
1

As a programmer, you need a basic understanding of type systems.

Type Systems

The main goals of type systems are:
1. Reduce bugs
2. Make code more readable
3. Enable compiler optimisations
We’ll explore these in later slides

Different languages take very different approaches to types.

We’ll mainly consider the Java and Ruby type systems.

A type system is a collection of rules that assign a property
called a type to the various constructs (variables, expressions,
methods etc.) that comprise a computer program.

2

The type of something tells you what what you can do with it,
for example:

What is a type?

So you know that you can spin a football on your finger, but
you probably shouldn’t do that to a dentist or a house.

Type Available Operations

football kick, head, sit on, spin on finger

house live in, paint, buy, sell…

dentist fill tooth, extract tooth, pay, …

Gary Larson on Static Types

4

If you try to misuse the variable, the compiler complains:

if (count == “fifteen”){
}

When you give a variable a type, you are saying how is
should be used, e.g. (Java):

int count;
...
count = 5;
..
if (count == 20){
}

Types in Programming Languages

compare integer to string,
type mis-match error!

count is of type integer

assign count an integer, ok!

compare integer to integer, ok!

5

When you give a variable a type, the system can check that it is
subsequently used correctly in accordance with its type.

Types help prevent bugs

This means that type errors are prevented — so a whole range
of bugs are avoided.

6

In the above example, by writing (in Java)

 int count;

we made it clear to anyone reading the code what range of
values count can take on what what we can do with count.

Types make code more readable

By contrast, Ruby doesn’t associate an identifiers with a type,
so while you might initialise count thus:

 count = 10

you could later assign count a string:

 count = ‘Dracula’
Legal, but not good
as it makes the
code hard to read.

7

Type systems are sometimes classified as strong or weak.
(These are relative terms, not absolute ones).

Strong and Weak Typing

A strong type system prevents type errors from occurring.

A weak type system allows the possibility of type errors.

It may seem that strong type systems are better, but a very
strong type system can be obstructive!

Example of weak typing on the following slide.

strong/weak UNRELATED to static/dynamic!

8

Weak typing is not in vogue; the original C language is the
best-known weakly-typed language which could lead to highly
complicated run-time errors.

What does weak typing look like?

Here’s a sample of what can be done in C:

 int x = 5;

 char y[] = "37";

 char* z = x + y;

The ‘+’ in this example adds an integer to a pointer. This seems
like it should be a type error, but a weak type system trusts
that the programmer knows what they are doing.

x is an integer initialised to 5

y is a string initialised to “37”

z points to the string located
5 characters after y

9

Type systems are often classified as static or dynamic.

Static and Dynamic Typing

In static typing, type checking is performed at compile time.

In dynamic typing, type checking happens at runtime.

Don’t confuse strong/weak typing with static/dynamic typing.

Static vs. Dynamic Typing

10

Dynamic typing is better for quick development, but more error-
prone. Traditionally seen as more suitable for rapid prototyping or
non-production development.

Static typing aims to catch as many errors as possible at
compile-time. Traditional wisdom is that this is required for
serious, production development (C++, C#, Java, …).

The current trend in language is in favour of dynamically-typed
languages such as Ruby, Python, Scala etc.

11

In static typing, you tell the compiler the types of your
variables, arguments etc. and it stops you accidentally
misusing them.

However, it has its limitations...

Static Typing

This is a good safety mechanism, and allows the compiler to
catch a whole range of bugs (type errors).

Static typing is heavily used in many production languages,
e.g., C++, Java, C# etc.

12

This method takes a name and searches the persons array
for a person of the name, returning false if the search fails.

Ruby Example (1)

def find_person name
 @persons.each do |person|
 if (person.name == name)
 return person
 end
 return false
end

If a programmer assumes that find_person returns a
person, an error is likely to occur if it returns false…

What type of object
does this method return?

Here we look an example of a run-time type error that can
occur in a language that uses dynamic typing, but could not
occur when using static typing.

