Benford's Law: Hammering a Square Peg Into a Round Hole?

Félix Balado and Guénolé C. Silvestre

School of Computer Science University College Dublin Ireland

29th EUSIPCO, Dublin 23–27 August, 2021

Benford's Law

Newcomb (1881) and, independently, Benford (1938) noticed the following pattern in certain datasets:

most significant decimal digit

Research on Benford's Law

 The appearance of Benford's distribution in many different scenarios has been extensively studied

total: 1,735 publications

[source: benfordonline.net]

Legal Disclaimer

Many recurrence relations comply exactly with Benford's law
 Pochhammer numbers, Bell numbers, Fibonacci numbers...
 reason: equidistribution theorem (Sierpiński, Weyl, c. 1909)

Legal Disclaimer

- Many recurrence relations comply exactly with Benford's law
 - Pochhammer numbers, Bell numbers, Fibonacci numbers...
 - reason: <u>equidistribution theorem</u> (Sierpiński, Weyl, c. 1909)
- But when it comes to data arising from natural random processes the justifications for Benford's law are shakier
 - e.g. Benford's law holds when
 - data exhibits geometric growth
 - data is spread over many orders of magnitude
 - data is scale invariant

Legal Disclaimer

- Many recurrence relations comply exactly with Benford's law
 - Pochhammer numbers, Bell numbers, Fibonacci numbers...
 - reason: <u>equidistribution theorem</u> (Sierpiński, Weyl, c. 1909)
- But when it comes to data arising from natural random processes the justifications for Benford's law are shakier
 - e.g. Benford's law holds when
 - data exhibits geometric growth
 - data is spread over many orders of magnitude
 - data is scale invariant
- Should we stop calling Benford's law a "law"?

• Fractional part of $y \in \mathbb{R}$: $\{y\} = y - \lfloor y \rfloor$

• Fractional part of $y \in \mathbb{R}$: $\{y\} = y - \lfloor y \rfloor$

The discrete r.v. modelling the k most significant b-ary digits of a positive continuous r.v. X is

$$A_{(k)} = \lfloor b^{\{\log_b X\} + k - 1} \rfloor, \text{ with support } \mathcal{A}_{(k)} = \{b^{k-1}, \dots, b^k - 1\}$$

• Fractional part of $y \in \mathbb{R}$: $\{y\} = y - \lfloor y \rfloor$

The discrete r.v. modelling the k most significant b-ary digits of a positive continuous r.v. X is

 $A_{(2)} = \lfloor 10^{\{\log_{10} X\} + 2 - 1} \rfloor$, with support $A_{(2)} = \{10, 11, \dots, 98, 99\}$

• Fractional part of $y \in \mathbb{R}$: $\{y\} = y - \lfloor y \rfloor$

The discrete r.v. modelling the k most significant b-ary digits of a positive continuous r.v. X is

$$\mathcal{A}_{(k)} = \lfloor b^{\{\log_b X\}+k-1}
floor,$$
 with support $\mathcal{A}_{(k)} = \{b^{k-1}, \dots, b^k-1\}$

■ Letting Y = log_b X, the pmf of A_(k) can be obtained from the cdf of {Y}, F_{{Y}(y) = Pr({Y} ≤ y), as follows:

 $\Pr(A_{(k)} = a) = F_{\{Y\}} \big(\log_b (a+1) - k + 1 \big) - F_{\{Y\}} \big(\log_b a - k + 1 \big)$

• Fractional part of $y \in \mathbb{R}$: $\{y\} = y - \lfloor y \rfloor$

The discrete r.v. modelling the k most significant b-ary digits of a positive continuous r.v. X is

$$\mathcal{A}_{(k)} = \lfloor b^{\{\log_b X\}+k-1}
floor,$$
 with support $\mathcal{A}_{(k)} = \{b^{k-1}, \dots, b^k-1\}$

