
A Tour of Ruby

... for Java programmers

Everything has a value
Everything has a value, which I'll show in a comment
(following Matsumoto):
1234 # => 1234

2 + 2 # => 4

'Hello' + 'World' # => 'HelloWorld'

We'll see other examples of 'expressions having values'
later.

Ruby is said to follow the
Principle of Least Astonishment.

Everything is a object; all objects have a class
(Almost) everything is an object, it really is.

Trying asking things what class they belong to by sending
them the message class:
my_greeter.class # => Greeter

1.class # => Fixnum

0.0.class # => Float

'Hello'.class # => String

and some particular cases:
true.class # => TrueClass

false.class # => FalseClass

nil.class # => NilClass

So there's no built-in
Boolean class as you
might have expected

Strings, Variables, Constants,
Boolean and Ranges

Strings
Single-quoted strings are interpreted exactly 'as is'
'Hello' # => Hello

'Hello\tSean' # => Hello\tSean

Double-quoted strings are interpolated thus:
"Hello" # => Hello

"Hello\tSean" # => Hello Sean

name = 'Aoife'

"Hello #{name}" # => Hello Aoife

Within a double-quoted string, code inside #{...} is
executed.

Variables
Variables don't have a type; you simply start using them.
They start with a lowercase letter or underscore.
name = 'John' # name contains the string 'John'

_num = 10 # _num contains the integer 10

Any variable can store anything, e.g
my_var = 'John' # my_var contains the string 'John'

my_var = 99 # now my_var now contains the integer 99

my_var = nil # now my_var now contains nil

my_var = Greeter.new # now my_var now contains a Greeter object

This may seem odd coming from Java, where all variables
have a type that restricts what you can do with them.

Not really ‘contains’.
We’ll return to this later.

Variable Names
Some examples of variable names:
fileName # Avoid camel case! Prefer file_name

Filename # Can't start with a capital letter

file_name # Good Ruby style

no_of_windows # Good ruby style

____ # Technically ok, but not sensible

X
X

X

✓
✓

Constants
Like variables, constants don't have a type. They must
start with a capital letter.
PI = 3.14 # PI is a constant

...

PI = 3 # Ruby will issue a warning

By convention, constants use all capital letters and
underscores (i.e., SCREAMING_SNAKE_CASE).

Class names also start with a capital letter. Using
CamelCase for classnames is conventional.
GameOfNim # typical Ruby class name

WindowDecorator # typical Ruby class name

NUM_OF_TRIES # typical Ruby constant name

Follow these convention in
your own programs

Boolean etc.
true and false are special objects. Not related to
integer values as is the case in C/C++.

nil is another special object that indicates absence of a
value, like null in Java.

In expressions, nil and false are interpreted as false;
everything else evaluates to true.

So C/C++ programmers please note:

0 is interpreted as true!

Ranges
An integer range can be defined, e.g.

(1..10)

A range is an object (of course) and provides some very
useful methods, e.g.,

if !(0..150).include?(age)
 puts 'not a valid age'
end

Ranges can contain more than just integers, e.g.,

('a'..'e').to_a #=> ['a', 'b', 'c', 'd', 'e']

Ranges provide much other useful functionality. Read
more when required.

More on arrays later

Parentheses not
essential here

Input/Output

Input/Output
We've seen puts for performing output.

To get a line of text from the keyboard, use gets e.g.,
name = gets

gets will return the final newline character as well, so if
you type 'John', name will contain 'John\n'.

The string method chomp gets rid of the newline:

name = name.chomp

Now name will contain just 'John'.

File Input
There are many ways to get input from a file in Ruby. We'll
look at one of the easier and more flexible ways.

Say this is the file (products.txt) that is to be read:

 Bag 100.00
 Hat 10.00
 Scarf 10.50
 Tie 20.75

So it's a list of item names (strings) and their associated
prices (floating-point values).

