Benford's Law: Hammering a Square Peg Into a Round Hole?

Félix Balado and Guénolé C. Silvestre

School of Computer Science
University College Dublin Ireland
29th EUSIPCO, Dublin 23-27 August, 2021

Benford's Law

■ Newcomb (1881) and, independently, Benford (1938) noticed the following pattern in certain datasets:

Research on Benford's Law

- The appearance of Benford's distribution in many different scenarios has been extensively studied

total: 1,735 publications
[source: benfordonline.net]

Legal Disclaimer

■ Many recurrence relations comply exactly with Benford's law

- Pochhammer numbers, Bell numbers, Fibonacci numbers...
- reason: equidistribution theorem (Sierpiński, Weyl, c. 1909)

Legal Disclaimer

■ Many recurrence relations comply exactly with Benford's law
■ Pochhammer numbers, Bell numbers, Fibonacci numbers...

- reason: equidistribution theorem (Sierpiński, Weyl, c. 1909)
- But when it comes to data arising from natural random processes the justifications for Benford's law are shakier
- e.g. Benford's law holds when

■ data exhibits geometric growth
■ data is spread over many orders of magnitude

- data is scale invariant

Legal Disclaimer

■ Many recurrence relations comply exactly with Benford's law

- Pochhammer numbers, Bell numbers, Fibonacci numbers...
- reason: equidistribution theorem (Sierpiński, Weyl, c. 1909)
- But when it comes to data arising from natural random processes the justifications for Benford's law are shakier
- e.g. Benford's law holds when
- data exhibits geometric growth
- data is spread over many orders of magnitude
- data is scale invariant

■ Should we stop calling Benford's law a "law"?

General Distribution of the k Most Significant b-ary Digits

■ Fractional part of $y \in \mathbb{R}:\{y\}=y-\lfloor y\rfloor$

General Distribution of the k Most Significant b-ary Digits

■ Fractional part of $y \in \mathbb{R}:\{y\}=y-\lfloor y\rfloor$

- The discrete r.v. modelling the k most significant b-ary digits of a positive continuous r.v. X is

$$
A_{(k)}=\left\lfloor b^{\left\{\log _{b} x\right\}+k-1}\right\rfloor, \text { with support } \mathcal{A}_{(k)}=\left\{b^{k-1}, \ldots, b^{k}-1\right\}
$$

General Distribution of the k Most Significant b-ary Digits

■ Fractional part of $y \in \mathbb{R}:\{y\}=y-\lfloor y\rfloor$

- The discrete r.v. modelling the k most significant b-ary digits of a positive continuous r.v. X is

$$
A_{(2)}=\left\lfloor 10^{\left\{\log _{10} x\right\}+2-1}\right\rfloor, \text { with support } \mathcal{A}_{(2)}=\{10,11, \ldots, 98,99\}
$$

General Distribution of the k Most Significant b-ary Digits

■ Fractional part of $y \in \mathbb{R}:\{y\}=y-\lfloor y\rfloor$

- The discrete r.v. modelling the k most significant b-ary digits of a positive continuous r.v. X is

$$
A_{(k)}=\left\lfloor b^{\left\{\log _{b} x\right\}+k-1}\right\rfloor, \text { with support } \mathcal{A}_{(k)}=\left\{b^{k-1}, \ldots, b^{k}-1\right\}
$$

■ Letting $Y=\log _{b} X$, the pmf of $A_{(k)}$ can be obtained from the cdf of $\{Y\}, F_{\{Y\}}(y)=\operatorname{Pr}(\{Y\} \leq y)$, as follows:

$$
\operatorname{Pr}\left(A_{(k)}=a\right)=F_{\{Y\}}\left(\log _{b}(a+1)-k+1\right)-F_{\{Y\}}\left(\log _{b} a-k+1\right)
$$

General Distribution of the k Most Significant b-ary Digits

■ Fractional part of $y \in \mathbb{R}:\{y\}=y-\lfloor y\rfloor$

- The discrete r.v. modelling the k most significant b-ary digits of a positive continuous r.v. X is
$A_{(k)}=\left\lfloor b^{\left\{\log _{b} X\right\}+k-1}\right\rfloor$, with support $\mathcal{A}_{(k)}=\left\{b^{k-1}, \ldots, b^{k}-1\right\}$
■ Letting $Y=\log _{b} X$, the pmf of $A_{(k)}$ can be obtained from the cdf of $\{Y\}, F_{\{Y\}}(y)=\operatorname{Pr}(\{Y\} \leq y)$, as follows:

$$
\operatorname{Pr}\left(A_{(k)}=a\right)=F_{\{Y\}}\left(\log _{b}(a+1)-k+1\right)-F_{\{Y\}}\left(\log _{b} a-k+1\right)
$$