■ Letting Y = log_b X, the pmf of A_(k) can be obtained from the cdf of {Y}, F_{{Y}}(y) = Pr({Y} ≤ y), as follows:

 $\Pr(A_{(k)} = a) = F_{\{Y\}} \big(\log_b (a+1) - k + 1 \big) - F_{\{Y\}} \big(\log_b a - k + 1 \big)$

• the *j*-th MSD can also be modelled using $A_{[j]} = A_{(j)} \pmod{b}$

• Definition: X is Benford if $\{Y\} \sim U(0,1) \Rightarrow F_{\{Y\}}(y) = y$

Definition: X is Benford if {Y} ~ U(0,1) ⇒ F_{Y}(y) = y
 general expression leads to well-known Benford's distribution

$$\Pr(A_{(k)} = a) = \log_b \left(1 + \frac{1}{a}\right), \text{ where } a \in \mathcal{A}_{(k)}$$

Definition: X is Benford if {Y} ~ U(0,1) ⇒ F_{Y}(y) = y
 general expression leads to well-known Benford's distribution

$$\Pr(A_{(2)} = 45) = \log_{10}\left(1 + \frac{1}{45}\right)$$

<u>Definition</u>: X is Benford if {Y} ~ U(0,1) ⇒ F_{{Y}}(y) = y
 general expression leads to well-known Benford's distribution

$$\mathsf{Pr}(\mathsf{A}_{(k)}=\mathsf{a})\,=\,\log_b\left(1+rac{1}{\mathsf{a}}
ight),\quad ext{where }\mathsf{a}\in\mathcal{A}_{(k)}$$

• the *j*-th MSD (for $j \ge 2$) is distributed as

$$\Pr(A_{[j]} = a) = \log_b \left(\frac{\Gamma((a+1)b^{-1} + b^{j-1}) \Gamma(ab^{-1} + b^{j-2})}{\Gamma((a+1)b^{-1} + b^{j-2}) \Gamma(ab^{-1} + b^{j-1})} \right)$$

where $a \in \{0, 1, ..., b - 1\}$ and $\Gamma(\cdot)$ is the Gamma function \blacksquare this closed-form expression was never previously given

But... Where Do Benford r.v.'s Come From?

Pinkham (1961): scale invariance is behind Benford's law

Y}~U(0,1)

But... Where Do Benford r.v.'s Come From?

Pinkham (1961): scale invariance is behind Benford's law

 $\Pr(X \in (100, 200))$

~U(0,1

But... Where Do Benford r.v.'s Come From?

Pinkham (1961): scale invariance is behind Benford's law

 $\Pr(X \in (100, 200)) = \Pr(X \in 4 \times (100, 200))$

But... Where Do Benford r.v.'s Come From? Pinkham (1961): scale invariance is behind Benford's law 10^{-1} 10^{-2} $f_X(x)$ 10^{-3} 10^{-4} 100 200 300 400 500 600 700 800 900 1000 0 Х

 $\Pr(X \in (x', x)) = \Pr(X \in \alpha(x', x)) \Rightarrow X$ is strictly scale invariant

Strict Scale Invariance and Base Invariance

Property of the pdf of strictly scale-invariant X

$$f_X(x) = \alpha f_X(\alpha x)$$
 $\alpha > 0$

Strict Scale Invariance and Base Invariance

Property of the pdf of strictly scale-invariant X

$$f_X(x) = \alpha f_X(\alpha x)$$
 $\alpha > 0$

- Consequences: Y is uniform, and so X must have finite support which must also depend on b to ensure {Y} ~ U(0,1)
- → The common notion "*scale-invariant data that follows Benford's law is base invariant*" can only be an approximation

