
A Quick Question

Consider this Java class:

class TaxPayer{
 ...
 public void calculateTax(){
 ...

 calculateIncomeTax();
 ...

}
public void calculateIncomeTax(){

 ...
}

 ...
}

Do you know what method is invoked by the line of code
in red?

Inheritance in Ruby

You are familiar with the idea of inheritance and
how to use this in programming.

In this introduction, I'll describe inheritance in
Ruby from scratch.

Much of this material should seem familiar to you.
Remember that inheritance is essentially the same,
regardless of what language it is expressed in.

At the same time, inheritance in Ruby is not
exactly the same as in Java/C++, so be alert to
the differences.

Inheritance in Ruby

Ruby allows us to define a new class in terms of an
existing one, mimicking the way we typically define a
new concept in terms of an existing one.

Superclass and subclass are the terms
normally used in a Ruby context.

These statements are equivalent:
B inherits from A.
A is a superclass of B.
B is a subclass of A.
B is derived from A.

A

B

Which usually has more
instances, the subclass or
the superclass?

Which typically can do
more, a subclass instance
or superclass instance?

Simple Subclassing

Say we have defined a class Mammal:
 class Mammal

 ...
end

An instance of Dog will now have the same methods
as an instance of Mammal. It inherits them.

By now writing:
 class Dog < Mammal

end
We state that Dog is a new class, a subclass of Mammal.

Methods are inherited

For example, if Mammal were defined as:
 class Mammal

def breathe
puts 'breathe in, breathe out'

end
end

Then
 fido = Dog.new
 fido.breathe
will result in invoking the method breathe as defined
in the class Mammal on the object fido.

Method Lookup

When the statement
 fido.breathe

is executed, Ruby interpreter tries to find an
method called breathe in the class Dog.

It fails, so the search continues up the
inheritance hierarchy. The method breathe
in the class Mammal is found and used.

The process whereby an invocation is linked to an
actual method is called lookup or binding. What
has been described here is done at run-time and so is
called run-time binding or dynamic binding.

Mammal

Dog

breathe

Java and C++ both support compile-time (or static)
binding as well. This difference doesn't exist in Ruby.

Simplified
description

In Ruby, all binding is dynamic.

A Real-World Equivalent

This mimics how we would search
for information in a real-world
hierarchy, e.g., "Does a kangaroo
have warm blood?".

This information is not stored in the
class Kangaroo, but in the class
Mammal, which is an indirect
superclass of Kangaroo.

Marsupial

Kangaroo

Mammal

hasWarmBlood=true

…implemented in Ruby

The above hierarchy could be implemented in Ruby thus:

class Mammal
def has_warm_blood?
true

end
end

class Marsupial < Mammal
...

end

class Kangaroo < Marsupial
…

end

Sample Inheritance Hierarchies

Extending the Subclass

Creating new classes that are exactly the same as
existing classes isn't of course useful. What is useful
is that we can extend the subclass in various ways.

Say we wish now to create a Dog class that can
also bark…

Consider again the example of a Mammal class that
provides one method, breathe:

class Mammal
def breathe
puts 'breathe in, breathe out'

end
end

Extending the Subclass

A dog is a type of mammal, so it has mammal
behaviour, in our example breathing. It can also bark,
and this we can represent as follows:

 class Dog < Mammal
def bark
puts 'woof, woof'

end
 end

So a Dog is a Mammal that is also able
to bark. This code uses both methods:

fido = Dog.new
fido.breathe
fido.bark

Mammal

Dog

breathe

bark

Inheritance only goes one way

So this won't work (of course):
 claude = Mammal.new

claude.bark

Any method that is defined in the Mammal class can
also be invoked on an object of the Dog class. New
methods added to the Dog class can only be invoked
on Dog objects.

In general we extend the subclass by adding new
methods and possibly some new instance variables.

So, how are instance variables inherited?

Instance Variables are NOT inherited!

In Ruby, instance variables are not inherited in the
same way they are in Java.

The rule in Ruby is very simple:

An instance variable is dynamically added to
an object when it is first referenced.

