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Benford’s Law

Newcomb (1881) and, independently, Benford (1938) noticed
the following pattern in certain datasets:
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Research on Benford’s Law

The appearance of Benford’s distribution in many different
scenarios has been extensively studied
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total: 1,735 publications

[source: benfordonline.net]
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Legal Disclaimer

Many recurrence relations comply exactly with Benford’s law

Pochhammer numbers, Bell numbers, Fibonacci numbers. . .
reason: equidistribution theorem (Sierpiński, Weyl, c. 1909)

But when it comes to data arising from natural random
processes the justifications for Benford’s law are shakier

e.g. Benford’s law holds when

data exhibits geometric growth
data is spread over many orders of magnitude
data is scale invariant

Should we stop calling Benford’s law a “law”?
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General Distribution of the k Most Significant b-ary Digits

Fractional part of y ∈ R: {y} = y − byc

The discrete r.v. modelling the k most significant b-ary digits
of a positive continuous r.v. X is

Letting Y = logb X , the pmf of A(k) can be obtained from the
cdf of {Y }, F{Y }(y) = Pr({Y } ≤ y), as follows:

Pr(A(k) = a) = F{Y }
(

logb(a + 1)− k + 1
)
− F{Y }

(
logb a− k + 1

)

the j-th MSD can also be modelled using A[ j] = A( j) (mod b)
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Getting Particular

Definition: X is Benford if {Y } ∼ U(0, 1) ⇒ F{Y }(y) = y

general expression leads to well-known Benford’s distribution

=

the j-th MSD (for j ≥ 2) is distributed as

Pr(A[ j] =a) = logb

(
Γ
(
(a + 1)b−1 + bj−1

)
Γ
(
ab−1 + bj−2

)
Γ ((a + 1)b−1 + bj−2) Γ (ab−1 + bj−1)

)

where a ∈ {0, 1, . . . , b − 1} and Γ(·) is the Gamma function

this closed-form expression was never previously given
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But. . . Where Do Benford r.v.’s Come From?

Pinkham (1961): scale invariance is behind Benford’s law
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Strict Scale Invariance and Base Invariance

Property of the pdf of strictly scale-invariant X

fX (x) = α fX (α x) α > 0

Consequences: Y is uniform, and so X must have finite
support which must also depend on b to ensure {Y } ∼ U(0, 1)

→ The common notion “scale-invariant data that follows
Benford’s law is base invariant” can only be an approximation
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The One and Only, But Often a Misfit

The pdf of a strictly scale invariant r.v. X must be ∝ x−1

→ the prize-competition distribution is the only choice

fX (x) =
1

x ln(xM/xm)
, 0 < xm ≤ x ≤ xM

plus, for X to be Benford it must hold that logb(xM/xm) ∈ Z
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First Significant Digit in Prize-Competition Distribution
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If logb(xM/xm) ∈ Z we get Benford’s distribution

Still, the prize-competition distribution is relatively uncommon
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First Significant Digit in Prize-Competition Distribution
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More Plausible Scale Invariance

Consider a more relaxed definition of scale invariance:

fX (x) = αν fX (α x) ν > 1

→ The Pareto pdf is the only one to conform to this criterion

fX (x) =
s x sm
x s+1

, 0 < xm ≤ x , s > 0

Relevance: the Central Limit Theorem has a hidden side. . .

“heavy-tailed distributions, such as Pareto, are as prominent as
the Gaussian distribution —if not more” (Nair et al., 2021)

10/22



More Plausible Scale Invariance

Consider a more relaxed definition of scale invariance:

fX (x) = αν fX (α x) ν > 1

→ The Pareto pdf is the only one to conform to this criterion

fX (x) =
s x sm
x s+1

, 0 < xm ≤ x , s > 0

Relevance: the Central Limit Theorem has a hidden side. . .

“heavy-tailed distributions, such as Pareto, are as prominent as
the Gaussian distribution —if not more” (Nair et al., 2021)

10/22



cdf of {Y } = {logb X} for Pareto X
s: shape parameter

xm: minimum value
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Wrapping it Up

With the cdf of {Y } and the general expression, we get the
pmf of the k most significant b-ary digits for a Pareto r.v. X

Pr(A(k) = a) =
bs(ξ−1)

1− b−s
(
a−s − (a + 1)−s

)
+ u
(
a + 1− bξ

)(
1− bs ξ(a + 1)−s

)
− u
(
a− bξ

)(
1− bs ξ a−s

)
where a ∈ A(k), ξ = {logb xm}+ k − 1 and u(·) is unit-step function

as s → 0 the distribution above tends to Benford’s
but: the significant digits of scale-invariant datasets are far
more likely to follow this distribution rather than Benford’s
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Distribution of the k MSDs of a Pareto Variable

