
Chapter 6

Conclusions

This chapter concludes the thesis. In section 6.1 we state again the contri-

butions that have been made by this research. In section 6.2 we present a

number of proposals for future work that would extend this research, and

finally, in section 6.3, we make some concluding remarks.

6.1 Contributions

The principle contributions of this thesis were stated in chapter 1. Here we

restate them:

• A methodology for developing design pattern transformations. This is

the essential contribution of this work. The methodology we have de-

veloped has been applied with full rigour to seven common design pat-

terns1, and a prototype software tool has been built that can apply

these seven design patterns to Java programs. The methodology has

also been applied to the remaining patterns in the Gamma et al pat-

1The seven design patterns to which the methodology has been fully applied are Ab-

stract Factory, Factory Method, Singleton, Builder, Prototype, Bridge and Strategy [41].

160



tern catalogue [41], though these pattern transformations have not been

prototyped. The essence of our methodology has been published in

summary form in [74, 72], and more completely in [75].

• A minitransformation library. Design pattern transformations have a

strong degree of commonality and this has been captured in a set of

six minitransformations. These minitransformations have been imple-

mented and demonstrated to be widely applicable in developing design

pattern transformations.

• A model for behaviour-preservation proofs. The transformations we

develop must be invariant with respect to program behaviour. In order

to prove this rigorously for the sophisticated program transformations

that we develop, we have extended existing refactoring work by allowing

the transformation definition to contain not only simple sequences, but

also iteration and conditional statements. This model has been applied

in full rigour to several examples, and has been published in [76].

Other contributions are:

• The notion of Precursor. We introduced the notion of a precursor for a

design pattern, i.e., a design structure that expresses the intent of the

design pattern in a simple way, but that would not be regarded as an

example of poor design. We demonstrated the usefulness of this notion

by developing precursors for the Gamma et al design patterns, and

using them as starting points for our design pattern transformations.

This set of precursors provides an insight into the type of program to

which a given pattern can be applied.

• A refactory for Java. The lowest layer of transformations is a collection

of refactorings that can be applied to a Java program, and this can

161



serve as a basis for other transformation work. An extensive set has

been designed and implemented, and these are described in appendix

B. Some are naturally similar to existing refactorings, while others are

peculiar to the development of design pattern transformations.

• A Precondition Categorisation. In section 4.4.1 we described how each

clause of the precondition to a design pattern transformation can be put

into one of four categories. We also described how this categorisation

can be used in practice to decide how to deal with the failure of a

precondition clause.

6.2 Future Work

In the following subsections we consider possible future work in the area of

this thesis.

Practical Tests of the Design Pattern Tool (DPT)

The software prototype we have built as part of this work, DPT, has been

tested on several sample programs to establish a base-level confidence that it

operates correctly. Naturally, extensive further testing and updating would

be required to bring the quality of this prototype to production level.

A more interesting issue in this context relates to programmer acceptance

of the type of transformation DPT performs. DPT makes sweeping changes

to a program when it applies a pattern, and it is an open question whether

a programmer would be content to allow a large system to be updated in

this way. Indeed, a software tool can fail in practice for any number of

reasons [83], and arguing abstractly that it is nevertheless useful is futile.

The author’s position is that a programmer will use a software tool only

162



if they have a very clear mental model of what the tool does. Compilers,

debuggers and profilers all fit into this category. As design patterns become

more established, we can expect programmers to become more comfortable

with the type of transformations DPT applies.

One way to aid the programmer’s comprehension of the transformation

DPT has applied is to present each of the program changes to them and

ensure that they are satisfied with each one. If they are not, the whole pro-

gram can be rolled back to its pre-transformation state. A more ambitious

approach is to try to explain the pattern to the programmer (depending on

their pattern expertise), and put the changes in this context. Note that

existing work in the area of program comprehension has focused on compre-

hension as part of software maintenance (e.g., [86]). The problem described

here, that of presenting the effects of a large refactoring in a comprehensible

manner, is a future challenge for this field.

Further Construction of Pattern Transformations

Our refactorings and minitransformations provide a library of reusable com-

ponents for design pattern transformation development. As with any such

library, many iterations are required to fully comprehend the domain and

to provide a stable set of components. With each new design pattern de-

velopment, our understanding of the minitransformations was refined, and

frequently this resulted in the refactoring of the library itself. We do not

claim that this process is complete. As more design pattern transformations

are developed using this approach we can expect more minitransformations

to appear and the existing ones to require further work and refinement.

163



Automation

At present the construction of the behaviour preservation arguments is frag-

ile, in that any change made to a low-level refactoring or analysis function

requires that all proofs that use this refactoring or analysis function be

rechecked. This dependency itself is unavoidable, but automated software

support would be very useful to help manage it. A repository of refactorings,

analysis functions and helper functions could be created and this used in

performing syntax checking and typechecking of the behaviour preservation

arguments. For example, if testing of DPT reveals that the precondition of

a refactoring is not strong enough, the specification of this refactoring would

then be updated in the repository. The automated assistance software could

then highlight which minitransformations and design pattern transformations

have to be revisited.

