
State Machine Design, Persistence and Code Generation
using a Visual Workbench, Event Sourcing and CQRS

MSc Dissertation
Author: Seán Fitzgerald

A thesis submitted in part fulfilment of the degree of MSc
Advanced Software Engineering in Computer Science under the

supervision of Prof. John Murphy.

School of Computer Science and Informatics
University College Dublin

April 25, 2012

ABSTRACT

State Machines are a solution to many common programming problems. This work argues that
the visual nature of a State Machine presents opportunities for Visual Workbenches in the area
of design, code-generation and analysis. A persistence mechanism known as Event Sourcing and
an architectural pattern known as Command-Query Responsibility Segregation are first defined.
It then describes how entities that are persisted using Event Sourcing can be designed and
implemented as State Machines, and how this can be used within a CQRS framework. A Visual
Workbench is then presented which uses these techniques to design a State Machine and to
generate code. This workbench also enables a new form of State Machine analysis via the replay
and modification of historical events. To show how the techniques presented in this work can
be used in a practical situation, the workbench is then used to develop a fully working test-case
application. Finally, a discussion and conclusions are presented which describe the benefits and
shortcomings of the techniques described in this work.

ACKNOWLEDGEMENTS

Thanks to my wife Karen for her constant support and patience during the research and writing
of this Thesis.

Also, thanks to Prof. John Murphy and Viliam Holub for their support, help and assistance.

CONTENTS

1. Introduction . 7
1.1 Objectives . 7
1.2 Structure of the Document . 7

2. Background . 8
2.1 The Problem Domain . 8
2.2 Event Sourcing . 8
2.3 Command Query Responsibility Segregation . 9
2.4 Literature Review . 9

3. Event Sourcing . 10
3.1 Event Sourcing Defined . 10
3.2 Benefits of Event Sourcing . 12
3.3 Disadvantages with Event Sourcing . 13

4. Command Query Responsibility Segregation . 14
4.1 Introduction . 14
4.2 Traditional Multi-Layered Architecture . 14
4.3 Splitting the Architecture Vertically . 14
4.4 CQRS with Data-Store Separation . 17
4.5 CQRS with a De-normalised Read Database. 17
4.6 CQRS with Event Sourcing . 19
4.7 CQRS with Domain-Driven Design . 20
4.8 CQRS with a Task-Based User Interface . 21
4.9 Eventual Consistency . 22
4.10 A Standard CQRS Process . 22
4.11 Disadvantages and Failings of CQRS . 23

5. State Machines with Event Sourcing and CQRS . 25
5.1 Introduction . 25
5.2 State Machines with Event Sourcing . 25
5.3 Designing an Event Sourced State Machine . 27
5.4 Event Sourced State Machines in the Context of CQRS 29
5.5 Limitations of an Event Sourced State Machine 31
5.6 Benefits of an Event Sourced State Machine in a CQRS Application 31

6. A Visual Workbench for CQRS and Event Sourced State Machines 33
6.1 Introduction . 33
6.2 The Requirements for the Visual Workbench . 34
6.3 Designing and Coding a Visual State Machine Designer 35
6.4 Domain Properties, Commands and Events . 36

Contents 5

6.5 Implementing a State Machine in a CQRS Framework 39
6.6 Replaying, Analysing and Altering Persisted Events 41
6.7 Generating Code . 42
6.8 Generating Unit tests . 47

7. Case Study: Developing an Application using the Visual Workbench 49
7.1 Introduction . 49
7.2 Developing the Administration Screen . 49

7.2.1 Concurrency . 52
7.3 Developing the Shift Recording Screen . 54
7.4 Validation and Business Logic . 56
7.5 Unit Testing . 58

8. Analysis and Future Developments . 59
8.1 Summary . 59
8.2 Analysis . 59
8.3 Possible Future Developments and Improvements 60

Appendix 61

A. CQRS Workbench Installation and Instructions . 62
A.1 Installation . 62
A.2 Creating a State Chart . 62
A.3 State Transitions . 62
A.4 Domain Properties . 62
A.5 Ad-Hoc Methods . 62
A.6 Generating Code . 63
A.7 Creating a CQRS project . 63
A.8 Using the CQRS Project with RavenDB. 63
A.9 Viewing the Stored Events in the CQRS State Machine Visual Workbench 64

B. Test Case Validation Code . 65

LIST OF FIGURES

4.1 3-Tier Architecture . 15
4.2 Separate Domain Layer for Querying and Modifying. 16
4.3 Basic CQRS Model . 17
4.4 CQRS with segregated data stores. 18
4.5 CQRS with a De-Normalised Query Database. 19
4.6 CQRS with Event Sourcing . 21
4.7 CQRS with Event Sourcing — Full Sequence . 23

5.1 Basic Customer StateChart . 27
5.2 State Machine with Event Sourcing Class Diagram 28
5.3 A CQRS Process with Event Sourcing for State Machine Persistence 30

6.1 Basic WPF Designer . 35
6.2 Visual Designer Start . 36
6.3 Designer With Labels and Scxml . 37
6.4 Import SCXML (Unformatted) . 37
6.5 Import SCXML (Formatted) . 38
6.6 Domain Properties . 38
6.7 Command and Event Dialogue . 39
6.8 Load Component Screen . 41
6.9 Select Domain Type . 43
6.10 Select Aggregate . 43
6.11 Debugging Panels . 44
6.12 State-chart Changes . 44
6.13 Code Generation Screen . 46
6.14 Transition Tour Example . 47

7.1 Staff Member State-Chart . 50
7.2 Revised Staff Member State-Chart . 50
7.3 List of Ad-Hoc Methods . 52
7.4 List of Staff Members . 53
7.5 Add/Edit Staff Member . 53
7.6 Shift Recording State Chart . 54
7.7 List Shift Times Screen . 55
7.8 Add a Shift Time . 55
7.9 Analysing the Staff Member Domain Object . 57
7.10 Analysing the Time Recording Domain Object 57

1. INTRODUCTION

1.1 Objectives

This work aims to show how a Visual Workbench can enable a developer to design a State
Machine, generate code within a Command Query Responsibility Segregation (CQRS) framework
and analyse the State Machine via Event Sourced persistence.

