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Abstract

Abbreviations are commonly found in-
stances of synonymy in Biomedical journal
papers. Information retrieval systems that
index paragraphs rather than full-text arti-
cles are more susceptible to term variation
of this kind, since abbreviations are typi-
cally only defined once at the beginning of
the text. One solution to this problem is
to expand the user query automatically with
all possible abbreviation instances for each
query term. In this paper, we compare the
effectiveness of two abbreviation expansion
techniques on the TREC 2006 Genomics
Track queries and collection. Our results
show that for highly ambiguous abbrevia-
tions thequery collocationeffect isn’t strong
enough to deter the retrieval of erroneous
passages. We conclude that full-text ab-
breviation resolution prior to passage index-
ing is the most appropriate approach to this
problem.

1 Introduction

Query expansion is a well-known technique used in
Information Retrieval (IR) to address the problem of
lexical variation between the query and semantically
related terms in relevant documents (Efthimiadis,
1996). While on average query expansion methods,
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such asrelevance feedback(Ruthven and Lalmas,
2003), have been shown to improve retrieval perfor-
mance, there are many examples where query effec-
tiveness has been significantly downgraded. How-
ever, in terminology rich domains where word sense
distributions are heavily skewed, query expansion
has been shown to have more of a consistent pos-
itive effect on retrieval performance. This trend is
particularly evident in the passage retrieval task in-
vestigated at the TREC (Text REtrieval Conference)
Genomics Track (Hersh et al., 2006).

In this paper, we investigate the impact of vari-
ous expansion term types on passage retrieval ef-
fectiveness in the biomedical domain. Our re-
sults show that expanding with ontologically related
words (synonyms, hypernyms, hyponyms) signif-
icantly improves performance; however, abbrevia-
tion expansion shows more inconsistent results sim-
ilar to those seen in general domain expansion ex-
periments. One would expect that the performance
of IR systems that index paragraphs rather than full-
text articles would greatly benefit from this sort of
expansion, since abbreviations are typically only de-
fined once in an entire document.

We report the results of our investigation on the
TREC 2006 Genomic retrieval task. We compare
two abbreviation expansion techniques: the first
adds abbreviations found in the ADAM database
of abbreviations (Zhou et al., 2006a); the second,
uses a pseudo relevance feedback strategy to iden-
tify query term abbreviations in the full-text docu-
ments of an initial set of retrieved passages. Despite
the benefit of mutual disambiguation across query
terms, referred to as thequery term collocation effect



(Krovetz and Croft, 1992), both approaches reduce
retrieval effectiveness, leading to the conclusion that
abbreviation resolution in the document collection is
more appropriate than expansion.

Another contribution of this paper is our novel
concept-based IR ranking method. This ranking
method is an adaptation of the Okapi method, en-
hanced so as to deal with multi-concept queries de-
rived from natural language questions. Our method
ensures that passages containing at least one occur-
rence of all the query concepts out-rank passages
that contain many occurrences of only one of the
concepts. We also describe a paragraph reduction
strategy that increases the TREC defined answer ex-
traction accuracy score of our system. Finally, we
discuss our plans for future work.

2 Information Retrieval for Functional
Genomics

Biomedical text retrieval is a very active area of re-
search, driven by the biomedical community’s need
for high precision systems that answer specific bi-
ological questions not captured in the plethora of
database resources (of varying quality) containing
different types of biological information. Two dis-
tinct user information needs have been recently in-
vestigated by the IR community:clinical text re-
trieval (which supports patient-centred clinical re-
search or care) andfunctional genomic text retrieval
(which supports researchers involved in laboratory
experiments). In this paper, we focus on genomic
retrieval. An interesting overview of evidence-based
medical retrieval in the clinical domain can be found
in (Lin and Demner-Fushman, 2006).

Functional Genomics is the study of gene and pro-
tein function and interaction at a molecular level,
and the effects of this interaction on biological pro-
cesses that results in phenotypic outcomes (such
as disease) in organisms. An important yet very
time-consuming part of the functional genomics
pipeline for researchers involves arriving at bio-
logically motivated explanations for the output of
bioinformatics-based clustering techniques such as
gene expression profiling. Since a single experiment
can involve thousands of genes, even a competent
biologist needs to turn to a search engine to deter-
mining whether the functional dependencies found

in these clusters make sense.
The TREC Genomics Track was established in

2003 with the aim of supporting the evaluation of
information retrieval systems capable of answering
the types of questions typically posed by genomi-
cists such as:

• What is the role of gene A in disease B?