File Input
This code fragment reads the input file on previous slide:

1. IO.foreach('products.txt') do |line|
2. data = line.split
3. name = data[0]
4. price = data[1].to_f
 ... # do something with name and price
 end

1. Opens 'products.txt', and executes the block of code
between the do .. end once for each line in the file. line
represents the line being processed.

2. The split method splits the line into an array of strings.

3, 4. data[0] accesses the first element of the array; to_f
converts the string to a floating point number (see also to_i).

This code will make more
sense later in the module.

Classes and Methods

Classes
Classes are introduced with the keyword class.
class Employee
 ...
 ...
end

Later in the course we'll look at inheritance and
polymorphism, as well as interesting Ruby-specific
features like mixins.

Methods
Like methods in Java. Method names follow similar
conventions to variable names.

Methods are introduced using the keyword def:
class Employee
 def print
 end
end

Methods can be public, private or protected, with a
somewhat different meaning than in Java (more later in
the course).

For now, we'll only consider public methods.

We'll also look at closures later in the course.

Methods must have unique names in
a class, so method overloading is not
possible. You can get around this
using a variable argument list.

Code Blocks
There are two ways to denote a code block in Ruby:

Using braces:
{
 line 1
 line 2
}

Using do .. end:
do
 line 1
 line 2
end

{} bind more tightly than do .. end, but this usually doesn't
matter.

Prefer braces for 1-
line blocks, or if you
use the return value
of the block.

Prefer do .. end for
multi-line blocks.

The initialize Method
Like a constructor in Java.
class Employee
 def initialize
 end
end

The initialize method is automatically invoked when
an object is created. You can also invoke it directly from
inside the class (it's a private method, as we'll see later).

A destructor, called finalize, also exists but is seldom
required.

A class can only have
one initialize method.

Instance Variables

Like fields in Java. The name of an instance variable
must start with @. All instance variables are private to the
class in which they are defined:
class Employee
 def initialize(name, salary)
 @name = name
 @salary = salary
 end

 def to_s
 return "#{@name} earns #{@salary}."
 end
end

(Class variable names start with @@ -- these are like
static fields in Java.)

Method Names
If a method returns a boolean, then by convention its
name should finish with ?:
class Employee
 …
 def highly_paid?
 @salary > 495000
 end
 ...
end

The name of a 'dangerous' method should end with a ! if
there exists a safe version of the method., e.g.,
s = 'HELLO'
s.downcase # => 'hello': s is not changed
s.downcase! # => 'hello': careful! s is changed

Don't
do

this!

To enable an instance variable to be read and set from
outside an object, you might be tempted to do as follows:

class Employee
 ...
 def get_name # Getter for name

 @name
 end
 def set_name(new_name) # Setter for name
 @name = new_name
 end
end

So for an Employee object referred to by emp, @name
can now be set and read this way:

emp.set_name('John')
puts emp.get_name

Java-style Getters and Setters...

Don't
do
this

either!

More Rubyesque Getters and Setters
To enable an instance variable to be read and set, it is more
Rubyesque to do as follows:

class Employee
 ...
 def name # Getter for name.
 @name
 end
 def name=(new_name) # Setter for name; note syntax!
 @name = new_name
 end
end

So for an Employee object referred to by emp, @name can now
be set and read this way:

emp.name = 'John' # Invokes name= method.
puts emp.name # Invokes name method.

Think about this!

... and a shorthand
Rather than writing all that code for every instance variable
you want to grant access to, Ruby will generate it for you as
follows:
class Employee
 attr_accessor :name
 ...
end

So adding e.g. attr_accessor :count to a class is the
same as adding methods called count and count=, as
defined on previous slide.

If you only want to read the instance variable, use
attr_reader; if you only want to write it, use attr_writer.

Do it this way!