Pseudorandom empiricals vs theoreticals, k = 1
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Distribution of the k MSDs of a Pareto Variable

Pseudorandom empiricals vs theoreticals, k = 2
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The Butterfly Effect

Special case {logb xm} = 0 (i.e. no kink in the pmf)

Pr(A(k) = a) =
a−s − (a + 1)−s

b−s(k−1) − b−sk
, a ∈ A(k)

originally found by Pietronero et al. (2001) for k = 1, then
extended to general k by Barabesi and Pratelli (2020)

Identified and named only in 2015, in a Lepidoptera study by
Kozubowski et al.: discrete truncated Pareto (DTP) pmf

jaw-dropping fact: DTP can be obtained by quantising either

1 a truncated Pareto r.v.
2 the fractional part of the logarithm of a standard Pareto r.v.
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First Significant Digit in Real Scale-Invariant Datasets

Scale-invariant datasets are typically assumed to follow
Benford’s distribution. . .

and sometimes they do!

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

a

P
r(
A

(1
)

=
a)

Benford

World cities ≥ 500k, p = 1, 145
World Population Review, 2020

Pareto, ŝ = 1.15, {log10 x̂m} = 0.70

Largest US cities, p = 5, 000
US Census Bureau, 2008

Pareto, ŝ = 0.78, {log10 x̂m} = 0.63

ŝ, x̂m: ML estimators; p: dataset size
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First Significant Digit in Real Scale-Invariant Datasets
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What is the Significance of Significant Digits?

The quintessential application of MSDs
modelling is forensic analysis

tampering detection in economic
data, election results, multimedia, etc

But: why look at the most significant
digits of a set of numbers instead of
looking at those numbers themselves?
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Chasing Shadows in Forensic Analysis. . .

Discrete projection of continuous data → information loss

Plato’s allegory of the cave

“light came into the world, and men loved darkness rather than light”
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Your Significant Others: Continued Fraction Coefficients

Continued fractions (CF): a way of representing numbers
alternative to positional base b number systems

y0 = by0c+ {y0}

If Y0 = logb X and X is Benford, then

Pr(A1 = a1, . . . ,Ak = ak) =(−1)k
(
[0; a1, . . . , ak−1, ak + 1]

− [0; a1, . . . , ak−1, ak ]
)

where aj ∈ N
→ model for k most significant CF coefficients of logb X ,

analogous to model for k most significant b-ary digits of X
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Distribution of the Two Most Significant CF Coefficients

Pseudorandom empiricals vs theoreticals (Benford X )
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CF Coefficients in Real Scale-Invariant Datasets

Distribution of first two CF coefficients of log10 xi
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First CF Coefficient A1 vs First Significant b-ary Digit A(1)

Which r.v. should we use in a forensic detection test where X
is hypothesised to be Benford?

a) A1 = b{logb X}
−1c

b) A(1) = bb{logb X}c

Possible answers:

A1 A(1)
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First CF Coefficient A1 vs First Significant b-ary Digit A(1)

Which r.v. should we use in a forensic detection test where X
is hypothesised to be Benford?

a) A1 = b{logb X}
−1c

b) A(1) = bb{logb X}c
Possible answers:

a) because there is less information loss wrt {Y } = {logb X}

I (A1; {Y }) = 2.046 nats
I (A(1); {Y }) = 1.993 nats (b = 10)

A1 �
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First CF Coefficient A1 vs First Significant b-ary Digit A(1)

Which r.v. should we use in a forensic detection test where X
is hypothesised to be Benford?

a) A1 = b{logb X}
−1c

b) A(1) = bb{logb X}c
Possible answers:

b) because there is less information loss wrt {Y } = {logb X}

I (A1; {Y }) = 2.046 nats
I (A(1); {Y }) = 2.413 nats (b = 16)

��ZZA1 A(1)
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First CF Coefficient A1 vs First Significant b-ary Digit A(1)

Which r.v. should we use in a forensic detection test where X
is hypothesised to be Benford?

a) A1 = b{logb X}−1c
b) A(1) = bb{logb X}c

Possible answers:

→ none of them: using {logb X} should always be better

��ZZA1 �
��Z
ZZ

A(1)
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Time to Recap

1 The most significant digits in scale-invariant data can often be
modelled using a generalisation of Benford’s distribution based
on heavy-tailed Pareto variables

2 There is nothing special about significant b-ary digits: they
may be replaced by significant continued fraction coefficients
in forensic detection tests

and both are just shadows. . .

Go raibh ḿıle maith agaibh
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