Adjust your thinking! We're not in Java anymore.

In Ruby, classes don't have instance variables like in
Java. Instance variables are added to objects as the
program executes.

Example of instance variable creation

class Person
def initialize(name)
@name = name

end

def buy_house
@house = House.new

end
#…

end

john has one
instance variablejohn = Person.new('John')

john.buy_house Now john has two
instance variables

Q: How many
instance variables has
this class?

A: Classes don’t have
instance variables!

Instance variables and Inheritance

class Person
def initialize(name)
@name = name

end

def buy_house
@house = House.new

end
#…

end

class Urbanite < Person
...
def foobar
How to access @house here?

end
...

end

Person

Urbanite

buy_house

Instance variables in a class hierarchy

Any object can have only ONE instance variable called
@count. This is never “declared.” The variable comes into
existence when @count is first used.

So to use an instance variable introduced in a superclass,
just call a method that introduces it (often the initializer).

If an object has never executed a statement using the
variable @count before and it encounters
@count = 10

what will happen?

1. A new Fixnum object is created with the value 10,
2. The current object gets a new instance variable, @count,
3. @count is set to refer to the new Fixnum object.

Invoking the superclass initializer

super invokes the method
of the same name, but starts
the lookup in the superclass

class Person
def initialize(name)
@name = name

end
…

end

class Student < Person
def initialize(name, number)
 super(name)
 @number = number
end
…

end

Invoking super in a method suggests a well-designed class
hierarchy, as it implies a semantic coherence between the methods.

Will my_student be initialised correctly?

class Person
def initialize(name)
 @name = name
end
…

end

class Student < Person
 # No initialise method!
 # ...
end

Yes! The initialize method is bound just like any
other method.

my_student = Student.new('Aoife')

Terminology: what's a client?

A client of a class is any other class that uses it.
Here the class Alpha is a client of the class Beta.

class Alpha
def initialize
 ...
end

def some_method
 …
@my_beta = Beta.new
...

end
end

In general, a class never
knows who its clients are.

Aside I

A subclass is a special type
of client of its superclass.

How can a class “know” something?

When we say a class “knows” something, we mean
that this information is evident from the code of the
class, e.g.

class Alpha
...

def some_method
...
@my_beta = Beta.new
beta.foo
...

end
end

Here we'd say that Alpha “knows” that Beta is a
class and that objects of Beta have a foo method
that takes no arguments.

Aside II

The less a class
knows about
other classes,
the better.

Public, Private and Protected

Instance variables are private to the object as we've
seen. However, they are accessible throughout the
inheritance hierarchy.
class Mammal
def initialize(name)
@name = name

end
end

class Dog < Mammal
def bark
puts '#{@name} goes woof'

end
end

Accessing a private
field would not be
allowed in Java

If you want to grant clients of the class access to an
instance variable, use an attribute reader/writer/
accessor as seen in the Ruby Tour.

Private Methods

Methods are public by default. If we make a method
private, it can only be invoked from inside the object.

Thus, a private method is also accessible to subclasses.

class Example
...

private

def foo
end

def foobar
end

end

unlike Java/C++!

class Example
...

def foo
end

def foobar
end

private :foo, :foobar
end

The following both make foo and foobar private:

A private method cannot be invoked on an explicit object.

Assuming foo is private, this is the correct way to invoke it:
 foo
i.e., the receiving object is implicitly the current object.

More about Private Methods

If you want a helper method in a class, but
clients don't need it, make it private.

Why would you make a method private?

Both of these are incorrect:
o.foo
self.foo

Initializers are normal, private methods

When an object instance is created using e.g.,
Person.new

the initialize method is invoked on the
newly-created Person object.

Apart from that, initialize is just like a normal,
private method. In particular:

• it can be invoked anywhere from within the object

• if it's not defined in the current class, it's looked for
in the superclass, and so on

Protected Methods

A protected method is like a private one, with one
difference.

It may also be invoked from another object of
the same class.

Use a protected method when you want an object
to share state with other objects of the same class,
but not external clients.