After defining Event Sourcing and CQRS, a new method of State Machine persistence will
be discussed and investigated which will use these architectural patterns. This new persistence
mechanism can also be used to analyse and alter the historical behaviour of a State Machine via
the Visual Workbench.

Finally, as a proof of concept for the Visual Workbench, the State-based domain logic for a
fully working test-case application will be created that operates using a CQRS framework and
an Event Sourced persistence mechanism.

1.2 Structure of the Document

Background. This section will outline the reasons for the thesis, and the opportunities that
are available under the areas of State Machines, Event Sourcing and CQRS. A brief literature
review is also presented.

Event Sourcing Defined. This is a short section dedicated to explaining the concept of
Event Sourcing from a data-storage perspective.

CQRS Defined. This section is a step-by-step description of CQRS. It explains the concept
by building up each layer of the pattern incrementally.

State Machines with Event Sourcing and CQRS. As the major terms have now been
defined, the next stage is to discuss how an Event Sourced State Machine can be used in the
context of a CQRS infrastructure. A formal CQRS pattern will be expanded to include an
Event Sourced State Machine.

A Visual Workbench for CQRS and Event Sourced State Machines. By taking
advantage of what has been discussed up to now, a Workbench is presented that demonstrates
the advantages of State Machines, Event Sourcing and CQRS.

Case Study: Developing an Application using the Visual Workbench. A complete,
working test application is developed and presented using the workbench.

Discussion and Conclusions. The completed Visual Workbench and the test case
application is discussed. Future possibilities and opportunities that are available for this form
of development are considered, as are any changes, modifications and lessons learned.

2. BACKGROUND

2.1 The Problem Domain

The US National Institute of Standards and Technology describes a Finite State Machine as:

“A model of computation consisting of a set of states, a start state, an input alphabet,
and a transition function that maps input symbols and current states to a next state.
Computation begins in the start state with an input string. It changes to new states
depending on the transition function.[1]”

This is a basic description of a State Machine from an abstract perspective. However, from
an enterprise software-based perspective, a State Machine can be used in a wide variety of
applications to operate on dynamic data, and to provide dynamic decision-making capabilities
based on the current state of an entity. It enables an entity to have a certain number of states,
and to restrict the transition to different states based on specific criteria, such what may be
defined in a state-chart. In particular, this work focuses on event-driven State Machines — these
are computational models that trigger state transitions based on the current state and a received
event.

However, any real-world enterprise system that implements a State Machine will (in many
cases) have to work with data that needs to be recorded in a data-store. Although previous works
have attempted to deal with State Machines from the perspective of data-storage, the proposed
solutions only deal with storage as an addendum to State Machine theory. For example, the
solution proposed by [2] adds transaction management via a Finite State Machine Manager.
However, no implementation is provided that would automatically record the state transitions
over a period of time as an intrinsic element of the implementation. But a State Machine, by its
nature, deals with these transitions over a period of time and it is these transitions that are at
the core of any implementation. If only the “current” state is ever recorded, it could be argued
that not all information about an entity is being stored. The associated historical data is lost,
and the opportunity to extract valuable data about an entity is also lost.

2.2 Event Sourcing

One solution to the difficulty outlined above is via the area of Event Sourcing. Event Sourcing is
a data storage theory in which an object or object-graph that represents an entity is not stored
in tabular format in a database, but rather as a series of events that are replayed to recreate
the entity. In the case of State Machines, this form of storage is an ideal match. By storing the
events that cause the state transitions, the opportunity to replay, debug and perform runtime
analysis on transition events become available.

Although Event Sourcing is not a new form of data storage, there is little work available that
combines Event Sourcing with State Machines. [3] proposes a State Machine Design Pattern that
includes the idea of Events as a separate class in a State Machine design in order to promote
looser coupling between the State classes and their transition logic. However, no mention is made
of the storage of events as an intrinsic component of the design pattern.

2. Background 9

2.3 Command Query Responsibility Segregation

Command-Query Responsibility Segregation (CQRS) is a relatively new enterprise-wide archi-
tectural design pattern. Although the descriptions surrounding this pattern are still loosely
defined, in essence it is a pattern that promotes specialisation of system components based on
whether those components are responsible for updating or querying. Usually, this specialisation
and separation occurs at both the middle-tier domain-logic layer and at the data-source layer.
The result of this segregation is that a separate domain-logic layer and data-store is used for
recording updates, while one or more separate query layers and data-stores are used to respond
to queries from a client. For our purposes, one of the most important features that are commonly
used with CQRS is the implementation of Event Sourcing to enable synchronisation between the
data-stores responsible for updates and the data-stores responsible for querying. Because Event
Sourcing is an important feature of CQRS, it follows that Event Sourced State Machines should
be a good fit with a CQRS framework. A full definition of CQRS is presented in Chapter 4.

Greg Young is one of the main architects of CQRS. It was in a discussion with Greg at a CQRS
course in September 2011 that he mentioned to this writer that an object that is persisted via
an Event Sourcing storage mechanism is basically a form of a State Machine. That conversation
helped to start the thinking and research the that led to this work.

