and then the minitransformation

can be added to a library and reused in any number of future design pattern

transformations. The existence of this argument enhances our confidence

that the transformation is indeed behaviour preserving. If during prototype

evaluation it transpires that the implemented transformation is not behav-

iour preserving, the error can be traced back and, if it is present in the

behaviour preservation argument, it may be corrected there.

Constructing the behaviour preservation argument also caused us to give

consideration to factors that were not immediately apparent from the mini-

transformation description. For example, the fact that the creator class

might already have methods called createP and that this is not a problem

unless the signature of one of them clashes with the signature of a construc-

tor in the product class was made very clear during the computation of the

pre- and postconditions.

Finally, this method of arguing behaviour preservation is not formal9.

First-order predicate logic is used in defining the preconditions and some

of the reasoning performed is formal and based purely on the laws of first-

order logic. However, it was frequently necessary to use our knowledge of

the semantic domain (Java programs) in computing the pre- and postcon-

ditions. For example, the transformation of postcondition 3.4 to the more

9It is for this reason we avoid using the term “proof” in this chapter.

57

useful postcondition 3.7 required this knowledge. Since our purpose is to

provide a method of argument that reflects in some way how a programmer

reasons about a program, this is a valid approach. Were we to attempt to au-

tomate the process of computing the pre- and postconditions for a composite

refactoring, then this approach would of course need to be strengthened.

3.3 Related Work

Donald Roberts [84, 85] describes a similar approach to computing the pre-

and postconditions of a composite refactoring to the one we have presented

here. However he does not demand that a refactoring be behaviour preserv-

ing10 [84, p.19] and so does not argue this for his refactorings. The algorithm

we present differs from his in several ways:

• it tests if the chain is legal rather than assuming it is [84, p.39];

• it allows set iterations over refactorings and chains;

• it makes use of the relationships between analysis functions11;

• it computes the postcondition for a composite refactoring, as we intend

to use the composite refactoring in further compositions.

Tokuda and Batory use a set of Opdyke-style refactorings in order to

build higher-level refactorings [96] and to study the use of refactorings in

the evolution of object-oriented programs. A very interesting feature of this

work is that they present the first ever case study that actually takes an

existing system that has been reengineered, and attempts to perform the

10An unfortunate redefinition of an existing term.
11Roberts neglects this in his work and, for example, does not identify the relationship

between isClass and isGlobal, i.e., that IsClass(class) ⇒ IsGlobal(nameOf(class)).

58

reengineering that took place using a refactoring tool. They estimate that

were they to perform the changes involved in the reengineering by hand,

it would take them approximately ten times longer than it took them to

perform the changes using automated refactorings. This improvement is

attributed to the obvious reduction in the amount of manual work required,

and the fact that reliable automated refactorings reduce the amount of testing

required. This result has provided some concrete evidence favouring the use

of automated refactoring approaches.

Schulz [88] proposes arguing behaviour preservation by first transform-

ing a legacy object-oriented program into an adaptive program [61]. This

adaptive program can be reasoned about more easily and the transforma-

tions performed on this program. Finally the transformed adaptive program

is converted back to a non-adaptive program. He does not describe this last

conversion and it is not clear that it is feasible. In other work Schulz [90]

proposes using Opdyke’s approach [77, 51] to prove behaviour preservation

of design pattern transformations.

Elbereth is a tool developed for refactoring Java programs [54] that uses

the notion of a star diagram. A star diagram allows the programmer to

easily view all uses of a construct (method, field etc.) across the entire

program without having to also view unrelated code. Korman describes

how the programmer can be supported in performing a variety of refactoring

tasks, such as adding a new subclass or replacing an existing class with an

enhanced version. While these tasks are intended to be refactorings, he does

not address the issue of arguing that they are behaviour preserving.

Developing the pre- and postcondition for a composite refactoring bears

an obvious resemblance to the weakest precondition calculus of Dijkstra’s

guarded command language [27]. In that approach, if we wish the compo-

59

sition of two transformations T1 and T2 to leave the program in the state

postcomposition, then the weakest precondition necessary is given by:

wp(T1, wp(T2, postcomposition))

where wp(T, post) is the weakest precondition that will ensure that the trans-

formation T will leave the program in a state where post is true. The aim

of this work is that given a postcondition, it should be possible to derive an

algorithm (a composition of transformations) that can reach this postcondi-

tion, and work out what precondition must hold in the initial state.

The problem we faced in demonstrating behaviour preservation is differ-

ent. We use postconditions to describe the result of applying a refactoring

only in sufficient detail that it is possible to determine what subsequent refac-

torings are legal. The refactoring itself has a richer meaning, but that is only

described informally in the refactoring description and not captured in the

formal postcondition. In composing these refactorings, we have a notion of

what is to be achieved, and the purpose of the pre- and postcondition com-

putation is to determine whether the composed refactoring is legal, what

types of program it can be applied to, and what subsequent refactorings

can be legally applied. The possibility of extending this work to the formal

derivation of the complete design pattern transformation will be discussed in

section 6.2.

Refactoring is a key part of Kent Beck’s Extreme Programming method-

ology [3]. Extreme programming requires many rapid iterations through the

development process, each time extending the system functionality a little

further. As little up-front design is performed, it is necessary to refactor

the program whenever a new requirement makes the existing design inade-

quate. Behaviour preservation is not discussed in this approach, but in effect

it is demonstrated through the use of automated corrective regression test-

60

ing [58]. After refactoring, the programmer runs an automated test suite on

the program. If the program produces the same test results as it did before

the refactoring, it is concluded that the behaviour of the program has not

changed. Obviously this approach is dependent on the completeness on the

test suite, and thus can never be fully relied upon.

Test suites are used in a different way to demonstrate behaviour preserva-

tion in the Smalltalk Refactoring Browser [11]. For example, in the renameMethod

refactoring, all methods that call the renamed method must also be updated.

However, in Smalltalk it is impossible to find all the callers of a method sta-

tically, so the authors use dynamic analysis to compute this. The program

code is instrumented, run on a test suite, and it is calculated from the ex-

ecution trace what methods called the given method. As in the previous

case, this approach is only as effective as the test suite used in the dynamic

analysis.

Finally, in a recent text on the topic of refactoring by Martin Fowler [38],

only scant attention is paid to the topic of behaviour preservation, and that

is in two chapters written by Opdyke and Roberts respectively, whose work

has been extensively cited in this chapter. This text does however provide a

detailed listing of low-level refactorings that can be performed by hand, and

gives useful informal advice on where they should be applied and what steps

should be taken to achieve a safe refactoring.

3.4 Summary

In this chapter we presented our approach to defining primitive refactorings

and composing these to create more complicated refactorings. Two methods

of composition were allowed: sequencing (or chaining), and iteration over a

61

set of program elements. A method for computing the pre- and postcondi-

tions of such composite refactorings was also described. This approach to

behaviour preservation is undecidable in general, but for the simple precon-

ditions we work with this will prove not to be an issue.

In the next two chapters we will show how these forms of composition

can be used to build sophisticated design pattern transformations.

62