• What effect does gene A have on a particular
biological process?

• How do genes A and B interact in the function
of a specific organ?

• How do mutations in gene A influence a partic-
ular biological process?

Each of these four query templates were investi-
gated at the 2006 Genomics Track. In all, 28 queries
were evaluated on a collection of full-text journal pa-
pers, where the task was to retrieved relevant answer
passages rather than full-text documents. In the fol-
lowing section we describe our novel genomic re-
trieval system.

3 System Description

In this section, we describe the different components
in our Genomic IR architecture. Our IR system is a
version of the Zettair engine1 that we have specifi-
cally modified for passage retrieval and biomedical
query term expansion.

Collection Preprocessing

The TREC collection consists of full-text journal ar-
ticles obtained by crawling the Highwire site2. The
full collection contains 162,259 documents and is
about 12.3 GB in size when uncompressed. Af-
ter preprocessing, the whole collection becomes 7.9
GB. The collection is pre-processed as follows:

Paragraph Segmentation: for evaluation purposes
the Genomics Track requests that the ranked
answer passages must be within specified para-
graph boundaries.

1http://www.seg.rmit.edu.au/zettair/
2http://www.highwire.org



Sentence Segmentation: all sentences within para-
graphs are segmented using an open source
tool.3

Character Replacement: Greek characters repre-
sented by gifs are replaced by textual encod-
ings; accented characters such as “À” or “ Á”
are replaced by “A”; Roman numbers are re-
placed by Arabic numerals. These replace-
ments are very important for capturing varia-
tions in gene names.

Removal: all HTML tags, very short sentences,
paragraphs with the headingAbbreviations, fig-
ures, tables and some special characters such
as hyphens, slashes and asterisks are removed:
(Trieschnigg et al., 2006) has shown that small
changes in the tokenisation strategy such as
these improve the performance of biomedical
IR.

Query Expansion

Once the collection has been indexed, querying can
begin. In the 2006 Genomics Track, each query or
topic contains at least two biological concepts or en-
tities which could be a gene (“NM23”), a protein
(“p53”), a disease (“ovarian cancer”) or a biologi-
cal process (“ethanol metabolism”). TREC simpli-
fies the query preprocessing task by ensuring that all
topics conform to the query templates discussed in
Section 2. The following is a sample query, Topic
173 from the2006 track, which contains two con-
cepts: “PrnP” (a gene) and “mad cow disease” (a
disease):

What is the role ofPrnP in mad cow disease?

Our query expansion process proceeds as follows.
First, each gene or protein in the query is expanded
with entries from the Entrez Gene database.4 Since
the same gene may occur in many different species,
and many of their synonyms only differ with re-
spect to capitalisation, we choose the first entry re-
trieved that belongs to the species typeHomo sapien.
Then, terms in theOfficial Symbol, Name, Other

3http://l2r.cs.uiuc.edu/˜cogcomp/atool.
php?tkey=SS

4http://www.ncbi.nlm.nih.gov/sites/
entrez?db=gene

AliasesandOther Designationsfields, for the gene,
are added to the query.

For all disease and biological process mentions in
the query, we use the MeSH5 taxonomy of medical
terms to find their synonyms (using theEntry Terms
andSee Alsofields). The terms’ hyponyms (descen-
dants) and hypernyms (ancestors) in the MeSH tree
structure are also used as expansion terms.

Gene Variant Generation

As well as expanding with synonyms, we use a
“gene variant” generation tool to generate all the
possible variants for both original query terms and
expanded terms. Our segmentation rules are similar
to those used by (Buttcher et al., 2004). We describe
our rules as follows:

Given a gene name containing a hyphen or punc-
tuation, or a change from lower case to upper case,
or from a character to a number (or vice versa), or
a Greek character (e.g. “alpha”), we call this asplit
point. A word is split according to all its split points,
and all variants are generated by concatenating all
these split parts, optionally with a space inserted.
Greek characters are also mapped to English vari-
ants, e.g. “alpha” is mapped to “a”.