Protected methods are mainly used in creating a
comparison method (i.e. overriding the == operator).
Other than that, they are not very common.

In Java, what access does a subclass have to its
superclass? The following example illustrates the rules:

class A {
public void pub();
protected void prot();
private void priv();

}

class B extends A {

void foo() {
pub();
prot();
priv();

}
}

// fine
// fine

// Error! priv() is not accessible.

So in Java public and protected methods are visible to
subclasses; private methods are hidden to subclasses.

Access rights to the Superclass in Java

In Ruby, what access does a subclass have to its
superclass? The following example illustrates the rules:

class B < A
def foo
pub
prot
priv

end
end

fine
fine

fine

So in Ruby, everything in a class is visible to subclasses.
=> a subclass is potentially very tightly coupled to its
superclass. More on coupling later in the module.

Access rights in Ruby

class A
public
def pub
end

protected
def prot
end

private
def priv
end

end

In Ruby, what access do the various categories of
class have to the public, protected and private methods
of a class? The following table summarises the rules:

Ruby access rights summarised

public protected private

Inside class ✓ ✓ ✓

Subclasses ✓ ✓ ✓
Client object
(same class) ✓ ✓
Client object

(different class) ✓

In Java, what access do the various categories of class
have to the public, protected and private methods/fields
of a class? The following table summarises the rules:

Java access rights summarised

public protected private

Inside class ✓ ✓ ✓

Subclasses ✓ ✓
Client object
(same class) ✓ ✓ ✓
Client object

(different class) ✓

Banking Example

“A bank account stores the name of the account
holder and a balance.

Funds can be deposited to, and withdrawn from, the
account.

A savings account is a type of bank account that has
an interest rate and enables interest to be added to
the balance.”

We'll consider how to model this simple banking
example as a class hierarchy in Ruby.

Finding Classes — highlight the nouns

A bank account stores the name of the
account holder and a balance.

Funds can be deposited to, and withdrawn from,
the account.

A savings account is a type of bank account
that has an interest rate and enables deposit
interest to be added to the balance.

Which are the likely classes?
Which are the likely methods?
Which are the likely instance variables?

BankAccount class

class BankAccount
def initialize(name)
@name = name
@balance = 0.0

end

def deposit(amount)
@balance += amount

end

def withdraw(amount)
@balance -= amount

end
end

SavingsAccount class

class SavingsAccount < BankAccount

def initialize(name, interest_rate)
 super(name)
@interest_rate = interest_rate

end

def apply_interest
@balance += (@interest_rate/100.0) * @balance

end

end

class SavingsAccount < BankAccount

def initialize(name, interest_rate)
 @name = name
 @balance = 0.0
 @interest_rate = interest_rate
end

def apply_interest
 @balance += (@interest_rate/100.0) * @balance
end

end

(What’s wrong with doing it this way?)

Now we want a Special Savings Account (an SSA)
that penalises withdrawals (but e.g. provides a
higher rate of interest).

Overriding

So the withdraw method in the SSA class must be
overridden to apply a penalty.

We'll also add the penalty as an argument to the
initializer.

SpecialSavingsAccount class

class SSA < SavingsAccount
def initialize(name, interest_rate, penalty)
super(name, interest_rate)
@penalty = penalty

end

def withdraw(amount)
super
@balance -= @penalty

end
end

If a method in a subclass has the same name as one in a
superclass, it overrides it, with the same meaning as in Java.

More on this when we look at polymorphism.

has same meaning as
super(amount)

Which methods are invoked?

acc1 = SavingsAccount.new('Lucy', 6)
acc2 = SpecialSavingsAccount.new('John', 10, 25)

acc1.deposit(1000)
acc2.deposit(1000)

acc1.withdraw(10)
acc2.withdraw(10)

acc1 = acc2
acc1.withdraw(10)

Inheritance is a technique for creating a new class
based on an existing class.

The next topic we look at is Software Quality.

We’ll return to inheritance later in the context of
type systems and polymorphism.

Inheritance Summary

We reviewed inheritance in general and showed
how it is used in a Ruby program.