The One and Only, But Often a Misfit

■ The pdf of a strictly scale invariant r.v. X must be ∝ x⁻¹ → the prize-competition distribution is the only choice

$$f_X(x) = \frac{1}{x \ln(x_M/x_m)}, \quad 0 < x_m \le x \le x_M$$

The One and Only, But Often a Misfit

The pdf of a strictly scale invariant r.v. X must be $\propto x^{-1}$

 $\rightarrow\,$ the prize-competition distribution is the only choice

$$f_X(x) = \frac{1}{x \ln(x_M/x_m)}, \quad 0 < x_m \le x \le x_M$$

■ plus, for X to be Benford it must hold that $\log_b(x_M/x_m) \in \mathbb{Z}$

First Significant Digit in Prize-Competition Distribution

• If $\log_b(x_M/x_m) \in \mathbb{Z}$ we get Benford's distribution

First Significant Digit in Prize-Competition Distribution

If $\log_b(x_M/x_m) \notin \mathbb{Z}$ a mismatch is inevitable...

First Significant Digit in Prize-Competition Distribution

 If log_b(x_M/x_m) ∉ Z a mismatch is inevitable... but it decreases if the pdf spreads over many orders of magnitude

Still, the prize-competition distribution is relatively uncommon

More Plausible Scale Invariance

Consider a more relaxed definition of scale invariance:

$$f_X(x) = \alpha^{\nu} f_X(\alpha x) \qquad \nu > 1$$

 $\rightarrow\,$ The Pareto pdf is the only one to conform to this criterion

$$f_X(x) = \frac{s \, x_m^s}{x^{s+1}}, \quad 0 < x_m \le x, \ s > 0$$

More Plausible Scale Invariance

Consider a more relaxed definition of scale invariance:

$$f_X(x) = \alpha^{\nu} f_X(\alpha x) \qquad \nu > 1$$

 $\rightarrow\,$ The Pareto pdf is the only one to conform to this criterion

$$f_X(x) = rac{s \, x_{
m m}^s}{x^{s+1}}, \quad 0 < x_{
m m} \le x, \ s > 0$$

<u>Relevance</u>: the Central Limit Theorem has a hidden side...
 "heavy-tailed distributions, such as Pareto, are as prominent as the Gaussian distribution —if not more" (Nair et al., 2021)

s: shape parameter *x*_m: minimum value

 $\{\log_{10} x_m\} = 0$ 1 s = 1.90s = 1.60s = 1.300.8 s = 1.00s = 0.70 $F_{\{\gamma\}}(y)$ 0.6 s = 0.40-s = 0.10 Benford 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 y

11/22

s: shape parameter *x*_m: minimum value

 $\{\log_{10} x_{\rm m}\} = 0.30$ 1 s = 1.90s = 1.60s = 1.300.8 s = 1.00s = 0.70 $F_{\{\gamma\}}(y)$ 0.6 s = 0.40-s = 0.10 Benford 0.4 0.2 0 0.2 0.4 0 0.6 0.8 1 y

s: shape parameter *x*_m: minimum value

 $\{\log_{10} x_{\rm m}\} = 0.70$ 1 s = 1.90s = 1.60s = 1.300.8 s = 1.00s = 0.70 $F_{\{\gamma\}}(y)$ 0.6 s = 0.40-s = 0.10 Benford 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 y

11/22

 $\{\log_{10} x_{\rm m}\} = 0.95$ 1 s = 1.90s = 1.60s = 1.300.8 s = 1.00s = 0.70 $F_{\{\gamma\}}(y)$ 0.6 s = 0.40-s = 0.10 Benford 0.4 0.2 0 0.2 0.4 0.6 0 0.8 1 y

11/22

s: shape parameter *x*_m: minimum value

Wrapping it Up

With the cdf of {Y} and the general expression, we get the pmf of the k most significant b-ary digits for a Pareto r.v. X

$$Pr(A_{(k)} = a) = \frac{b^{s(\xi-1)}}{1 - b^{-s}} \left(a^{-s} - (a+1)^{-s}\right) + u(a+1-b^{\xi}) \left(1 - b^{s\xi}(a+1)^{-s}\right) - u(a-b^{\xi}) \left(1 - b^{s\xi}a^{-s}\right)$$

where $a \in \mathcal{A}_{(k)}$, $\xi = \{\log_b x_m\} + k - 1 \text{ and } u(\cdot) \text{ is unit-step function}$