For example, on the query term “Sec61alpha”, we
would generate the following lexical variants which
are also commonly used forms of this term in the
collection: “Sec 61alpha”, “Sec61 alpha”, “Sec 61
alpha”, “Sec 61a”, “Sec61 a”, “Sec 61 a”, “Sec61a”;

In phrases, we replace hyphens (“-”), slashes
(“/”) and asterisks (“*”) in the queries with
spaces. For example, “subunit 1 BRCA1 BRCA2
containing complex” is a variant of “subunit 1
BRCA1/BRCA2-containing complex”.

Concept-based Query Normalisation

Our document ranking method is based on the Okapi
model (Robertson et al., 1994). Many participant
systems at the TREC Genomics track use the Okapi
method for ranking documents with respect to their
similarity to the query. However, there are two fun-
damental problems with using this model on TREC
Genomic queries.

The first problem regards Okapi not differentiat-
ing between concept terms and general query terms

5http://www.nlm.nih.gov/mesh



in the query. For example, consider two documents,
one containing the terms “mad cow disease” and
“PrnP”, and the other containing the terms “role”
and “PrnP”. Clearly the first document containing
the two biological concepts is more relevant. The
second problem occurs because TREC2006 topics
contain more than one concept term. It is possi-
ble that a short paragraph that discusses one concept
only will be ranked higher than a longer paragraph
which mentions two concepts. Again this is an un-
desirable outcome.

To overcome these problems, aConceptual IR
model was proposed in (Zhou et al., 2006b). In
this paper we propose another method called the
concept-based query normalisationwhich is based
on the Okapi model and similar to the method intro-
duced in (Li, 2007; Stokes et al., 2008) for geospa-
tial IR.

The first problem is solved by dividing query
terms into two types:general termstg andconcept
termstc. Given a query with both concept and gen-
eral terms, the similarity between a queryQ and a
documentDd is measured as follows:

sim(Q, Dd) = gsim(Q, Dd) + csim(Q, Dd)

wheregsim(Q,Dd) is thegeneral similarity score
andcsim(Q,Dd) is theconcept similarity score. The
general similarity score is given by:

gsim(Q, Dd) =
∑
t∈Qg

simt(Q, Dd) =
∑
t∈Qg

rd,t · wt · rq,t

where Qg is the aggregation of all general
terms/phrases in the query. The concept similarity
score is given by:

csim(Q, Dd) =
∑

C∈Qc

simc(Q, Dd)

=
∑

t∈C,C∈Qc

Norm(simt1(Q, Dd), . . . , simtN (Q, Dd))

=
∑

t∈C,C∈Qc

(simt1 +
simt2

a
+ · · ·+ simtN

aN−1
)

whereQc is the aggregation of all concepts in the
query,C is one concept inQc, andti is a term/phrase
in the query, after expansion, which belongs to the

conceptC; the ti are listed in descending order ac-
cording to their Okapi similarity scoressimt1 , . . .,
simtN :

simt(Q, Dd) = rd,t · w′
t · rq,t

where

rd,t =
(k1 + 1) · fd,t

k1 · [(1− b) + b · Wd
avgWd

] + fd,t

w′
t = log

N −max(ft, ftq ) + 0.5

max(ft, ftq ) + 0.5
(1)

rq,t =
(k3 + 1) · fq,t

k3 + fq,t

wherek1 andb are usually set to 1.2 and 0.75 re-
spectively, andk3 can be taken to be∞. Variable
Wd is the length of the documentd in bytes;avgWd

is the average document length in the entire collec-
tion; N is the total number of documents in the col-
lection;ft is the number of documents in which term
t occurs; andf{d,q},t is the frequency of termt in ei-
ther a documentd or queryq.

Note that (1) is an adjustment of the calculation
for the weightw′

t of an expansionterm t appear-
ing in the query: for expansion termt, its own term
frequencyft and the corresponding original query
term’s frequencyftq are compared, and the larger
value used — this ensures the term contributes an
appropriately normalised “concept weight”.

