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1 Introduction

A run of ones in a binary string is an uninterrupted sequence of ones flanked
either by a zero or by the start/end of the string. In the following, a run of ones
will be simply referred to as a “run”.

What is the expected number of runs of length i in a binary n-sequence drawn
uniformly at random? It may appear at first that the analysis is straightforward
with some clever use of the exponential distribution with parameter 1/2. But
after a few attempts we can convince ourselves that such an analysis is not
trivial.

However, it is much easier to determine the total number of runs of length i over
all binary n-strings, which, through the law of large numbers, will also allow us
to solve the problem above asymptotically for large n as a corollary.

This problem was previously solved by Sinha and Sinha [1] —in fact, these
authors also solved a harder problem in [2] from which the solution to the
problem addressed here can be produced.

Here we want to show that the problem can be solved in a shorter and simpler
way than in [2] or [1] by using an elementary counting argument.

2 Counting Runs

Let rn(i) be the total number of runs of length i over all binary n-strings.

First of all, let us get some visual intuition. In the diagrams below, for n = 2, 3
and 4 we list all binary n-strings and, right underneath, their runs “spectra”
(i.e. the number of runs of lengths 1 to n found in each particular n-string). On
the right we show rn(i).

• n = 2:
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0 0 1 1
0 1 0 1

i r2(i)
1 0 1 1 0 2
2 0 0 0 1 1

• n = 3:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

i r3(i)
1 0 1 1 0 1 2 0 0 5
2 0 0 0 1 0 0 1 0 2
3 0 0 0 0 0 0 0 1 1

• n = 4:

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

i r4(i)
1 0 1 1 0 1 2 0 0 1 2 2 1 0 1 0 0 12
2 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 5
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Assuming n > 1, it is trivial to see that

rn(n) = 1,

rn(n− 1) = 2. (1)

Of course, this solves the problem for n = 2. Assuming n > 2, let us next see
how, for 1 ≤ i < n− 1, rn(i) can be recursively obtained from rn−1(i):

• On the one hand, consider the n-strings that start with a zero: these
trivially contribute rn−1(i) runs to rn(i).

• On the other hand, consider the n-strings that start with a one. For
1 ≤ i ≤ n − 1, the 2n−i−1 n-strings that start with i ones followed by at
least one zero add 2n−i−1 runs to rn−1(i) if i < n−1, and subtract 2n−i−1

runs from rn−1(i− 1) if i > 1.

Thus, the n-strings that start with a one contribute rn−1(i) + 2n−i−1 −
2n−i−2 = rn−1(i) + 2n−i−2 runs to rn(i).
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So, collecting these two contributions we have that

rn(i) = 2 rn−1(i) + 2n−i−2. (2)

Now, by using the expression above recursively k times, with k < n− 1, we get

rn(i) = 2krn−k(i) + k 2n−i−2. (3)

When k = n− i− 1, we have that rn−k(i) = ri+1(i) = 2 because of (1). Thus,
inputting this value of k in (3) we get the explicit expression

rn(i) = (n− i + 3) 2n−i−2 (4)

for 1 ≤ i < n − 1. Incidentally, (4) is also valid when i = n − 1, i.e. it
includes (1). We can now see that rn−1(i − 1) = rn(i), and so recurrence (2)
can also be expressed as a recurrence on i (rather than as a recurrence on n) as
rn(i) = 2 rn(i + 1) + 2n−i−2.

Finally, for large n, the average number of runs of each length in a binary n-
sequence drawn uniformly at random is simply r̄n(i) = rn(i) 2−n. Also, the
total number of runs over all n-strings is

t(n) =

n∑
i=1

rn(i) = (n + 1) 2n−2. (5)

Therefore the total frequency of runs of each length is

fn(i) =
rn(i)

t(n)
=

n− i + 3

n + 1
2−i (6)

for 1 ≤ i ≤ n− 1, whereas fn(n) = 1/t(n). Interestingly, fn(2) = 1/4 indepen-
dently of n > 2.

For large n, (6) should approximate the frequency of runs of each length in one
single binary n-sequence drawn uniformly at random, in which case fn(i) ≈ 2−i.

3 Relationship to Sequences from OEIS

Sequence A045623 from OEIS [3] (number of 1’s in all compositions of j + 1) is
defined by a(j) = (j + 3) 2j−2 for j ≥ 1. Observing (4), rn(i) = a(n− i).

Also, sequence A001729 is defined by b(j) = (j + 2) 2j−1. From (5), t(n) =
b(n− 1).

After noticing this connection, we found that the gist of the counting argument
we have used in Section 2 was already known in the problem of finding the
number of 1’s in all compositions of j + 1.
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