Wrapping it Up

With the cdf of {Y} and the general expression, we get the pmf of the k most significant b-ary digits for a Pareto r.v. X

$$Pr(A_{(k)} = a) = \frac{b^{s(\xi-1)}}{1 - b^{-s}} \left(a^{-s} - (a+1)^{-s}\right) + u(a+1-b^{\xi}) \left(1 - b^{s\xi}(a+1)^{-s}\right) - u(a-b^{\xi}) \left(1 - b^{s\xi}a^{-s}\right)$$

where a ∈ A_(k), ξ = {log_b x_m} + k − 1 and u(·) is unit-step function
as s → 0 the distribution above tends to Benford's
but: the significant digits of scale-invariant datasets are far more likely to follow this distribution rather than Benford's

Distribution of the k MSDs of a Pareto Variable

• Pseudorandom empiricals vs theoreticals, k = 1

Distribution of the k MSDs of a Pareto Variable

• Pseudorandom empiricals vs theoreticals, k = 1

Distribution of the k MSDs of a Pareto Variable

• Pseudorandom empiricals vs theoreticals, k = 2

The Butterfly Effect

• Special case $\{\log_b x_m\} = 0$ (i.e. no kink in the pmf)

$$\Pr(A_{(k)} = a) = \frac{a^{-s} - (a+1)^{-s}}{b^{-s(k-1)} - b^{-sk}}, \qquad a \in \mathcal{A}_{(k)}$$

 originally found by Pietronero et al. (2001) for k = 1, then extended to general k by Barabesi and Pratelli (2020)

The Butterfly Effect

• Special case $\{\log_b x_m\} = 0$ (i.e. no kink in the pmf)

$$\Pr(A_{(k)} = a) = \frac{a^{-s} - (a+1)^{-s}}{b^{-s(k-1)} - b^{-sk}}, \qquad a \in \mathcal{A}_{(k)}$$

- originally found by Pietronero et al. (2001) for k = 1, then extended to general k by Barabesi and Pratelli (2020)
- Identified and named only in 2015, in a Lepidoptera study by Kozubowski et al.: discrete truncated Pareto (DTP) pmf
 - jaw-dropping fact: DTP can be obtained by quantising either
 - 1 a truncated Pareto r.v.
 - 2 the fractional part of the logarithm of a standard Pareto r.v.

 Scale-invariant datasets are typically assumed to follow Benford's distribution...

 \hat{s} , \hat{x}_m : ML estimators; p: dataset size

 Scale-invariant datasets are typically assumed to follow Benford's distribution...

 \hat{s} , \hat{x}_m : ML estimators; p: dataset size

 Scale-invariant datasets are typically assumed to follow Benford's distribution...

 \hat{s} , \hat{x}_m : ML estimators; p: dataset size

 Scale-invariant datasets are typically assumed to follow Benford's distribution...and sometimes they do!

 \hat{s} , \hat{x}_m : ML estimators; p: dataset size

What is the Significance of Significant Digits?

 The quintessential application of MSDs modelling is forensic analysis

> tampering detection in economic data, election results, multimedia, etc

What is the Significance of Significant Digits?

- The quintessential application of MSDs modelling is forensic analysis
 - tampering detection in economic data, election results, multimedia, etc
- But: why look at the most significant digits of a set of numbers instead of looking at those numbers themselves?

Chasing Shadows in Forensic Analysis...

Discrete projection of continuous data \rightarrow information loss

Plato's allegory of the cave "light came into the world, and men loved darkness rather than light"

Chasing Shadows in Forensic Analysis...

Discrete projection of continuous data \rightarrow information loss

Plato's allegory of the cave "light came into the world, and men loved darkness rather than light"

Chasing Shadows in Forensic Analysis...