2.4 Literature Review

There is a large amount of literature available in the area of State Machines, particularly around
describing a State Machine [4][5]. There is also significant literature in the area of State Machine
Testing [6][7] which provided an excellent foundation for researching the various testing methods.

Event Sourcing and the CQRS pattern is relatively new, and its popularity as an application
implementation technique is still at an early stage. The online article provided by Greg Young
[8][9], Udi Dahan [10] and Martin Fowler [11][12] would be the most up-to-date in regards to this
area. There is currently little academic research in this area, although some new literature are
due to be published over the next few months in the area of CQRS.

Because CQRS is very often directed at the application written via an Domain-Driven Design
methodology, Eric Evan’s book Domain-Driven Design: Tackling Complexity in the Heart of
Software[13] provided a helpful introduction into the area of DDD. Although this did not directly
affect the results of the work, it provided a solid background into the context in which a CQRS
application would operate.

One of the aims of the software produced by the this research was to generate unit tests along
with actual code. For the area of unit testing The Art of Unit Testing [14] was extremely valuable
as it helped to provide guidance in the use of nUnit (a .Net testing framework).

The most useful resource for this work was Martin Fowler’s Domain Specific Languages [15].
This provided some excellent guidance in the area of State Machine domain-specific languages,
code generation, and language workbenches. It was also this publication that provided the
inspiration for creating the Visual Workbench for State Machine analysis and Code Generation:

“As I write this, the language workbench field is still very young. Most tools have
barely left the beta stage. Even those that have been out for a while haven’t garnered
enough experiences to draw many conclusions. Yet there’s immense potential here
— these are tools that could change the face of programming as we know it. I don’t
know whether they will succeed in their endeavours, but I am sure they are worth
keeping an eye on.”[15]

3. EVENT SOURCING

3.1 Event Sourcing Defined

Event Sourcing can be described as a process whereby a system will:

“Capture all changes to an application state as a sequence of events.”[16]

In other words, we don’t store the current state of an object, we instead store the events that
caused us to reach that state. This would mean that when a middle-tier Domain Object receives
and validates a modification from a User Interface, we create and store an event which states
that a modification has occurred. In other words, rather than updating the state of an object in
a database, we simply store each modification as an event in a table or file-store.

For example, consider a system that creates and updates a Person object. In a traditional
system, this object would contain public methods such as Create or Update with a number of
parameters containing the details of the create or update operation. These methods then persist
the Person object to a data-store using either an Object Relational Mapper, or via direct calls
to a database.

With Event Sourcing, there is no tabular representation of a Person object in a database.
Instead, when an operation is being applied to the Person, an Event object is created that contains
the information that needs to be applied to the Person. After the Person has been changed, the
Event object is serialised and persisted to a data-store. The data-store can be anything that
records data, such as a text file. In most cases this data-store is either a relational or NoSQL
database with the event being stored as a serialised object.

An important point to note is that an Event Sourcing data-store is append-only. When an
event is created and added to a database, it states that a certain action has occurred to an entity.
It is not possible to undo an event that has occurred in the past, so there should never be any
concept of updating an event that has already been stored in a database. If, for example, an
error has been discovered and it is decided that a Person has been assigned an incorrect age, the
only way to correct this is to apply a new event to the Person, and append this serialised event
object with the correct age to the data-store.

Naming conventions are important in the context of Events Sourcing. When an Event object
is being created, it is important that its name represents an action that has occurred in the past.
Grammatically, the naming convention should be in the past tense. So, rather than naming
the Event class CreatePerson, the name PersonWasCreated should be used. This communicates
clearly that the code represents an action that has taken place in the past. Listing 3.1 is a simple
code example that illustrates Event Sourcing more clearly1:

1 This work will predominantly use C# code, but will use comments to enable interpretation by Java program-
mers where appropriate.

3. Event Sourcing 11

Listing 3.1: A Sample Event Sourced Class

pub l i c c l a s s Person : AggregateRoot // Person extends AggregateRoot
{

p r i v a t e s t r i n g name ;
p r i v a t e i n t age ;

pub l i c Person () { } // r equ i r ed f o r Person r e t r i e v a l

pub l i c Person (s t r i n g name , i n t age) // Create a Person
{

PersonCreated personCreated = new PersonCreated (name , age) ;
ApplyEvent (personCreated) ;

}

pub l i c void UpdateName(s t r i n g newName)
{

PersonNameChanged personNameChanged =
new PersonNameChanged (newName) ;

ApplyEvent (personNameChanged) ;
}

p r i v a t e void ApplyEvent (PersonNameChanged nameChangedEvent)
{

name = nameChangedEvent .NewName ;
AppendToEventStore (nameChangedEvent) ;

}

p r i v a t e void ApplyEvent (PersonCreated personCreatedEvent)
{

name = personCreatedEvent .Name ;
age = personCreatedEvent . Age ;

AppendToEventStore (personCreatedEvent) ;
}

}

In this case, the Person class that has two public constructors and the public UpdateName
method. They simply perform any required validation, before creating a PersonCreated or a
PersonNameChanged Event object which is passed to the relevant ApplyEvent method. It is
the relevant ApplyEvent method that modifies the Person data, before calling the AppendTo-
EventStore method. The AppendToEventStore method would then serialise the Event class and
append it to a table in an event store.

