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Benford's Law

m Newcomb (1881) and, independently, Benford (1938) noticed
the following pattern in certain datasets:
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Research on Benford’s Law
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m The appearance of Benford's distribution in many different
scenarios has been extensively studied
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Legal Disclaimer

m Many recurrence relations comply exactly with Benford’s law

m Pochhammer numbers, Bell numbers, Fibonacci numbers. . .
m reason: equidistribution theorem (Sierpinski, Weyl, c. 1909)
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Legal Disclaimer

m Many recurrence relations comply exactly with Benford’s law

m Pochhammer numbers, Bell numbers, Fibonacci numbers. . .
m reason: equidistribution theorem (Sierpinski, Weyl, c. 1909)

m But when it comes to data arising from natural random
processes the justifications for Benford's law are shakier
m e.g. Benford’s law holds when

m data exhibits geometric growth
m data is spread over many orders of magnitude
m data is scale invariant
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Legal Disclaimer

m Many recurrence relations comply exactly with Benford’s law

m Pochhammer numbers, Bell numbers, Fibonacci numbers. . .
m reason: equidistribution theorem (Sierpinski, Weyl, c. 1909)

m But when it comes to data arising from natural random
processes the justifications for Benford's law are shakier
m e.g. Benford’s law holds when
m data exhibits geometric growth
m data is spread over many orders of magnitude
m data is scale invariant

m Should we stop calling Benford's law a “law”?
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General Distribution of the k Most Significant b-ary Digits

m Fractional part of y € R: {y} =y — |y|
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General Distribution of the k Most Significant b-ary Digits

m Fractional part of y e R: {y} =y — |y]
m The discrete r.v. modelling the k most significant b-ary digits
of a positive continuous r.v. X is

Ay = | bllogs X} k=11 " \with support Ay = {bF1, . bk -1}
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General Distribution of the k Most Significant b-ary Digits

m Fractional part of y e R: {y} =y — |y]
m The discrete r.v. modelling the k most significant b-ary digits
of a positive continuous r.v. X is

Apy = 10080 X3 4271 | " yith support Ay = {10, 11,...,98,99}
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General Distribution of the k Most Significant b-ary Digits

m Fractional part of y e R: {y} =y — |y]
m The discrete r.v. modelling the k most significant b-ary digits
of a positive continuous r.v. X is

Ay = | bllogs X} k=11 " \with support Ay = {bF1, . bk -1}

m Letting Y = log,, X, the pmf of A(,) can be obtained from the
cdf of {Y}, Fryy(y) =Pr({Y} <), as follows:

PI’(A(k) = a) = F{y}(logb(a + 1) —k+ 1) — F{y}(logba — k+ 1)
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General Distribution of the k Most Significant b-ary Digits

m Fractional part of y e R: {y} =y — |y]
m The discrete r.v. modelling the k most significant b-ary digits
of a positive continuous r.v. X is

Ay = | bllogs X} k=11 " \with support Ay = {bF1, . bk -1}

m Letting Y = log,, X, the pmf of A(,) can be obtained from the
cdf of {Y}, Fryy(y) =Pr({Y} <), as follows:

PI’(A(k) = a) = F{y}(logb(a + 1) —k+ 1) — F{y}(logba — k+ 1)

m the j-th MSD can also be modelled using A;;; = A(j) (mod b)
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Getting Particular

m Definition: X is Benford if {Y} ~ U(0,1) = Fyy(y) =y
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Getting Particular

m Definition: X is Benford if {Y} ~ U(0,1) = Fyy(y) =y

m general expression leads to well-known Benford's distribution

1
Pr(Aw = a) = log, <1 + a> ,  where a € Ay

?Qgﬁ%ﬁj
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Getting Particular

m Definition: X is Benford if {Y} ~ U(0,1) = Fyy(y) =y

m general expression leads to well-known Benford's distribution

1
Pr(A(Q) = 45) = logyg <1 + 45>
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Getting Particular

m Definition: X is Benford if {Y} ~ U(0,1) = Fyy(y) =y

m general expression leads to well-known Benford's distribution
1
Pr(A = a) = log, ( 1+ 3) where a € Ay

m the j-th MSD (for j > 2) is distributed as

L F((a+ )b+ (ab™ ! +b72)
Prifi=2) = log, < F((a+ Db T+ b2)T (ab 1+ b1 )