More ambitiously, an attempt could be made to automate the construc-

tion of the behaviour preservation argument. This is a challenging task, as

we currently use semantic knowledge in building the behaviour preservation

arguments. To completely formalise this would involve working with a for-

mal semantics for Java (e.g., [47, 99]), and this would be likely to run into

tractability problems. Partial automation is a more promising approach to

take, and it would be interesting to see what contribution such an approach

could make to the computation of pre- and postconditions for a design pat-

tern transformation.

Pattern Maintenance

Applying a design pattern changes the program code, and some of these

changes must be maintained in order for the pattern to remain intact. This

means that certain constraints are put on the possible future evolutions of

164



the program. For example, in a program where the Factory Method pattern

has been applied, the addition of a new Product class means that a new

method must be added to the Creator class as well.

Developing tool support to manage and check these constraints is a valu-

able extension to our work. The postcondition for a design pattern trans-

formation provides a basis from which to develop the constraints associated

with a design pattern. These constraints can be defined using our analysis

functions. This enables a software tool to manage the constraints associ-

ated with patterns that have been applied to the program, and to notify the

programmer if they are updating code that relates to a pattern. The pro-

grammer may be advised that their updates are violating a pattern-related

constraint, and informed of what other changes are necessary in order to

re-establish the pattern constraints.

Language Independence

In our work we focused on the application of design patterns to Java pro-

grams. This raises the question of the extent to which our approach is ap-

plicable to other programming languages. Some refactorings and minitrans-

formations are applicable to any class-based, object-oriented language, while

others are quite Java-specific, for example, those that deal with interfaces.

One approach would be to use the Template Method pattern to describe

abstractly how the design pattern transformation operates, and provide the

language specific details in subclasses. This is certainly possible; whether

it is actually useful depends on the degree of commonality between a set

of design pattern transformations that each apply the same pattern, but to

programs written in different languages. All refactoring work to date has been

language-specific, so this direction would present an interesting challenge.

165



Pre-transformation Refactorings

For each design pattern transformation we compute its pre- and postcondi-

tions, and add its precursor precondition where necessary. This precondition

characterises the type of program to which the design pattern transformation

can be applied. In section 4.4.1 we categorised the different types of precon-

dition that a design pattern transformation can have. We stated that if a

refactoring precondition fails, the program can be automatically refactored

to correct the problem, and the transformation then applied.

We can view the design pattern transformation as describing a prototypi-

cal transformation. If a refactoring precondition fails, the program has to be

massaged into a suitable state so that the prototypical transformation can be

performed. This is an area for future investigation, and has the potential to

make the transformations we have developed applicable to a much broader

range of programs.

Pattern Applicability

Our current preconditions simply ensure that the design pattern transforma-

tion can be applied without changing program behaviour. It is left up to

the programmer to decide if applying the pattern is a good idea or not. We

argued strongly in section 2.2 that there are aspects of patterns that require

human insight, and that automated attempts to locate suitable places to

apply a pattern are of limited value.

However, a software tool could do more in terms of assessing whether

the pattern is applicable or not, by asking the programmer certain questions

about their intention. For example, in applying the Visitor pattern, the tool

might ask the programmer “Do you expect the classes in the object structure

to change often?” The answers from the programmer may cause the tool to

166



suggest that the pattern is not a suitable solution, or to configure the exact

manner in which the pattern is applied.

Pattern Removal

An over-zealous programmer might apply a pattern even though it is not

required, thus obscuring the program rather than enhancing its clarity [84,

p.23]. It might also be useful to optimise a program prior to compilation

by removing any unnecessary patterns, as they typically have a detrimen-

tal effect on runtime performance. An interesting extension to our work is

therefore to develop transformations that remove patterns, rather than apply

them. In this case, the design pattern structure is the starting point for the

transformation, and the corresponding precursor is the target. The informal

statement of the starting point for this type of transformation would be “the

design pattern structure is present, but its flexibility is not required.”

This is not as simple as defining an inverse for each refactoring, and

applying them in reverse order. Many refactorings require extra state to be

maintained in order to define their inverse. For example, the inverse of a

refactoring that deletes an unused class must have access to the deleted class

in order to restore it. Even if this extra state is maintained, any changes to

the program between the pattern being applied and it being removed might

render the inverse refactorings unusable. This area may be interesting to

look at, though it is obviously of less impact than the application of design

patterns2.

2Unless of course the current interest in design patterns turns to disdain, and the

software industry starts “reengineering to depatternise.”

167



6.3 To Conclude

We stated the fundamental thesis of this work in chapter 1 as follows:

Automating the application of design patterns to an existing pro-

gram in a behaviour preserving way is feasible.

The research presented in this dissertation has demonstrated the validity of

our original thesis. In section 5.7 we found that an excellent transformation

was constructed for close to half the patterns considered, and in only 26% of

cases could no useful precursor or transformation be found. For seven of the

design patterns considered, a rigorous argument of behaviour preservation

was also developed. We achieved strong reuse of the minitransformations, as

is depicted in figure 5.3 on page 155.

Design patterns have been gaining acceptance in the software engineering

community, though the lack of formalisation or automated support has been

a weakness of this field. Refactoring has also been gaining support, though

again, most of the recent interest has been in non-automated approaches. We

have contributed to the formalisation of the refactoring field, and used our

contribution to develop a rigorous and practical approach to the automated

application of design patterns.

168