Table 3.1 displays a list of events that might have occurred on a Person object: PersonCreated
and PersonNameChanged. In order to retrieve a Person from a data-store, a system would
perform the following steps:

1. Create a blank Person object. This is the reason for the empty default constructor above.

2. Retrieve and de-serialise each Event record from the data-store.

3. Iterate over each Event object, and call the relevant ApplyEvent method in the Person
class above.

In a practical implementation, each event object could be serialised via binary, XML or JSON
serialisation. Also, each event does not have to be applied to a single object instance — an event

3. Event Sourcing 12

Tab. 3.1: Event Sourcing Data Example

ObjectID EventData SequenceNo DateStamp

1 PersonCreated; Name: Sean; Age: 37 1 01/09/2011

1 PersonNameChanged; NewName: John 2 03/09/2011

can also be applied to an object graph, thereby presenting opportunities for Entity storage and
retrieval. For, example the ObjectID field in Table 3.1 need not represent a single Person class
— it could instead represent an Entity that contains numerous classes and structures.

In a situation where the number of events required to rebuild an entity is very large (such as
above 1000), a technique known as a snapshot can be used to record the state of the Entity at
certain user-defined points. An entity’s snapshot would be stored in a dedicated Snapshot table,
and this snapshot would be loaded prior to applying the subsequent events on top. For example,
Table 3.2 stores the serialised object-graph of a Person object with an ObjectID of 5. When this
Person is being retrieved the application will first query the Snapshot table to see if a serialised
object is already stored. The application will instantiate this Person object, and will then only
apply events with a SequenceNo greater than 100.

Tab. 3.2: Snapshot Example

ObjectID ObjectType SerialisedObject SequenceNo DateStamp

5 Person json object 100 03/09/2011

Note that the Snapshot technique is really only an implementation technique designed to
improve the performance of loading entities.

3.2 Benefits of Event Sourcing

• By its nature, event sourcing records the state of an object over a period of time, rather
than a single moment in time. This can provide immense business value as it records how
an object has reached a particular state. Event Sourcing also has the potential to provide
business knowledge about the broader business context. For example, consider a situation
where a user can add and remove items to a shopping cart. If an analyst wants to know the
total amount of items that were ever added (including those items that were subsequently
removed prior to purchase), this would be impossible to know given a stereotypical relational
database. The analyst may be able to record the total amount of items that were added
and then purchased, but without event-sourcing data, they would not be able to deduce
the total amount that were ever added. Although this can also be done on a conventional
database, such as with an audit log, with event sourcing this capability is built-in.

• Event Sourcing enables us to view the state of an object at a particular date. This can be
done by simply replaying our event sequence to a specific date.

3. Event Sourcing 13

• By implementing Event Sourcing at the domain logic level, it now means that the system
is no longer mapping domain objects to a relational database via an Object Relational
Mapper because it means that our domain objects are restored from a sequential list of
events in an Event Store.

• Event Sourcing gives us absolute confidence in the current state of our entities. Because
we’re storing a full history of the entity, we can easily replay the full list of events to reach
our current state.

• Event Sourcing employs a storage mechanism that is additive by nature, so that at no
point is record locking employed. This can provide clear benefits in terms of scalability and
performance.

3.3 Disadvantages with Event Sourcing

• Performance. In order to create an entity, the system needs to replay each event from
the start. This could obviously be a problem where an entity is composed of hundreds or
thousands of records. One method to alleviate this is to create a full snapshot of an entity
after a certain amount of events have been added, or after a certain amount of time has
passed. This snapshot can be stored in the same table as the events, or it can be stored in
a separate table that contains a reference to the Sequence Number of the previous event.
When a system is looking to recreate an entity, it will look for a snapshot first, and then
add each new event on top.

• Querying. The nature of event-sourcing is that querying the entity data is extremely
difficult. In fact, the only type of query that should be guaranteed is one that retrieves
an entity based on its Id, e.g. via a GetPersonById(personId) method. However, this
work argues that CQRS can be used to solve this issue. By creating a read data-store for
querying, all queries (whether from the UI or a Reporting system) would be directed to the
Query side of CQRS.

• The nature of Event Sourcing does require some extra coding due to the increased num-
ber of small classes. For example, with a regular CRUD architecture the method re-
quire to update a Customer can often be done via a single method, such as UpdateCus-
tomer(customerDetails). However, with event sourcing, the aim is to create events for every
type of change that can be performed. At a minimum, updating a Customer requires one
method and one class — the UpdateCustomer method, and the CustomerUpdated class.
However, in most cases a designer might prefer to create a method and an event for each type
of Customer change, e.g. ChangeName/NameChanged, UpdateAddress/AddressChanged,
etc.

4. COMMAND QUERY RESPONSIBILITY SEGREGATION

4.1 Introduction

Although it is still in the early stages of adoption, in recent years Command-Query Responsibility
Segregation has been gaining traction as a method of promoting the specialisation of enterprise
components and improving scalability and performance. An exact or official definition of CQRS
has yet to be agreed upon, with a number of proponents advancing their own detailed specifi-
cations [10][8][11]. At the time of writing Microsoft have begun to develop an addition to their
Patterns and Practices library for CQRS [17]. There are also some companies that have embraced
CQRS-based architectures — for example, Lokad, based in Paris, employ a CQRS framework
targeted particularly at Cloud-based (Microsoft Azure) deployments.

Rather than reiterate this literature, this chapter will be a succinct definition of CQRS. It will
also describe the various techniques that are commonly used on top of the basic CQRS definition.
In essence, this section is an attempt to gather some of the knowledge and thinking surrounding
CQRS in order to provide a concrete description of the topic.