13

Now say I use that method to find the Person object for “John
Newman”, who isn’t stored in this structure:

person = people.find_person(‘John Newman’)

Ruby Example (2)

This will report the following error on execution:

‘NoMethodError: undefined method ‘name’ for false:FalseClass’

And later on we process this person object, e.g.:

 puts person.name

14

Try to write the find_person method in Java.

Doing this example in Java

public <return_type> find_person(string name){
…

}

You simply can’t. The Java type system prevents you from
mimicking the Ruby example.

The method must have a return type; it can’t return a Person
object sometimes and a Boolean other times.

So the Java type system prevents the kind of bug from occurring.

15

Now we look at an example where static typing stops us from
doing something that know would be fine!

Static typing isn’t always good!

It might seem that static typing is a good thing, but this isn’t
necessarily the case.

Static typing can get in the way

16

17

This creates a list of Animal objects and stores a Cat in the first
place on the list (assume Cat is a subclass of Animal):

List<Animal> animals = new ArrayList<Animal>;
animals.add(new Cat(“cleo”));

Cat example in Java

Later on, you want to write this code:

my_cat = animals.get(0);
my_cat.meeow();

You know it should work because you know the first element on the
list is really a cat, but the compiler will report something like:

The method meeow() is not available for Animals.

Static vs. Dynamic Typing: a programmer’s perspective

Ack: Zack Grossbart

19

It’s easy to confuse class and type in an object-oriented
language.

Classes and Types

The type of an object is what you can do with it, i.e. its
public methods.

The class of an object is its type (public methods) plus the
details of how the methods are implemented:

 class = type + implementation

20

To add to the mix, a reference and the object it refers to
may be of different types.

References and Objects

Say Customer is a subclass of Person, then in Java we
can write:
Person my_person = new Customer(…);

Here the reference my_person is of type Person, while
the object it refers to is of type Customer.

21

Java is regarded as strongly-typed. Objects and object
references are given types and these are checked to
prevent type errors.

Run-time type errors can occur (e.g., ClassCastException)
so it’s not completely type-secure.

Java Typing in a Nutshell

Java primarily uses static typing. The compiler checks that
object references are type safe.

The runtime system also check object types where
necessary, so some dynamic typing occurs as well.

In Java, as in C++, dynamic typing is inextricably linked with
the inheritance relationship.

22

Ruby is also regarded as strongly-typed. All objects have a
type and whenever an object is sent a message, the runtime
checks that the object can respond to it.

The Ruby Type System

Ruby is interpreted so it cannot use static typing.

Ruby is entirely dynamically typed.

In fact, it uses a simple system called duck typing.

However, variables have no type in Ruby. Any variable can
refer to any object.

In this sense, Ruby variables are typeless.

Duck Typing

23

Ruby typing is commonly called Duck Typing.

Types are not checked until the code is executed. You ask
an object to do something. If it can it does, if it can’t, it
throws an exception.

"When I see a bird that walks like a duck and
swims like a duck and quacks like a duck, I call
that bird a duck." -- James Whitcomb Riley

In this model, the class of an object does not matter, all that
matters is what it can do.

24

What happens if we write this in Ruby?
person = Person.new(…)
person.quack

What if the duck doesn’t quack?

It then sends the person object the method_missing
message. You can implement method_missing to handle
this situation.

We’ve seen how method lookup works before; here the
runtime system will not find a quack method in the
Person class or any of its superclasses.

If method_missing isn’t implemented either, it throws a
NoMethodError exception.

25

The type system of a programming language is a very
important feature of the language.

Types help to reduce bugs, make code clearer and help the
compiler perform certain optimisations.

Type Systems Summary

Type systems can be strong or weak, static or dynamic (or a
hybrid of these).

Ruby is strongly typed, and uses a form of dynamic typing called
duck typing.

This is important to understand as we look further at
polymorphism.