Use this only if you need to
access the instance variables
from outside the class

Operator Overloading is easy!
class Point
 attr_reader :x, :y

 def initialize(x, y)
 @x, @y = x, y
 end

 def +(other)
 Point.new(@x+other.x, @y+other.y)
 end
end

defines the +
operator for Point
objects

invokes the method called +; r now contains (11, 12)

p = Point.new(1, 2)
q = Point.new(10, 10)
...
r = p + q

self

Within a method, it may be necessary to refer to the
receiving object, i.e. the object that is executing the
method.

class Employee
 ...
 def ask_for_promotion?
 @manager.promote_employee?(self)
 end
 ...
end

In Java, this refers to the receiving object.

In Ruby, self refers to the receiving object.

Passes reference to
this Employee object
to promote_employee
method in Manager

Class Variables and Methods

Class variables in Ruby are like static fields in Java.

A class variable is shared by all instances of the class.

In Ruby, their names start with ‘@@’.

Class methods (like static methods in Java) can access
class variables.

Q: Can a static method access instance variables?

Class methods are defined by prefixing the method name
with self. Example on next slide.

A: No, there is no instance to access!

Note that class instance
variables are something
else; we won’t cover them

Example: counting instances
Say we want to count the number of instances of the
Employee class that are created as the program executes.

class Employee
 @@no_of_instances = 0

 def self.how_many_instances
 @@no_of_instances
 end

 def initialize(name)
 @name = name

 @@no_of_instances += 1
 end
end

@@no_of_instances
starts at zero…

incremented by 1 whenever
new object created

Class method to return class
variable, @@no_of_instances

Class methods can be invoked on the class, e.g.:
puts Employee.how_many_instances

Variables, Objects and Equality

Variables and Objects in Ruby
What does this Ruby statement do?

 my_name = String.new('Mel')

1. It introduces a new variable called my_name

2. It creates a new String object initialised to 'Mel'

3. It sets my_name to refer to this new String object.

:String

‘Mel’
my_name

This can be visualised thus:

Keep this model in mind whenever confused about
objects and variables in Ruby.

Object Equality: equal?
Understanding object equality is vital when learning a
new language. The Ruby syntax is more-or-less the
opposite of the Java syntax, so beware!

Are a and b equal?
a.equal?(b) # => false: a and b refer to different objects

:String

‘hello’
a

:String

‘hello’

b

c

All objects can respond to the equal? method that checks
if two variables refer to the same object, e.g.,
a = 'hello'
b = 'hello'
c = b

Are b and c equal?
b.equal?(c) # => true: b and c refer to the same object

Object Equality: ==
The == operator is defined to have the same meaning as
equal? by default. However…

Normally the == operator is redefined in a class to mean a by-
value comparison, e.g., it has already been defined this way
in the String class, so:
a = 'hello'
b = 'hello'
a.equal?(b) # => false: a and b are different objects
a == b # => true: b and c have equal values

So when you create a new class, consider implementing the ==

operator for comparison purposes.

If you don't, == will test if the receiver and argument refer to the
same object.

Strings and Symbols

Java Strings are Immutable
What does this Java fragment output?

String s = 'HELLO';
s.toLowerCase(); // make lowercase
System.out.println(s); // what does this print?

In Java, Strings are immutable, i.e., they cannot be
changed.
This is probably what the programmer intended:

String s = 'HELLO';
s = s.toLowerCase(); // make lowercase
System.out.println(s); // prints 'hello'

Immutable strings are faster to operate on, and consume
less memory, which is why Java provides them.

Ruby Strings are Mutable

In Ruby, strings are mutable:

s = 'HELLO' # => 'HELLO'
s.downcase! # convert to lowercase
puts s # what does this output?

If you want to use a String and don't need it to be
mutable, you should use a Ruby symbol instead….

Symbols
Ruby symbols tend to mystify Java programmers...

Consider this example using regular strings:

def time_of_day(hours)
if hours < 12

 'morning'
 else
 'afternoon'
 end
end

t1 = time_of_day(10) # t1 is 'morning'
t2 = time_of_day(11) # t2 is 'morning'

Now there are two copies of the same string in memory.
Call time_of_day 1000 times and you will have 1000
copies of the same string. Waste of memory.

Methods don't need a return
statement. Last expression
evaluated is returned.