4.2 Traditional Multi-Layered Architecture

In modern enterprise IT systems, one of the common architectural styles is based on a multi-
layered or multi-tiered pattern. In this pattern, areas of a system are divided physically or
conceptually according to their responsibilities. Three primary layers of responsibility that are
commonly used are known as the Presentation layer, the Domain Logic layer and the Data Source
layer[16].1

A typical multi-layered system could look like Fig. 4.1, which shows a User Interface, a
business logic layer and a data store layer. For a lot of systems, this, or an architecture derived
from this design, is generally sufficient. But with larger systems, problems can develop in terms
of scalability, performance and maintenance. As systems grow in complexity and size, it becomes
increasingly difficult to maintain the level of performance that was seen in development, testing
or the early stages of production. Furthermore, as complexity grows, it can be very difficult to
decouple each layer sufficiently. Although the designers start out with good intentions, it is often
the case that modifications to one layer cannot be done without consequences or modifications
on another layer. Finally, as the data storage requirements of a system increase, performance
can decrease with slower modification and query times.

4.3 Splitting the Architecture Vertically

The design in Fig. 4.1 is divided horizontally based on the responsibilities of the UI, Domain
Logic and Data. What if it was also decided to split the responsibilities of the architecture

1 Note that although the terms “layers” and “tiers” are used interchangeably, Martin Fowler in Patterns of
Application Architecture recommends that “layers” refer to conceptual separation, whereas “tiers” refer to physical
separation.

4. Command Query Responsibility Segregation 15

Fig. 4.1: 3-Tier Architecture

vertically? For example, we could consider a split that is based on whether a user is reading
or writing data to a database. The read side of the application could perform all queries, while
the write side performs all creates, updates and inserts. Assuming that the UI layer cannot be
reasonably split (a user would want a single point of interaction) this leaves the possibility of
separating the domain logic and the database layers. But we need a single source of data, so it
can be reasonably assumed at this stage that we cannot split the database layer. Therefore, we
could potentially separate the domain logic layer conceptually or physically based on whether
the activity is querying or modifying. Fig. 4.2 displays this architecture.

With this design in place, we can now optimise the system based on whether the user is
performing modifications or queries. If the domain layer is on a separate tier, we could easily
move the query logic to run in a separate process or machine, thereby enabling us to optimise
the performance and domain logic based on that tier’s responsibility. It could be argued that
in the vast majority of enterprise systems the primary activity performed by users is querying.
For example, with an typical on-line store, most users will browse (i.e. query) for a period of
time before making any purchase (i.e. command). Even in a system where 80% of the activity is
querying, and 20% is modification, does it really make architectural sense to use the same models
in the Domain Layer for both activities?

In his 1998 book “Object-oriented Software Construction”, Bertrand Meyer stated the fol-
lowing with regards to Object methods:

“every method should either be a command that performs an action, or a query that
returns data to the caller, but not both. In other words, asking a question should not
change the answer.”[18]

In our basic example, we could apply this statement to the read and write operations of
the domain layer. On the write side, all interactions could be designed such that no values are

4. Command Query Responsibility Segregation 16

Fig. 4.2: Separate Domain Layer for Querying and Modifying.

returned. In other words, the UI layer would only ever issue a command to the write side, and
should never expect a return value. Conversely, the UI would only ever send a query to the read
side, which would only ever return data, while at the same time guaranteeing that it would never
modify the Domain or the Data-Source. This can be considered to be a Side-Effect-Free function
— by executing a query, no modifications are made to the Domain, and a query can be executed
multiple times with the same result being returned every time[13].

From this, we can now update our basic model to Fig. 4.3. Note that with this basic CQRS
model, the communication only flows one way from the User to the data-store on the command
side, but both ways on the query side.

Although Meyer’s statement was intended for use at a method level, CQRS applies this at
an object or architectural level. Although an exact description has yet to be defined, it could be
contended from this that CQRS is:

The separation of application or system responsibilities into Writing and Reading
at an overall architectural level rather than an internal object level.

Rather than assuming that just a method should perform an action, why not apply this principle
across a complete system layer, or even to an entire application, from the User Interface down
to the data-store?

In essence, an architecture designed as per Fig 4.3 could be considered to implement the
Command-Query Responsibility Segregation pattern — the responsibility for Commanding and
Querying has been segregated in the Domain Logic layer. However, at this level, CQRS is
probably too simplistic to be considered effective. For example, how would the user know that
a command has been executed successfully? Should the Command side be allowed to execute
queries in order to validate business logic? Finally, considering CQRS is being applied at an
architectural level, would it not be beneficial if we could also segregate the User Interface and
Data Store layers based on query and command responsibilities, and implement optimisations
on these layers as well?

4. Command Query Responsibility Segregation 17

Fig. 4.3: Basic CQRS Model

4.4 CQRS with Data-Store Separation

The next logical step when implementing CQRS is to split the Data Source layer based on write
or read operations. In other words, we create one separate database for the write side, and one
or more separate databases for the read side. In this way, any operation that results in changes
to our domain entities in the Domain Logic layer communicates with the Write database, while
any queries (such as from the UI) are directed to the Read database.

This obviously raises the issue of database synchronisation between the command and query
sides. At a conceptual level, this should not be problematic. Each time the write side receives,
validates and accepts a command to modify data, the system will send the same update to the
mirrored database on the read side, thereby keeping both sides in sync.

Given this pattern, not only can we apply optimisations at the domain-logic layer, we can
also optimise at the database layer. Considering that we are primarily serving write requests on
the write database, and read requests on the read database, we can optimise both sides based on
this functionality.

Therefore, taking this into account, our updated architecture now looks like Fig.4.4.