- the j-th MSD can also be modelled using $A_{[j]}=A_{(j)}(\bmod b)$

Getting Particular

■ Definition: X is Benford if $\{Y\} \sim U(0,1) \Rightarrow F_{\{Y\}}(y)=y$

Getting Particular

■ Definition: X is Benford if $\{Y\} \sim U(0,1) \Rightarrow F_{\{Y\}}(y)=y$

- general expression leads to well-known Benford's distribution

$$
\operatorname{Pr}\left(A_{(k)}=a\right)=\log _{b}\left(1+\frac{1}{a}\right), \quad \text { where } a \in \mathcal{A}_{(k)}
$$

Getting Particular

■ Definition: X is Benford if $\{Y\} \sim U(0,1) \Rightarrow F_{\{Y\}}(y)=y$

- general expression leads to well-known Benford's distribution

$$
\operatorname{Pr}\left(A_{(2)}=45\right)=\log _{10}\left(1+\frac{1}{45}\right)
$$

Getting Particular

- Definition: X is Benford if $\{Y\} \sim U(0,1) \Rightarrow F_{\{Y\}}(y)=y$
- general expression leads to well-known Benford's distribution

$$
\operatorname{Pr}\left(A_{(k)}=a\right)=\log _{b}\left(1+\frac{1}{a}\right), \quad \text { where } a \in \mathcal{A}_{(k)}
$$

- the j-th MSD (for $j \geq 2$) is distributed as

$$
\operatorname{Pr}\left(A_{[j]}=a\right)=\log _{b}\left(\frac{\Gamma\left((a+1) b^{-1}+b^{j-1}\right) \Gamma\left(a b^{-1}+b^{j-2}\right)}{\Gamma\left((a+1) b^{-1}+b^{j-2}\right) \Gamma\left(a b^{-1}+b^{j-1}\right)}\right)
$$

where $a \in\{0,1, \ldots, b-1\}$ and $\Gamma(\cdot)$ is the Gamma function

- this closed-form expression was never previously given

But. . . Where Do Benford r.v.'s Come From?

- Pinkham (1961): scale invariance is behind Benford's law

But. . . Where Do Benford r.v.'s Come From?

- Pinkham (1961): scale invariance is behind Benford's law

$$
\operatorname{Pr}(X \in(100,200))
$$

But. . . Where Do Benford r.v.'s Come From?

- Pinkham (1961): scale invariance is behind Benford's law

$$
\operatorname{Pr}(X \in(100,200))=\operatorname{Pr}(X \in 4 \times(100,200))
$$

But. . . Where Do Benford r.v.'s Come From?

- Pinkham (1961): scale invariance is behind Benford's law

$\operatorname{Pr}\left(X \in\left(x^{\prime}, x\right)\right)=\operatorname{Pr}\left(X \in \alpha\left(x^{\prime}, x\right)\right) \Rightarrow X$ is strictly scale invariant

Strict Scale Invariance and Base Invariance

- Property of the pdf of strictly scale-invariant X

$$
f_{X}(x)=\alpha f_{X}(\alpha x) \quad \alpha>0
$$

Strict Scale Invariance and Base Invariance

- Property of the pdf of strictly scale-invariant X

$$
f_{X}(x)=\alpha f_{X}(\alpha x) \quad \alpha>0
$$

■ Consequences: Y is uniform, and so X must have finite support which must also depend on b to ensure $\{Y\} \sim U(0,1)$
\rightarrow The common notion "scale-invariant data that follows Benford's law is base invariant' can only be an approximation

The One and Only, But Often a Misfit

■ The pdf of a strictly scale invariant r.v. X must be $\propto x^{-1}$
\rightarrow the prize-competition distribution is the only choice

$$
f_{X}(x)=\frac{1}{x \ln \left(x_{\mathrm{M}} / x_{\mathrm{m}}\right)}, \quad 0<x_{\mathrm{m}} \leq x \leq x_{\mathrm{M}}
$$

The One and Only, But Often a Misfit

■ The pdf of a strictly scale invariant r.v. X must be $\propto x^{-1}$
\rightarrow the prize-competition distribution is the only choice

$$
f_{X}(x)=\frac{1}{x \ln \left(x_{M} / x_{m}\right)}, \quad 0<x_{m} \leq x \leq x_{M}
$$

- plus, for X to be Benford it must hold that $\log _{b}\left(x_{M} / x_{m}\right) \in \mathbb{Z}$

First Significant Digit in Prize-Competition Distribution

■ If $\log _{b}\left(x_{\mathrm{M}} / x_{\mathrm{m}}\right) \in \mathbb{Z}$ we get Benford's distribution

First Significant Digit in Prize-Competition Distribution

- If $\log _{b}\left(x_{\mathrm{M}} / x_{\mathrm{m}}\right) \notin \mathbb{Z}$ a mismatch is inevitable...