where a € {0,1,...,b— 1} and I'(+) is the Gamma function
m this closed-form expression was never previously given
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Pr(X € (x,x)) =Pr(X € a(x,x)) = X is strictly scale invariant
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Strict Scale Invariance and Base Invariance

m Property of the pdf of strictly scale-invariant X

‘fx(x) = afx(ax)‘ a>0

§§§%§35
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Strict Scale Invariance and Base Invariance

m Property of the pdf of strictly scale-invariant X

‘fx(x) = afx(ozx)‘ a>0

m Consequences: Y is uniform, and so X must have finite
support which must also depend on b to ensure { Y} ~ U(0,1)

— The common notion “scale-invariant data that follows
Benford'’s law is base invariant” can only be an approximation
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The One and Only, But Often a Misfit

m The pdf of a strictly scale invariant r.v. X must be oc x 1

— the prize-competition distribution is the only choice

1

he(x) = xIn(xm/Xm)

9 0<Xm§X§XM
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The One and Only, But Often a Misfit

m The pdf of a strictly scale invariant r.v. X must be o x~
— the prize-competition distribution is the only choice
1
xIn(xm/Xm)’

m plus, for X to be Benford it must hold that log,(xv/xm) € Z

fx(X): 0 <xm<x<xm
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First Significant Digit in Prize-Competition Distribution
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m If log,(xm/xm) € Z we get Benford's distribution
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First Significant Digit in Prize-Competition Distribution
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m If log,(xv/xm) & Z a mismatch is inevitable. . .
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First Significant Digit in Prize-Competition Distribution
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m If log,(xv/xm) & Z a mismatch is inevitable. . . but it
decreases if the pdf spreads over many orders of magnitude

m Still, the prize-competition distribution is relatively uncommon
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More Plausible Scale Invariance

m Consider a more relaxed definition of scale invariance:

‘ fx(x) = o fx(ax) ‘ v>1

— The Pareto pdf is the only one to conform to this criterion

5 X,
fX(X):F7 0<XmSX,5>O
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More Plausible Scale Invariance

m Consider a more relaxed definition of scale invariance:

‘ fx(x) = a"fx(ax) ‘ v>1

— The Pareto pdf is the only one to conform to this criterion

5 X,
fX(X):F7 0<XmSX,5>O

m Relevance: the Central Limit Theorem has a hidden side. ..

m “heavy-tailed distributions, such as Pareto, are as prominent as
the Gaussian distribution —if not more” (Nair et al., 2021)
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cdf of {Y} = {log, X} for Pareto X

s: shape parameter
Xm: mMinimum value
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cdf of {Y} = {log, X} for Pareto X

s: shape parameter
Xm: mMinimum value

{logig xm} =0.30

1 T T
s =1.90
s =1.60
s=1.30
s =1.00
s =0.70
s = 0.40
—— s=0.10

Fivy(y)

= = = Benford
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11/22 BT




cdf of {Y} = {log, X} for Pareto X

Fivy(y)
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cdf of {Y} = {log, X} for Pareto X

Fivy(y)
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Wrapping it Up

m With the cdf of {Y} and the general expression, we get the
pmf of the k most significant b-ary digits for a Pareto r.v. X

ps(&—1) . .
a) = p—— (a*—(a+1)7)

+u(a+1—b)(1—b(a+1)79)
— u(a — bg) (1 — b5 afs)

PF(A(k) =

where a € Ay, § = {log, Xm} + k — 1 and u(-) is unit-step function

Equ{* PCO
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Wrapping it Up

m With the cdf of {Y} and the general expression, we get the
pmf of the k most significant b-ary digits for a Pareto r.v. X

pse-1) .
= (a —(a+1) )

+u(a+1—b)(1—b(a+1)79)
— u(a — bé) (1 — b5 afs)

PF(A(k) = a) =

where a € Ay, § = {log, Xm} + k — 1 and u(-) is unit-step function
m as s — 0 the distribution above tends to Benford's
m but: the significant digits of scale-invariant datasets are far
more likely to follow this distribution rather than Benford's
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Distribution of the kK MSDs of a Pareto Variable

m Pseudorandom empiricals vs theoreticals, kK = 1

Benford (Pareto, s — 0)
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Distribution of the kK MSDs of a Pareto Variable

m Pseudorandom empiricals vs theoreticals, kK = 1
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Distribution of the kK MSDs of a Pareto Variable

m Pseudorandom empiricals vs theoreticals, k = 2
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The Butterfly Effect

m Special case {log, xm} = 0 (i.e. no kink in the pmf)

a*—(a+1)°
p—s(k—=1) _ p—sk’