To solve the second problem, we use the follow-
ing rules to ensure that for two passagesP1 and
P2, where one contains more unique concepts than
the other, the number of conceptsConceptNum(P)
will override the Okapi scoreScore(P)and assign a
higher rank to the passage with more unique con-
cepts:

if ConceptNum(P1) > ConceptNum(P2) then

Rank(P1) > Rank(P2)

else ifConceptNum(P1) < ConceptNum(P2) then

Rank(P2) > Rank(P1)

else ifScore(P1) ≥ Score(P2) then

Rank(P1) > Rank(P2)

else

Rank(P2) > Rank(P1)



Abbreviation Finder

Although MeSH and Entrez Gene contain many syn-
onyms and related terms, one important type of lex-
ical variant,abbreviations, has very low coverage
in both databases. For example, “AD” is a com-
monly used abbreviation for “Alzheimer’s Disease”.
Since the long and short form (“Alzheimer’s Disease
(AD)”) only appear together at the beginning of each
journal document, many relevant passages will con-
tain “AD” only and so will appear less relevant than
they should against a query containing “Alzheimer’s
Disease”. Hence, expanding the given query with
“AD” should improve retrieval effectiveness.

As already mentioned, there are two methods for
collecting abbreviations from the literature: the first
uses the static resource ADAM (Zhou et al., 2006a),
while the second uses our pseudo relevance feed-
back method for extraction these abbreviations dur-
ing run time. The advantage of the latter approach
is that it dynamically collects abbreviations and so
does not suffer from the coverage and update prob-
lems of static resources like ADAM. The follow-
ing is an overview of how our abbreviation feedback
step contributes to the retrieval process:

1. Retrieve the first 1000 documents which in-
clude at least one instance of each concept in
the query.

2. From this subset of documents, find terms
which fit the pattern “Term (Abbr)”, where
“Term” is a concept in the query (original or ex-
panded) and “Abbr” is the abbreviation or syn-
onym defined in the text.

3. Among all the detected abbreviations or syn-
onyms, remove all the multi-word terms, terms
that do not have any overlapping characters
with the original term, and terms which occur
less than three times.

4. For all remaining abbreviations or synonyms,
use the above generation tool to formulate all
their lexical variants, and add them to the query.
The expanded query is then re-submitted to
the retrieval engine, and the passage extraction
step, described below, is applied.

Passage Extraction

As already mentioned the2006 Genomics Track de-
fined a new question answering-type task that re-
quires short full-sentence answers to be retrieved
in response to a particular query. However, before
answer passages can be generated, we first retrieve
the first1000 ranked paragraphs for each topic, and
use the following simple rules to reduce these para-
graphs to answer spans.

Two methods are examined in this paper which
are best described with an example. Given a para-
graph consisting of a set of sentences{(s1, i), (s2,
i), (s3, r), (s4, r), (s5, i), (s6, r), (s7, i), (s8, i), (s9,
r), (s10, i)}, wherer is relevant (that is, mentions
at least one query term) andi is irrelevant.Method
A shortens a paragraph by removing irrelevant sen-
tences from its start and end until a relevant sentence
is detected. Hence, it would produce the following
passage of sentences:{(s3, r), (s4, r), (s5, i), (s6,
r), (s7, i), (s8, i), (s9, r)}.

This extraction method does not split a paragraph
into multiple passages if irrelevant sentences occur
within the resultant passage.Method B, on the other
hand, addresses this issue by splitting a passage if
there are two or more consecutive irrelevant sen-
tences within this span. Hence, Method B would
produce the following two passages for this para-
graph: {(s3, r), (s4, r), (s5, i), (s6, r)} and{(s9,
r)}.

After one of these passage extraction techniques
has been applied for a particular topic, we re-rank
passages by re-indexing them, and re-querying the
topic against this new index, using the global statis-
tics from the original indexed collection, i.e. using
term frequencyft and the average paragraph length
avgWd.