This wastage would not happen in Java, due in interning

Symbols
Symbols are generally written with a colon followed by a
non-quoted string, e.g.

:john

:morning

:action

So what would the previous solution look like with symbols?

Symbols are immutable, interned strings.

Interned means that no matter how many instances exist,
only one copy of the object is stored in memory.

... example using Symbols
Redoing that example with symbols:

def time_of_day(hours)
 if hours < 12
 :morning
 else
 :afternoon
 end
end

t1 = time_of_day(10) # t1 is :morning
t2 = time_of_day(11) # t2 is :morning

There is only one copy of the symbol 'morning' in
memory.

When to use Symbols?
If you're using a string as an identifier, rather than actual
text, you should probably use a symbol instead.

In a traffic simulator, would you use
'red', 'amber', 'green' or :red, :amber, :green ?

For people's names, would you use
'aoife', 'sean', 'alice' or :aoife, :sean, :alice ?

For months, would you use
'january', 'february', etc. or :january, :february, etc.?

Also, where you might use a enumerated type in Java,
prefer symbols, e.g. for compass directions you would
use: :north, :south, :east, :west

Good blog on symbols: https://www.culttt.com/2015/04/22/what-are-symbols-in-ruby/

if, case and loops

The if Statement
Simplest case:

if expression then
 code
end

code is executed if and only if expression evaluates to
true. Another form is:
if expression
 code1
else
 code2
end

The "then" is optional if
followed by a newline.

Using elsif
The example explains the meaning:
if age <= 2
 person = :infant
elsif age <= 12
 person = :child
elsif age <= 70
 person = :adult
else
 person = :elder
end

This can also be achieved more succinctly with a case
statement. See next slide.

case
Similar to Java. This example explains the meaning:
person =
 case age
 when 0..2 then :infant
 when 3..12 then :child
 when 13..70 then :adult
 else :elder
 end

Note how the case statement itself has a value.

The when clause can
have a value or a range

(Yes, this is the recommended
indentation for a case statement.)

loops
Ruby has several loop types. Where possible, use an
iterator (each, inject, map, see later) rather than a loop.

Here's the format of a regular while loop:
while expression
 <loop body>
end

There are several other loop types as well.

Ruby also has an
until statement
with same syntax.

break has the same meaning in loops as in Java; next
is the equivalent of continue in Java:

break: exit the loop immediately

next: start the next iteration of the loop immediately

Argument Passing

How Arguments are passed to a Method
What does this Ruby fragment output?
class FooBar

 def change_name(name)
 name = 'John'

 end
end

my_name = 'Mel'
my_foobar = FooBar.new

my_foobar.change_name(my_name)

puts my_name

How Arguments are passed to a Method
What does this Ruby fragment output?
class FooBar

 def change_name(name)
 name = name.upcase

 end
end

my_name = 'Mel'
my_foobar = FooBar.new

my_foobar.change_name(my_name)

puts my_name

How Arguments are passed to a Method
What does this Ruby fragment output?
class FooBar

 def change_name(name)
 name.upcase!

 end
end

my_name = 'Mel'
my_foobar = FooBar.new

my_foobar.change_name(my_name)

puts my_name

Pass-by-reference and pass-by-value
In general (not Ruby-specific), the two main ways to pass
arguments to a method are:

- pass-by-reference and

- pass-by-value.

In pass-by-reference a reference (pointer) to the
argument is passed into the method, so any changes to
the argument within the method changes the object
outside the method as well.

In pass-by-value a copy of the argument is passed into
the method, so changes to the argument within the
method have no effect on the object outside the method.

Which does Ruby use?

Pass-by-value is the cleaner approach and this is what C,
Java, Ruby, and most languages, provide.

However, Ruby arguments are actually object references
(pointers), so the effects of pass-by-value can be
surprising!

This is explained further in the next slide.