Pr(A(k) = a) = ac .A(k)
m originally found by Pietronero et al. (2001) for k = 1, then
extended to general k by Barabesi and Pratelli (2020)

?u}é* PCO

14/22



The Butterfly Effect

m Special case {log, xm} = 0 (i.e. no kink in the pmf)

a*—(a+1)°

Pr(Auy = a) = p—s(k—1) _ p—sk’

ac .A(k)

m originally found by Pietronero et al. (2001) for kK = 1, then
extended to general k by Barabesi and Pratelli (2020)
m ldentified and named only in 2015, in a Lepidoptera study by
Kozubowski et al.: discrete truncated Pareto (DTP) pmf
m jaw-dropping fact: DTP can be obtained by quantising either

a truncated Pareto r.v.
the fractional part of the logarithm of a standard Pareto r.v.
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First Significant Digit in Real Scale-Invariant Datasets

m Scale-invariant datasets are typically assumed to follow
Benford’s distribution. ..

T
Benford
0.5 - -

World cities > 500k, p = 1, 145

World Population Review, 2020
0.4 Pareto, § = 1.15, {log1g Xm } = 0.70

: A Largest US cities, p = 5, 000

US Census Bureau, 2008

Pareto, § = 0.78, {log1g Xm } = 0.63

2)

0'3Ev

§, Xm: ML estimators; p: dataset size S
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First Significant Digit in Real Scale-Invariant Datasets

m Scale-invariant datasets are typically assumed to follow
Benford’s distribution. ..

T
Benford
0.6 o Mercurian craters (> 20 km) 4
p = 6,040
05 - Pareto, § = 1.42, {logjp Xm} = 0.30 |
— ' Lunar craters (> 1 km)
T p =1,296,796
|| 0.4 Pareto, § = 1.59, {logjg Xm} = 0.00
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First Significant Digit in Real Scale-Invariant Datasets

m Scale-invariant datasets are typically assumed to follow
Benford’s distribution. ..

T
0.7Y Benford
Japanese mountains elevation
01 (relative height > 250 m)
0.6 - p=2,501
Pareto, § = 2.86, {logyg Xm} = 0.40
‘o 0.5 World mountains elevation
o v (relative height > 1,500 m)
I 0.4 |- p=1,663 B
= Pareto, § = 3.41, {logjg &m} = 0.15
<
— 03 \ -
— . 0
D_ .
0.2 - : -
0.1 - -
(53]
0 i i I s

8, Xm: ML estimators; p: dataset size
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First Significant Digit in Real Scale-Invariant Datasets

m Scale-invariant datasets are typically assumed to follow
Benford’s distribution. .. and sometimes they do!

T
Benford

\ Billionaires (wealth in billion $)
0.5 *\‘ oy =2, 614

Pareto, § = 1.13, {logjg Xm} = 0.00

\ US total income per ZIP code, 2016
[ p = 159, 928

Pareto, § = 0.22, {logjg Xm} = 0.31

0.4
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PI’(A(l) = a)
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§, %m: ML estimators; p: dataset size BESsS
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What is the Significance of Significant Digits?

m The quintessential application of MSDs
modelling is forensic analysis

m tampering detection in economic

e
—
) . . I
data, election results, multimedia, etc —
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What is the Significance of Significant Digits?

m The quintessential application of MSDs
modelling is forensic analysis

m tampering detection in economic
data, election results, multimedia, etc
m But: why look at the most significant
digits of a set of numbers instead of
looking at those numbers themselves?
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Chasing Shadows in Forensic Analysis. . .

m Discrete projection of continuous data — information loss

LVX VENIT IN MVNDVN ET DILEXERVNT H();V[Nl,yi\i L 1 10.
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Plato’s allegory of the cave
“light came into the world, and men loved darkness rather than light”
E0dPco
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Chasing Shadows in Forensic Analysis. . .