First Significant Digit in Prize-Competition Distribution

- If $\log _{b}\left(x_{\mathrm{M}} / x_{\mathrm{m}}\right) \notin \mathbb{Z}$ a mismatch is inevitable... but it decreases if the pdf spreads over many orders of magnitude
- Still, the prize-competition distribution is relatively uncommon

More Plausible Scale Invariance

- Consider a more relaxed definition of scale invariance:

$$
f_{X}(x)=\alpha^{\nu} f_{X}(\alpha x) \quad \nu>1
$$

\rightarrow The Pareto pdf is the only one to conform to this criterion

$$
f_{X}(x)=\frac{s x_{\mathrm{m}}^{s}}{x^{s+1}}, \quad 0<x_{\mathrm{m}} \leq x, s>0
$$

More Plausible Scale Invariance

- Consider a more relaxed definition of scale invariance:

$$
f_{X}(x)=\alpha^{\nu} f_{X}(\alpha x) \quad \nu>1
$$

\rightarrow The Pareto pdf is the only one to conform to this criterion

$$
f_{X}(x)=\frac{s x_{\mathrm{m}}^{s}}{x^{s+1}}, \quad 0<x_{\mathrm{m}} \leq x, s>0
$$

■ Relevance: the Central Limit Theorem has a hidden side...
■ "heavy-tailed distributions, such as Pareto, are as prominent as the Gaussian distribution -if not more" (Nair et al., 2021)

cdf of $\{Y\}=\left\{\log _{b} X\right\}$ for Pareto X

s : shape parameter
x_{m} : minimum value

cdf of $\{Y\}=\left\{\log _{b} X\right\}$ for Pareto X

s : shape parameter
x_{m} : minimum value

cdf of $\{Y\}=\left\{\log _{b} X\right\}$ for Pareto X

s : shape parameter
x_{m} : minimum value

cdf of $\{Y\}=\left\{\log _{b} X\right\}$ for Pareto X

s : shape parameter
x_{m} : minimum value

Wrapping it Up

- With the cdf of $\{Y\}$ and the general expression, we get the pmf of the k most significant b-ary digits for a Pareto r.v. X

$$
\begin{aligned}
\operatorname{Pr}\left(A_{(k)}=a\right) & =\frac{b^{s(\xi-1)}}{1-b^{-s}}\left(a^{-s}-(a+1)^{-s}\right) \\
& +u\left(a+1-b^{\xi}\right)\left(1-b^{s \xi}(a+1)^{-s}\right) \\
& -u\left(a-b^{\xi}\right)\left(1-b^{s \xi} a^{-s}\right)
\end{aligned}
$$

where $a \in \mathcal{A}_{(k)}, \xi=\left\{\log _{b} x_{m}\right\}+k-1$ and $u(\cdot)$ is unit-step function

Wrapping it Up

- With the cdf of $\{Y\}$ and the general expression, we get the pmf of the k most significant b-ary digits for a Pareto r.v. X

$$
\begin{aligned}
\operatorname{Pr}\left(A_{(k)}=a\right) & =\frac{b^{s(\xi-1)}}{1-b^{-s}}\left(a^{-s}-(a+1)^{-s}\right) \\
& +u\left(a+1-b^{\xi}\right)\left(1-b^{s \xi}(a+1)^{-s}\right) \\
& -u\left(a-b^{\xi}\right)\left(1-b^{s \xi} a^{-s}\right)
\end{aligned}
$$

where $a \in \mathcal{A}_{(k)}, \xi=\left\{\log _{b} x_{m}\right\}+k-1$ and $u(\cdot)$ is unit-step function
■ as $s \rightarrow 0$ the distribution above tends to Benford's
■ but: the significant digits of scale-invariant datasets are far more likely to follow this distribution rather than Benford's

Distribution of the k MSDs of a Pareto Variable

■ Pseudorandom empiricals vs theoreticals, $k=1$

Distribution of the k MSDs of a Pareto Variable

■ Pseudorandom empiricals vs theoreticals, $k=1$

Distribution of the k MSDs of a Pareto Variable

■ Pseudorandom empiricals vs theoreticals, $k=2$

The Butterfly Effect

■ Special case $\left\{\log _{b} x_{\mathrm{m}}\right\}=0$ (i.e. no kink in the pmf)

$$
\operatorname{Pr}\left(A_{(k)}=a\right)=\frac{a^{-s}-(a+1)^{-s}}{b^{-s(k-1)}-b^{-s k}}, \quad a \in \mathcal{A}_{(k)}
$$