4 Experimental Methodology

4.1 Data and Evaluation Metrics

We used the TREC 2006 Genomics Track evaluation
resources to determine the effectiveness of our sys-
tem. The TREC2006 collection consists of 162,259
full-text documents from49 journals publish elec-
tronically via the Highwire Press website6. The
track also provided28 topics expressed as natural

6More information on the TREC dataset can be found at:
http://ir.ohsu.edu/genomics/2006data.html



language questions, formatted with respect to seven
general topic templates. Participants were asked to
submit the first 1,000 ranked passages returned by
their system for each of the topics (Hersh et al.,
2006). Passages in this task are defined as text se-
quences that cannot cross paragraph boundaries (de-
limited by HTML tags), and are subsets of the origi-
nal paragraphs in which they occur. As is the custom
at TREC, human judges were used to decide the rel-
evance of passages in the pooled participating sys-
tem results. These judges also defined exact passage
boundaries, and assigned topic tags calledaspects
from a control vocabulary of MeSH terms to each
relevant answer retrieved.

Mean Average Precision, or MAP, is a popular
IR metric for evaluating system effectiveness. The
TREC Genomics Track defines three versions of the
MAP score calculated at various levels of granular-
ity: Document, PassageandAspect. Traditionally
the MAP score is defined as follows: first, the av-
erage of all the precision values at each recall point
on a topic’sdocumentranked list is calculated; then,
the mean of all the topic average precisions is de-
termined. Since the retrieval task at the Genomics
Track is a question answering-style task, a metric
that is sensitive to the length of the answer retrieved
was developed.

Passage MAP is similar to document MAP ex-
cept average precision is calculated as the fraction
of characters in the system passage overlapping with
the gold standard answer, divided by the total num-
ber of characters in every passage retrieved up to that
point in the ranked list. Hence, a system is penalised
for all additional characters retrieved that are not
members of the human evaluated answer passage.

The TREC organisers also wanted to measure to
what extent a particular passage captured all the nec-
essary information required in the answer. Judges
were asked to assign at least one MeSH heading
to all relevant passages. Aspect average precision
is then measured as the number of aspects (MeSH
headings) captured by all the relevant documents up
to the recall point in the ranked list for a particular
query. Relevant passages that did not contribute any
new aspect to the aspects retrieved by higher ranked
passages were removed from the ranking. Aspect
MAP is defined as the mean of these average topic
precision scores.

4.2 Experimental Results

In this section, we examine the increased effective-
ness obtained when different expansion information
is added to the original query. We also evaluate the
effect of our proposed abbreviation feedback tech-
nique, and our novel answer expansion module, on
system performance.

As explained in Section 3, our system uses Entrez
Gene for expansion of genes to their synonymous
instances. In addition, all term variants are gener-
ated for their abbreviations as described in Section 3,
while other biological entities in the query (e.g., dis-
eases) are expanded using MeSH. Table 1 presents
the MAP scores for the following system runs:

• Baseline : Zettair system with no expansion

• SYN: query expansion using Entrez gene and
MeSH expansion (Synonymand See Alsoen-
tries in MeSH) of query terms

• SYN+HYPO: query expansion using Entrez
gene and MeSH expansion, includingHy-
ponyms(i.e., specialisations)

• SYN+HYPER: query expansion using Entrez
gene and MeSH expansion, includingHyper-
nyms(i.e., generalisations)

• SYN+HYPER+VAR: query expansion using En-
trez gene,Gene Variant Generation, and MeSH
expansion, includingHypernyms

All expansion run MAP scores show a statistically
significant7 improvement over the baseline MAP.
The only expansion experiment that does not incre-
mentally improve the results is the addition of hy-
ponym terms (i.e. specialisation) from MeSH. On
the other hand, hypernyms (i.e. generalisations) im-
prove the performance of theSYNrun by nearly5%.
This result may be explained by the fact that at a pas-
sage level, generalised expressions are commonly
used to refer to query terms that have been discuss
earlier in the document. For example, the following
sentence is clearly relevant to themad cow disease
query presented in Section 3: “Theseprion diseases
are characterised by the accumulation of an abnor-
mal (aberrantly folded) isoform of a cellular host

7We use a paired Wilcoxon signed-rank test at the0.05 con-
fidence level to determine significance.