Discrete projection of continuous data \rightarrow information loss

Plato's allegory of the cave "light came into the world, and men loved darkness rather than light"

$$y_0 = \lfloor y_0 \rfloor + \{y_0\}$$

$$y_0 = a_0 + \frac{1}{y_1}$$

$$y_0 = a_0 + \frac{1}{\lfloor y_1 \rfloor + \{y_1\}}$$

$$y_0 = a_0 + \frac{1}{a_1 + \frac{1}{y_2}}$$

$$y_0 = a_0 + rac{1}{a_1 + rac{1}{a_2 + rac{1}{a_3 + \cdots}}}$$

$$y_0 = [a_0; a_1, a_2, a_3, \ldots]$$

$$Y_0 = [A_0; A_1, A_2, A_3, \ldots]$$

 Continued fractions (CF): a way of representing numbers alternative to positional base b number systems

$$Y_0 = [A_0; A_1, A_2, A_3, \ldots]$$

• If $Y_0 = \log_b X$ and <u>X is Benford</u>, then

$$Pr(A_1 = a_1, \dots, A_k = a_k) = (-1)^k ([0; a_1, \dots, a_{k-1}, a_k + 1] - [0; a_1, \dots, a_{k-1}, a_k])$$

where $a_j \in \mathbb{N}$

 \rightarrow model for k most significant CF coefficients of $\log_b X$, analogous to model for k most significant b-ary digits of X

Distribution of the Two Most Significant CF Coefficients

Pseudorandom empiricals vs theoreticals (Benford X)

19/22

CF Coefficients in Real Scale-Invariant Datasets

Distribution of first two CF coefficients of log₁₀ x_i

p: dataset size

Which r.v. should we use in a forensic detection test where X is hypothesised to be Benford?

a)
$$A_1 = \lfloor \{\log_b X\}^{-1} \rfloor$$

b) $A_{(1)} = \lfloor b^{\{\log_b X\}} \rfloor$

Which r.v. should we use in a forensic detection test where X is hypothesised to be Benford?

a)
$$A_1 = \lfloor \{ \log_b X \}^{-1} \rfloor$$

b) $A_{(1)} = \lfloor b^{\{ \log_b X \}} \rfloor$

Possible answers:

a) because there is less information loss wrt $\{Y\} = \{\log_b X\}$

 $I(A_1; \{Y\}) = 2.046 \text{ nats}$ $I(A_{(1)}; \{Y\}) = 1.993 \text{ nats}$ (b = 10)

Which r.v. should we use in a forensic detection test where X is hypothesised to be Benford?

a)
$$A_1 = \lfloor \{ \log_b X \}^{-1} \rfloor$$

b) $A_{(1)} = \lfloor b^{\{ \log_b X \}} \rfloor$

Possible answers:

b) because there is less information loss wrt $\{Y\} = \{\log_b X\}$

 $I(A_1; \{Y\}) = 2.046 \text{ nats}$ $I(A_{(1)}; \{Y\}) = 2.413 \text{ nats} (b = 16)$

- AN
- Which r.v. should we use in a forensic detection test where X is hypothesised to be Benford?

a)
$$A_1 = \lfloor \{\log_b X\}^{-1} \rfloor$$

b) $A_{(1)} = \lfloor b^{\{\log_b X\}} \rfloor$

 \rightarrow none of them: using {log_b X} should always be better

Time to Recap

- The most significant digits in scale-invariant data can often be modelled using a generalisation of Benford's distribution based on heavy-tailed Pareto variables
- 2 There is nothing special about significant *b*-ary digits: they may be replaced by significant continued fraction coefficients in forensic detection tests

Time to Recap

- The most significant digits in scale-invariant data can often be modelled using a generalisation of Benford's distribution based on heavy-tailed Pareto variables
- 2 There is nothing special about significant *b*-ary digits: they may be replaced by significant continued fraction coefficients in forensic detection tests
 - and both are just shadows...

Go raibh míle maith agaibh