Method Arguments Explained
So how does this Ruby fragment operate?
class FooBar

 def change_name(name)
 name = 'John'

 end
end

my_name = 'Mel'
my_foobar = FooBar.new

my_foobar.change_name(my_name)

puts my_name

Using the animation on the right should make it clear
what happens in each case.

:String

‘Mel’
my_name

name
:String

‘John’

Arrays, Hash Tables and Iterators

Arrays
Arrays map integers to values. In Ruby, arrays can be accessed with
positive or negative indexes:

arr:

0 1 2 arr.size-1

-1-2-arr.size

Some examples:
x = [] # an empty array

y = Array.new # an empty array (avoid this syntax)

z = [12, 45, 764] # a 3-element array

x[1] = 'hello' # => [nil, 'hello']

z.pop # => [12, 45]

Hash Tables in Ruby
Arrays map integers to values
a[10] = 'hello'

a[0] = 12

So arrays are indexed on integers.

Read up on hash
tables if you haven't
seen them previously

What if we want to index on something else?

e.g., to map names to phone numbers

or to map songs to artists,

or we map from integers, but they are not contiguous
starting at zero?

In such cases, use a hash table.

Creating a Hash Table
Create an empty hash table:
songs = {}

'Penny Lane' is a Beatles song:
songs['Penny Lane'] = 'Beatles'

'I Will Follow' is a U2 song:
songs['I Will Follow'] = 'U2'

Now songs looks like this:
{'Penny Lane' => 'Beatles', 'I Will Follow' => 'U2'}

The above two assignments could be replaced with:
songs = {'Penny Lane' => 'Beatles', 'I Will Follow' => 'U2'}

Iterators
An iterator is a method that executes a given block of
code, usually a number of times. Simple example:
10.times { |i| puts i }

Simplified Explanation: We ask the integer object 10 to
execute its times method using the block {|i| puts i}.

The times method then uses a counter that runs from
0..9. It passes this value to the block through the block
parameter i.

Other similar iterators:
1.upto(10) { |i| puts i }

1.step(10, 3) { |i| puts i }

The each Iterator
The each iterator is ideal for processing arrays and
hashes Example:
[2, 3, 5, 7, 11, 13].each { |val| puts val }

(Recall that 1-line blocks are written using {})

Longer blocks are written using do..end, e.g.

my_array = [2, 3, 5, 7, 11, 13]
...
my_array.each do |val|
 # process the current element, val
 ...
 ...
end

The each Iterator on hashes
When using the each iterator to traverse a hash, the block
has to pick up both the value and key of the hash:
songs.each do |key, value|
 puts "#{key} is performed by #{value}"
end

There are many iterators in Ruby, including:
each_value
each_index
map
inject
collect
select
...
We’ll look at these further later in the module.

We'll also see in detail how to write your own iterators.

Example: Iterating over hashes
class Encryptor
 def initialize
 @key = {'a'=>'x', 'b'=>'s', 'c'=>'z', 'd'=>'t'}
 end

 def encrypt(text)
 cipher_text = ''
 text.each_char do |letter|
 cipher_text << @key[letter]
 end
 cipher_text
 end
end

plaintext = 'badcab'
my_encryptor = Encryptor.new
cipher_text = my_encryptor.encrypt(plaintext)
puts cipher_text

Hash table to store
encryption code

Multiple Source Files

Handling Multiple Ruby Files
A small Ruby program can be written in a single file. This
won't work for larger systems of course.

Use require_relative when a class in one file uses a class
defined in another file (like a Java import), e.g.

Normal practice is to put each class into its own file. E.g.
for a class called Employee, name the file employee.rb.

class Point
 …
end

point.rb

require_relative 'point.rb'

class Kangaroo
 def initialize
 start = Point.new(0, 0)
 end
 …
end

kangaroo.rb

Summary
This has been a whistle-stop tour of the main features of
Ruby.

Much of what we didn't cover is similar to Java.

More advanced topics we'll come to later in the course.

These slides are not exhaustive, so supplement them
with extra reading.

Don't just read the slides passively. Run the code and
play around with it.