Table 1: Table showing improvement in MAP score obtained over baseline MAP when the query is expanded
with various combinations of related terms: synonyms (SYN), hyponyms (HYPO), hypernyms (HYPER)
and gene lexical variants (VAR)

Run Passage MAP Aspect MAP Document MAP
Baseline 0.0480 0.1838 0.3355
SYN 0.0888† +85.0% P = 0.005 0.3499† +90.3% P < 0.001 0.4711† +40.4% P = 0.008
SYN+HYPO 0.0878† +83.0% P = 0.007 0.3417† +85.9% P = 0.001 0.4632† +38.1% P = 0.02
SYN+HYPER 0.0933† +94.4% P < 0.001 0.3695† +101% P < 0.001 0.4843† +44.3% P = 0.002
SYN+HYPER+VAR 0.0949† +97.6% P < 0.001 0.3827† +108% P < 0.001 0.5080† +51.4% P < 0.001

protein PrPC”. However, it would only be ranked
highly if the generalisation relationship frommad
cow diseaseto prion diseasehas been established.
Expanding the query term with the immediate par-
ent terms in the different MeSH hierarchies usually
results in a few focussed terms being added to the
query. In contrast, adding specialisations may result
in a much larger number of term additions, depend-
ing on the generality of the query term. For exam-
ple, the termneuronshas18 unique subcategories
one level below its position in the MeSH hierarchy
and many more beyond this level.

Our best system run (SYN+HYPER+VAR) used
ontological and gene variant expansion, and
achieved a97.6% increase in Passage MAP over
the baseline run. Similarly large increases in Aspect
and Document MAP were also observed. A detailed
analysis showed that many passages had been either
missed or ranked lower than expected by our system
due to the occurrence of query term abbreviations in
the relevant passage. These abbreviations were not
captured in either of our ontological resources.

Table 2 compares the performance of the two
abbreviation expansion strategies described in Sec-
tion 3. Ontological expansion using the ADAM ab-
breviation database reduces our best Passage MAP
score by36%. Our abbreviation feedback loop per-
forms better, producing a small increase in Docu-
ment MAP over the baseline, but slightly lower As-
pect and Passage MAPs. In some respects, this feed-
back result is disappointing as a manual analysis of
the added abbreviations shows that many useful syn-
onyms were added to the query, which should, in
theory, help to retrieve additional passages and boast
the rankings of other relevant passages.

However, there is one big drawback to abbre-
viation expansion that isn’t characteristic in other
types of expansion we have explored: abbreviations

are much more ambiguous. For example, the ab-
breviation “AD” is a very commonly used refer-
ence to “Alzheimer’s disease”; however, according
to ADAM, “AD” has 35 unique long forms defined
in MedLINE abstracts. For example, “AD” can also
refer to the phrases “after discharge”, “autosomal
dominant”, “autistic disorder”, and other unrelated
concepts.

IR researchers have found that query-term ambi-
guity is less of a problem than one might expect be-
cause of thequery term collocation effect(Krovetz
and Croft, 1992): query terms mutually disam-
biguate each other because their intended senses
tend to co-occur together in relevant documents in
the collection. For example, for the query term
“cell”, adding the term “blood” to the query ensures
that documents using the biological sense are ranked
higher. Hence, one would expect that despite ab-
breviation ambiguity, great gains in IR effectiveness
would be possible using expansion. However, when
the total number of possible unabbreviated forms is
factored into the expansion process, it is clear that
an excessive amount of ambiguity is added in.

A manual analysis of the results backs up this
observation: although new relevant passages con-
taining abbreviations are being retrieved, paragraph
ranking is being affected to such an extent that pre-
viously retrieved passages are “dropping out” of the
top1000 items in the ranked list.

However, our results also show that dynamic ab-
breviation expansion does not degrade performance
as dramatically as expansion with ADAM. The feed-
back process ensures that only abbreviations that
occur in documents of high ranked passages, men-
tioning all query concepts, are added to the query.
Thus, these abbreviations have the highest potential
for providing positive impact on retrieval effective-
ness.



Table 2: Table showing effect on system performance when additional expansion terms are added from the
ADAM abbreviation (+Adam) database and our system Abbreviation feedback loop (+Abbr).