4.5 CQRS with a De-normalised Read Database.

In most traditional data-driven applications, the number of read requests performed on a system
is very often much higher than the number of write requests. For example, a website that
sells from a product catalogue will usually serve far more read requests via users browsing the
catalogue, compared to users that are making a purchase and submitting write requests. The
CQRS model discussed up to now has separate data-stores for write and read requests. These
data-stores are identical, with the Read side being a mirror of the Write side. However, even
though they are identical in structure and data, they do not exist for identical reasons:

4. Command Query Responsibility Segregation 18

Fig. 4.4: CQRS with segregated data stores.

• The write side does not serve read requests.

• The read data-store does not serve write requests. In most cases, it is only serving read
requests that are designed to display information on the User Interface layer.

• The read database is only a reflection of what is stored in the write database. It is not the
primary source of data.

Given that the read side is not the primary source of data, we can dispense with some of
the stereotypical assumptions that would accompany a standard database, and take advantage
of some opportunities for optimisation on the read side:

• Each database table could represent the exact view of the data from the perspective of the
UI. By storing all the data required for each screen in its own single table, all performance
issues that can occur with table joins and foreign key look-ups can be eliminated. For
example, a User Interface view displays a list of searchable products composed of Product
Name, Price and Manufacturer. In a standard database structure this query might be
constructed by linking across 2 tables — Products and Manufacturers. But it would be
more efficient to construct a single table that directly serves this view, and only contains
the data required for the view’s query, even if this results in the duplication of data across
different tables. In effect, data on the read side is stored in a denormalised format, i.e. in
first normal form.

• Indexes can be created for each table that are specifically optimised for serving each view.

• Without the requirement for table-joining, we are now presented with the opportunity
for horizontal partitioning (or sharding). With one database table per screen, it becomes
relatively simple to split our data across different processes or machines based on a record
ID, with a separate process or load-balancer being employed to retrieve the data from the
relevant partition.

4. Command Query Responsibility Segregation 19

• Without the need for table relationships we can also dispense with the need for a Relational
database, and take advantage of a NoSQL database. This can give us the benefits outlined
by [19].

In order to convert the data on the write side to a set of individual tables on the read side,
a process known as a de-normaliser can be employed. Each time an update is performed on the
write side, a notification (or event) is published to the read side. The read side then handles this
notification and updates the relevant denormalised tables with the new data.

With these additions to our model, the architecture now looks like Fig. 4.5

Fig. 4.5: CQRS with a De-Normalised Query Database.

4.6 CQRS with Event Sourcing

Although it may be considered trivial at a conceptual level to ensure correct synchronisation
between the Write and Read databases, this is one of the major problems that can occur when this
separation occurs. For example, if an update on the write data-store did not get communicated to
the read data-store, how can we be certain that the data on the read side would ever accurately
reflect the data on the write side? What if subsequent updates were communicated correctly
with the read database? How would an administrator easily correct the missing update on the
read database? At an individual level, each error may be difficult to fix, but over a period of
time this issue can be considered unmaintainable as multiple synchronisation issues begin to pile
up. A technique that can be used to solve this problem is through Event Sourcing. Indeed, Greg
Young[9] suggests that CQRS and Event Sourcing have a “symbiotic relationship”.

In the context of CQRS, objects on the write side of the database are persisted to the write
data-store via the Event Sourcing techniques discussed in Chapter 3. However, this Event Sourc-
ing technique requires one extra addition to enable it to be used with the Read side of CQRS: As
each event is saved, the same event is published to Event Handlers on the read side. Publishing

4. Command Query Responsibility Segregation 20

can be done via subscribers on the read side that subscribe directly to the event publisher on the
write side. Alternatively, the event publisher could place the events on a queue, while the read
side pulls from the queue and processes the event.

Event Sourcing gives us some advantages in the context of CQRS:

• Event Sourcing makes it easier to synchronise our write database with our read database.
Each time an event is stored, it can also be sent (or published) to an event processor that
can make the necessary modification to the data on the read side.

• If the read side becomes out of sync with the write side, it is conceptually simple to re-
process each event to correct the read side. For example, a table on the read database can
be cleared down, and the events can be replayed to rebuild the table back to its correct
state.

• Event Sourcing means that we can dispense with the idea of using a relational database
model on our write side. Since we are storing only the events, and it is these events that are
being used to re-create an object graph, we don’t need to maintain data-store relationships
between entities or objects — simply because we’re not persisting entities in our data-store.
Therefore, a data-store used for the write side does not necessarily need to be a relational
database. As with our de-normalised read side, it could be a NoSQL database, thereby
offering benefits in terms of performance, simplicity and scalability[20]. In fact, it is not
obligatory to store the sequence of events in a database of any sort — each new event could
just as easily be appended to a text file or some form of event log.

• Because we are publishing events to n number of query side subscribers, Integration with
other systems becomes far easier: the integration framework as already been built, so a
new system can be linked with our CQRS/Event Sourced application in a much quicker
time-frame.

• It is possible to replay each event that has been stored, thereby creating a snapshot of the
system at a certain point in time.

So with Event Sourcing added, our CQRS diagram now looks like Fig. 4.6.

4.7 CQRS with Domain-Driven Design

A Domain Model is defined by [16] as:

“An object model of the domain that incorporates both behavior and data.”

Meanwhile, [13] defines a Domain Layer as:

”The portion of the design and implementation responsible for domain logic within a
layered architecture. The domain layer is where the software expression of the domain
lives.”