- originally found by Pietronero et al. (2001) for $k=1$, then extended to general k by Barabesi and Pratelli (2020)

The Butterfly Effect

■ Special case $\left\{\log _{b} x_{\mathrm{m}}\right\}=0$ (i.e. no kink in the pmf)

$$
\operatorname{Pr}\left(A_{(k)}=a\right)=\frac{a^{-s}-(a+1)^{-s}}{b^{-s(k-1)}-b^{-s k}}, \quad a \in \mathcal{A}_{(k)}
$$

- originally found by Pietronero et al. (2001) for $k=1$, then extended to general k by Barabesi and Pratelli (2020)
■ Identified and named only in 2015, in a Lepidoptera study by Kozubowski et al.: discrete truncated Pareto (DTP) pmf
- jaw-dropping fact: DTP can be obtained by quantising either

1 a truncated Pareto r.v.
2 the fractional part of the logarithm of a standard Pareto r.v.

First Significant Digit in Real Scale-Invariant Datasets

- Scale-invariant datasets are typically assumed to follow Benford's distribution. . .

$\hat{s}, \hat{x}_{\mathrm{m}}$: ML estimators; p : dataset size

First Significant Digit in Real Scale-Invariant Datasets

- Scale-invariant datasets are typically assumed to follow Benford's distribution. . .

\hat{s}, \hat{x}_{m} : ML estimators; p : dataset size

First Significant Digit in Real Scale-Invariant Datasets

- Scale-invariant datasets are typically assumed to follow Benford's distribution. . .

$\hat{s}, \hat{x}_{\mathrm{m}}$: ML estimators; p : dataset size

First Significant Digit in Real Scale-Invariant Datasets

- Scale-invariant datasets are typically assumed to follow Benford's distribution. . . and sometimes they do!

$\hat{s}, \hat{x}_{\mathrm{m}}$: ML estimators; p : dataset size

What is the Significance of Significant Digits?

- The quintessential application of MSDs modelling is forensic analysis
- tampering detection in economic data, election results, multimedia, etc

What is the Significance of Significant Digits?

- The quintessential application of MSDs modelling is forensic analysis
- tampering detection in economic data, election results, multimedia, etc
■ But: why look at the most significant digits of a set of numbers instead of looking at those numbers themselves?

PETRIBVNGI
 BERGOMATIS
 NVMERORVM
 MYSTERIA,
 Exabditu plarimarum difciplinarum fontbus bayfla:
 OPVS MAXIMARVM RERVM DOCTRINA, ET COPIA REFERTVM;
 In quo mirus in primis, idem q; perpetuus Arithmeticx Pythagorica cum Diuinx Paginx Numeris confenfus, multiplici tatione probatur.
 Hac fecunda editione ab Auctore ipfo duligentipioms reco$g^{\text {gitum, E' tertia amplius parte locupletatum. } . ~}$

Chasing Shadows in Forensic Analysis...

■ Discrete projection of continuous data \rightarrow information loss

Plato's allegory of the cave
"light came into the world, and men loved darkness rather than light"

Chasing Shadows in Forensic Analysis...

■ Discrete projection of continuous data \rightarrow information loss

Plato's allegory of the cave
"light came into the world, and men loved darkness rather than light"

Chasing Shadows in Forensic Analysis...

■ Discrete projection of continuous data \rightarrow information loss

Plato's allegory of the cave
"light came into the world, and men loved darkness rather than light"

Your Significant Others: Continued Fraction Coefficients

■ Continued fractions (CF): a way of representing numbers alternative to positional base b number systems

$$
y_{0}=\left\lfloor y_{0}\right\rfloor+\left\{y_{0}\right\}
$$

Your Significant Others: Continued Fraction Coefficients

■ Continued fractions (CF): a way of representing numbers alternative to positional base b number systems

$$
y_{0}=a_{0}+\frac{1}{y_{1}}
$$

Your Significant Others: Continued Fraction Coefficients

- Continued fractions (CF): a way of representing numbers alternative to positional base b number systems

$$
y_{0}=a_{0}+\frac{1}{\left\lfloor y_{1}\right\rfloor+\left\{y_{1}\right\}}
$$

Your Significant Others: Continued Fraction Coefficients

■ Continued fractions (CF): a way of representing numbers alternative to positional base b number systems