Run Passage MAP Aspect MAP Document MAP
SYN+HYPER+VAR 0.0949 0.3827 0.5080
SYN+HYPER+VAR+Adam 0.0600† −36.8% P < 0.001 0.2387† −37.6% P < 0.001 0.4105† −19.2% P = 0.001
SYN+HYPER+VAR+Abbr 0.0920 −3.06% P = 0.3 0.3784 −1.12% P = 0.4 0.5171 +1.79% P = 0.3

Table 3: Table showing effect of two passage extraction strategies A and B on system performance
Run Passage MAP Aspect MAP Document MAP
Best 0.0920 0.3784 0.5171
Best+A 0.1100† +19.6% P < 0.001 0.3673 −2.93% P = 0.3 0.5123 −0.93% P = 0.3
Best+B 0.1175† +27.7% P < 0.001 0.3518† −7.03% P = 0.004 0.5021 −2.90% P = 0.08

The general conclusion from these abbreviation
expansion experiments is clear: knowledge of these
synonymous instances is obviously beneficial, but a
method that reduces the impact of their high ambi-
guity is necessary. We discuss our proposed solution
to this problem in Section 5.

Our final experiment (see Table 3) shows that
the TREC’s Passage MAP score can be increased
by capturing the exact answer span in each rele-
vant paragraph. Section 3 proposed two methods for
achieving this:Method Afinds the longest text span
in paragraph that contains all query terms;Method B
splits the span and remove sentences if there is a dis-
tance of one or more sentences between consecutive
mentions of any of the query terms. Both reduction
methods show improvements in Passage MAP, but
at the expense of the other two metrics. This is to be
expected, especially in the case ofMethod B, since
splitting paragraphs means some relevant passages
may get a lower rank or even drop out of the top
1000 passages.

Table 4 shows how our best run (Best+B )
performs with respect to systems that partici-
pated in the official TREC 2006 Genomics Track.
TREC MEDIAN is the median value for each MAP
score reported at TREC. UICTREC8 was the top
performing system submitted by the University of
Illinois at Chicago, and UICSIGIR is the best post-
submission Passage MAP score which was also pub-
lished by the same group (Zhou et al., 2007). If our
system had participated at TREC track we would
have ranked6th for Passage MAP,3rd for Aspect
MAP and4th for Document MAP out of92 submit-
ted runs.

8The official name for this run was UICGenRun3.

Table 4: Table showing performance of our best Pas-
sage MAP scoring run Best+B with the top perform-
ing TREC systems on the Genomics Track

Run Passage Aspect Document
MAP MAP MAP

UIC SIGIR 0.1823 0.3811 0.5391
UIC TREC 0.1479 0.3492 0.5320
Best+B 0.1175 0.3518 0.5021
TRECMEDIAN 0.0345 0.1581 0.3083

5 Discussion and Conclusions

The most successful systems at the TREC Genomics
Track 2006 used a combination of expansion tech-
niques from external resources such as publically-
available and hand-crafted thesauri, in addition to
lexical variant generation techniques similar to the
one described in this paper. One of the principal
contributions of this paper is our detailed analysis
of what types of ontologically related terms (syn-
onyms, hyponyms, hypernyms, lexical variants, ab-
breviations) provide the most impact when used as
expansion terms. In particular, we have focussed
on abbreviation expansion, which has high potential
for impact when passages rather than full documents
are being retrieved. However, our experiments show
that their high ambiguity can in some cases reduce
retrieval effectiveness.

There are two possible solutions to the abbrevia-
tion ambiguity problem: all abbreviations in the col-
lection are identified in advance of indexing, and a
unique identifier is assigned to each long-form and
its corresponding abbreviated short-form. Hence,
when the query is expanded, the unique identifier
rather than the lexical form of the abbreviation is
added to the query. Similarly, all abbreviations in
the collection will be replaced by their identifier be-



fore passage indexing occurs. Another possible ap-
proach would be to explicitly add the long-forms of
abbreviations in a passage to its index entry. This
is a document expansion rather than a query expan-
sion strategy. We plan to investigate both of these
methods in our future work.

Another area for potential improvement that we
wish to investigate further is paragraph reduc-
tion. Passage MAP is severely affected by long-
answer text spans. Paragraph reduction is simi-
lar to answer extraction in factoid-based Question-
Answering tasks. However, researchers have only
recently begun to investigate answer extraction for
more complex question types such asWhyor How
questions in an ad hoc retrieval setting (Allan, 2005).
The Document Understanding Conference (DUC),
which focusses on summarisation tasks, is also look-
ing at complex questions; however, answers are typ-
ically generated by collating information from mul-
tiple documents (Dang, 2006).
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