m Discrete projection of continuous data — information loss
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Chasing Shadows in Forensic Analysis. . .

m Discrete projection of continuous data — information loss

OFESSORI MEDICO DD,

Plato’s allegory of the cave
“light came into the world, and men loved darkness rather than light”
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Your Significant Others: Continued Fraction Coefficients

m Continued fractions (CF): a way of representing numbers
alternative to positional base b number systems

¥o = [yo] + {»o}

a%ﬁéﬁé
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Your Significant Others: Continued Fraction Coefficients

m Continued fractions (CF): a way of representing numbers
alternative to positional base b number systems

1
Yo=ao+ —
Y1

a%ﬁéﬁé
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Your Significant Others: Continued Fraction Coefficients

m Continued fractions (CF): a way of representing numbers
alternative to positional base b number systems
1

YOO T
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Your Significant Others: Continued Fraction Coefficients

m Continued fractions (CF): a way of representing numbers
alternative to positional base b number systems

Yo=ao+

1
31+y2
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Your Significant Others: Continued Fraction Coefficients

m Continued fractions (CF): a way of representing numbers
alternative to positional base b number systems

Yo=a+ ——1—
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Your Significant Others: Continued Fraction Coefficients

m Continued fractions (CF): a way of representing numbers
alternative to positional base b number systems

Yo = [30; di, a2, adas, .. ]

E§§§§ﬁj
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Your Significant Others: Continued Fraction Coefficients

m Continued fractions (CF): a way of representing numbers
alternative to positional base b number systems

YO = [AOr A17 A2a A37 .. ]
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Your Significant Others: Continued Fraction Coefficients

m Continued fractions (CF): a way of representing numbers
alternative to positional base b number systems

YO = [AO, Ala A27 A37 B ]

m If Yo = log, X and X is Benford, then

Pr(Ar = a1,..., Ax = ax) =(~1)*([0; a1, . . ., ak_1, ak + 1]

- [07 ar, ..., dk-1, ak])

where a; € N

— model for k most significant CF coefficients of log, X,
analogous to model for k most significant b-ary digits of X

§§§%§35
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Distribution of the Two Most Significant CF Coefficients

m Pseudorandom empiricals vs theoreticals (Benford X)
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CF Coefficients in Real Scale-Invariant Datasets

m Distribution of first two CF coefficients of log;q x;

US total income per ZIP code, 2016
p = 159,928

— — — Benford X
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First CF Coefficient A; vs First Significant b-ary Digit A

m Which r.v. should we use in a forensic detection test where X
is hypothesised to be Benford?

a) Ar = [{log, X} 7'
b) Au) = | bllogs X} |

€§§%§?5
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First CF Coefficient A; vs First Significant b-ary Digit A

m Which r.v. should we use in a forensic detection test where X
is hypothesised to be Benford?

a) A = [{log, X} ]
b) Aqy = [bllos X
m Possible answers:
a) because there is less information loss wrt {Y'} = {log, X}

I(A1;{Y}) = 2.046 nats
I(Aq); {Y}) =1.993 nats (b= 10)
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First CF Coefficient A; vs First Significant b-ary Digit A

m Which r.v. should we use in a forensic detection test where X
is hypothesised to be Benford?

a) A = [{log, X} ]
b) Ay = bt X}
m Possible answers:
b) because there is less information loss wrt {Y'} = {log, X}

1(A1;{Y}) = 2.046 nats
/(A(1)3 {Y}) =2.413 nats (b= 16)
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First CF Coefficient A; vs First Significant b-ary Digit A

m Which r.v. should we use in a forensic detection test where X
is hypothesised to be Benford?

a) Ay = |{log, X}
b) Ay = bt X}

m Possible answers:
— none of them: using {log, X} should always be better
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Time to Recap

The most significant digits in scale-invariant data can often be

modelled using a generalisation of Benford's distribution based
on heavy-tailed Pareto variables

There is nothing special about significant b-ary digits: they

may be replaced by significant continued fraction coefficients
in forensic detection tests
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Time to Recap

The most significant digits in scale-invariant data can often be
modelled using a generalisation of Benford's distribution based
on heavy-tailed Pareto variables

There is nothing special about significant b-ary digits: they

may be replaced by significant continued fraction coefficients
in forensic detection tests

m and both are just shadows. . .
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