$$
y_{0}=a_{0}+\frac{1}{a_{1}+\frac{1}{y_{2}}}
$$

Your Significant Others: Continued Fraction Coefficients

- Continued fractions (CF): a way of representing numbers alternative to positional base b number systems

$$
y_{0}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

Your Significant Others: Continued Fraction Coefficients

■ Continued fractions (CF): a way of representing numbers alternative to positional base b number systems

$$
y_{0}=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]
$$

Your Significant Others: Continued Fraction Coefficients

- Continued fractions (CF): a way of representing numbers alternative to positional base b number systems

$$
Y_{0}=\left[A_{0} ; A_{1}, A_{2}, A_{3}, \ldots\right]
$$

Your Significant Others: Continued Fraction Coefficients

■ Continued fractions (CF): a way of representing numbers alternative to positional base b number systems

$$
Y_{0}=\left[A_{0} ; A_{1}, A_{2}, A_{3}, \ldots\right]
$$

- If $Y_{0}=\log _{b} X$ and \underline{X} is Benford, then

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right)= & (-1)^{k}\left(\left[0 ; a_{1}, \ldots, a_{k-1}, a_{k}+1\right]\right. \\
& \left.-\left[0 ; a_{1}, \ldots, a_{k-1}, a_{k}\right]\right)
\end{aligned}
$$

where $a_{j} \in \mathbb{N}$
\rightarrow model for k most significant CF coefficients of $\log _{b} X$, analogous to model for k most significant b-ary digits of X

Distribution of the Two Most Significant CF Coefficients

- Pseudorandom empiricals vs theoreticals (Benford X)

CF Coefficients in Real Scale-Invariant Datasets

- Distribution of first two CF coefficients of $\log _{10} x_{i}$

[^0]
First CF Coefficient A_{1} vs First Significant b-ary Digit $A_{(1)}$

■ Which r.v. should we use in a forensic detection test where X is hypothesised to be Benford?
a) $A_{1}=\left\lfloor\left\{\log _{b} X\right\}^{-1}\right\rfloor$
b) $A_{(1)}=\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor$

First CF Coefficient A_{1} vs First Significant b-ary Digit $A_{(1)}$

- Which r.v. should we use in a forensic detection test where X is hypothesised to be Benford?
a) $A_{1}=\left\lfloor\left\{\log _{b} X\right\}^{-1}\right\rfloor$
b) $A_{(1)}=\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor$
- Possible answers:
a) because there is less information loss wrt $\{Y\}=\left\{\log _{b} X\right\}$

$$
\begin{aligned}
I\left(A_{1} ;\{Y\}\right) & =2.046 \text { nats } \\
I\left(A_{(1)} ;\{Y\}\right) & =1.993 \text { nats } \quad(b=10)
\end{aligned}
$$

First CF Coefficient A_{1} vs First Significant b-ary Digit $A_{(1)}$

- Which r.v. should we use in a forensic detection test where X is hypothesised to be Benford?
a) $A_{1}=\left\lfloor\left\{\log _{b} X\right\}^{-1}\right\rfloor$
b) $A_{(1)}=\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor$
- Possible answers:
b) because there is less information loss wrt $\{Y\}=\left\{\log _{b} X\right\}$

$$
\begin{aligned}
I\left(A_{1} ;\{Y\}\right) & =2.046 \text { nats } \\
I\left(A_{(1)} ;\{Y\}\right) & =2.413 \text { nats } \quad(b=16)
\end{aligned}
$$

First CF Coefficient A_{1} vs First Significant b-ary Digit $A_{(1)}$

*

■ Which rev. should we use in a forensic detection test where X is hypothesised to be Benford?
a) $A_{1}=\left\lfloor\left\{\log _{b} X\right\}^{-1}\right\rfloor$
b) $A_{(1)}=\left\lfloor b^{\left\{\log _{b} x\right\}}\right\rfloor$

- Possible answers:
\rightarrow none of them: using $\left\{\log _{b} X\right\}$ should always be better

Time to Recap

1 The most significant digits in scale-invariant data can often be modelled using a generalisation of Benford's distribution based on heavy-tailed Pareto variables
2 There is nothing special about significant b-ary digits: they may be replaced by significant continued fraction coefficients in forensic detection tests

Time to Recap

1 The most significant digits in scale-invariant data can often be modelled using a generalisation of Benford's distribution based on heavy-tailed Pareto variables
2 There is nothing special about significant b-ary digits: they may be replaced by significant continued fraction coefficients in forensic detection tests

■ and both are just shadows. . .

Go raibh míle maith agaibh

[^0]: p : dataset size