The primary aim of DDD is to construct a system such that the behaviour of a system is encap-
sulated in a Domain Model. With CQRS, there is an opportunity to encapsulate all behaviour
and data on the write side. By removing any query services from the write side, we are primarily
encapsulating Domain behaviour. It also means that we are no longer combining domain be-
haviour and the mechanisms that simply allow us to display data to users. As espoused by Udi
Dahan[21]:

4. Command Query Responsibility Segregation 21

Fig. 4.6: CQRS with Event Sourcing

”Showing user information involves no business behaviour and is all about opening
up that data.”

In fact, it could be argued that by including query logic in the write side, we are opening up
the possibility of unknown and unnecessary changes to occur, as we can never be sure what
type of query logic is required. By segregating these two activities, we are ensuring a cleaner
implementation of the Domain Model on the write side.

4.8 CQRS with a Task-Based User Interface

At this stage we’ve created an optimised version of CQRS by adding a number of theoretical
layers on top of the basic CQRS model described in Section 4.3. One of the key factors in this
optimised CQRS model is that events are stored on the Write side rather than Entity State (see
Section 4.6). But in order to create an “event” — that is, something that has occurred in the past
— we need to issue a “Command” to inform our Domain layer that the user requires something
be done. If user is faced with a screen to update a Customer record, a regular CRUD application
will usually display a set of text-boxes containing the data, and a simple Save button. In order to
create a command, it is necessary to create a UI that explicitly allows the user to select the exact
operation they are performing on the data. By using a command, it means that the resulting
events that are stored in the Data-Store will create a full history of all operations performed on
the Domain. In the Edit Person example, the screen would have a number of buttons, or links,
containing each available command, e.g Change Person’s Age, Update Person’s Address, etc.
Microsoft has issued a set of guidelines[22] known as an Inductive User Interface or Task-Based
User Interface. This was further expanded upon by Greg Young in [23]. Greg Young defines a
Task-Based UI as:

4. Command Query Responsibility Segregation 22

”The basic idea behind a Task Based or Inductive UI is that its important to figure
out how the users want to use the software and to make it guide them through those
processes.”

By adhering to a Task-Based UI, we can ensure that we are issuing commands to the Domain
layer, thereby allowing us to create the resulting events.

4.9 Eventual Consistency

A CQRS system needs to accept the principle of Eventual Consistency. [24] defines Eventual
Consistency as:

”The storage system guarantees that if no new updates are made to the object,
eventually all accesses will return the last updated value.”

With the CQRS pattern, then this principle is being accepted. Once a command has been sent
from the UI, it is accepted that eventually (rather than immediately) this command will be
updated on the read side.

For example, there may be a situation where a user is attempting to purchase an item from an
on-line store. The user sends a purchase command. This command checks the stock availability,
accepts the purchase command, and publishes an ItemPurchased event, which will eventually be
processed on read side. At this stage, it is important that the UI does not wait for the read
database to be updated with the status of the Purchase Order — it is not possible to predict
how long this wait could be. Instead, a message could be displayed stating that “Your order has
been processed, an email will be sent out shortly”. In short, Eventual Consistency has to be
taken into account when designing all parts of a CQRS application.

4.10 A Standard CQRS Process

There are a number of existing open source frameworks that attempt to abstract away the details
of implementing CQRS from developers:

• Simple.CQRS. This is a lightweight CQRS framework written by Greg Young. Events and
commands must implement a Command or Event abstract class. Commands are handled
by Command-Handlers which are created by the developer. Event Storage is provided as
in-memory storage, but a new Event-Store can be created by implementing the IEventStore
interface.

• Lokad.CQRS. This is a large CQRS framework that is targeted specifically for CQRS
applications running in the Cloud. Lokad.CQRS supports Event Sourcing via the concept
of append-only Tape Storage (the term “Tape” being a conceptual definition only).

• NCQRS. This is a popular .Net-based framework written in C#. It uses interfaces to define
Aggregate Roots, Commands and Events, and uses Class Attributes to map commands to
the relevant public method on an Aggregate Root or Domain Object. Commands are
handled via CommandHandlers inside the NCQRS framework. Event Sourcing is provided
via a SQL Server implementation.

• Axon. Axon is a Java-based CQRS framework. Commands can be any type of object,
but CommandHandlers are required to implement the CommandHandler interface, while
events implement the Event interface. Aggregate Roots are defined via the AggregateRoot
interface. This framework also comes with two built-in Event Stores: a File System Event
store, and Java Persistence API-compatible Event Store.

4. Command Query Responsibility Segregation 23

• Agr.CQRS. This is a lightweight CQRS framework written in C#.

To illustrate an Event Sourced CQRS framework, this is the process employed by Simple.CQRS
when a command is submitted from a UI or other external service:

1. A command is sent to a Command-Handler service.

2. The Command-Handler service obtains the correct Command-Handler method.

3. If the entity is a new object, the instance is created via a public constructor. Otherwise,
the events that have previously being applied and saved are retrieved from the Event Store.

4. The entity is recreated from the event sequence.

5. The Command-Handler method calls the relevant public method on the entity. Validation
logic is performed in the entity.

6. Based on the results of the validation logic, the type of event to be applied to the entity is
identified.

7. The event is applied to the domain object. This will update private fields of the entity.

8. The event is serialised and appended to the Event Store.

9. The event is published to all subscribed Event Handlers.

This process can be summarised in the sequence diagram display in Fig. 4.7:

Fig. 4.7: CQRS with Event Sourcing — Full Sequence

4.11 Disadvantages and Failings of CQRS

• Complexity. By splitting up the read and write sides of an application, you are immediately
adding a certain degree of complexity to a system. If all that is required is a simple CRUD
application, with only a few users, then the CQRS pattern could result in an over-engineered
application.

4. Command Query Responsibility Segregation 24

• Stale Data. One of the big implications of having the read side of the application segregated
from the write side, is that the data on the read side is going to be stale. In a lot of business
situations, this is acceptable. For example, a user retrieves an entity to be displayed on
screen. That user may then take some time modifying the entity before saving it back
to the database. When the Save button is pressed, the data is now stale. However, the
business and the application accepts this as a reality, and is normally able to deal with
it. However, if the application is processing high-speed transactions (for example, financial
trading software) that need to be displayed as close to real-time as possible, this staleness
may not be appropriate.

• Ad-hoc Querying. As stated in Section 4.6, if all data on the write side is stored as events,
this means that any ad-hoc querying is not possible. Complex querying can only done
against the Query side, which may not have the required table set up, especially if de-
normalisation is in use. If a new query or view is required, a developer needs to write code
that will handle the published events in order to create each de-normalised view.

5. STATE MACHINES WITH EVENT SOURCING AND CQRS

5.1 Introduction

Applying Event Sourcing to the Command side of a CQRS implementation results in a model
that has similarities with a Finite State Machine. The US National Institute of Standards and
Technology [1] describes a Finite State Machine as:

”A model of computation consisting of a set of states, a start state, an input alphabet,
and a transition function that maps input symbols and current states to a next state.
Computation begins in the start state with an input string. It changes to new states
depending on the transition function. There are many variants, for instance, machines
having actions (outputs) associated with transitions (Mealy machine) or states (Moore
machine), multiple start states, transitions conditioned on no input symbol (a null)
or more than one transition for a given symbol and state (non-deterministic finite
state machine), one or more states designated as accepting states (recognizer), etc.”

Consider the life-cycle of an Entity in the context of Event Sourcing:

• It has a starting state, whereby no events have been applied.

• A command is sent from the UI to the Domain Layer. This command generates one or
more events which are applied to an Entity.

• As each event is applied, there is a transition to a new state. This can be either an explicit
state, such as a State property that has a finite number of values, or an implicit state that
is based on the combination of the Entity’s properties and fields.

In effect, this life-cycle can be matched to the traditional definition of a State Machine.

5.2 State Machines with Event Sourcing

In mathematical terms, the formal model of a Deterministic Finite State Machine can be described
in the form of a quintuple:

(S,s1,X,Y,δ,λ)

Where:

S: A finite set of states.

s1: The initial state.

X: A finite set of input values.

Y: A finite set of output values.

5. State Machines with Event Sourcing and CQRS 26

δ: A set of state transition functions.

λ: A set of output functions.

We can then map these elements to a state-based Entity:

S: The explicit or non-explicit list of states that an Entity can be in at any time.

s1: The initial state of the Entity, e.g. a Customer with a state of New.

X: A finite set of Command classes that have been declared in the system.

Y: A finite set of Event classes that have been declared in the system.

δ: A list of State/Command functions that cause a transition to a new State.

λ: A list of State/Command functions that cause an event to be produced.

The last symbol is key for a Deterministic Event-Driven State Machine. When a command
is submitted to an entity that is in a particular state, this will result in an event that will update
the aggregate to a new predetermined state. For this reason, any entity that is persisted to an
Event Store could be considered a form of a State Machine. In many cases, an explicit State
Machine is not necessary, and the designers of the system may never even recognise the existence
of a State Machine. However, in other cases, a State could be recognised as an explicit concept
within the Entity. For example, a Customer entity could implement a State property that is
implemented explicitly as the actual state of a State Machine. In this case, a Customer’s State
may only be advanced to another State based on an event (i.e. a State Machine input value)
that has been applied to an Entity.

Consider Fig. 5.1. This shows a simple Customer State-Chart with explicit States and
transitions displaying commands and events. Therefore, the above mathematical elements can
be mapped as follows:

States: Started, Standard, Priority, Deleted.

Initial State: Started.

Set of Input (Command) Values: CreateCustomer, Upgrade, Downgrade, DeleteCus-
tomer.

Set of Output (Event) Values: CustomerCreated, Upgraded, Downgraded, Customer-
Deleted.

Transition Functions: δ(Start, CreateCustomer) = Standard, δ(Standard, Upgrade) =
Priority, δ(Priority, Downgrade) = Standard, δ(Standard, DeleteCustomer) = Deleted,
δ(Priority, DeleteCustomer) = Deleted.

Output functions: λ(Start, CreateCustomer) = CustomerCreated, λ(Standard, Upgrade)
= Upgraded, λ(Priority, Downgrade) = Downgraded, λ(Standard, DeleteCustomer) = Cus-
tomerDeleted, λ(Priority, DeleteCustomer) = CustomerDeleted.

An Event Sourced State Machine pattern is similar to other proposals that have attempted to
model alternative versions of a State Machine. [3] proposed the idea of decoupling state-transition
logic and state-behaviour. This means that State classes don’t need to be dependent on other
State Machine classes. Of particular relevance to this paper is their idea that State classes send
events to the Context class, which then changes to a new tate based on the current state and

5. State Machines with Event Sourcing and CQRS 27

Fig. 5.1: Basic Customer StateChart

received event. [2] is also relevant in that it introduces a model of a Persistent State Machine.
This presented the idea of a State Machine that is also capable of persisting data.

However, none of these works deal with the idea of using Events as the means of persistence
in a State Machine. An Event Sourced State Machine pattern introduces a number of new
opportunities. Although — like [2] — it includes logic for data persistence, the fact that an event
sourcing model is used means that a State Machine can be easily replayed to view the State
changes over time, or to view the State of an entity at a particular moment in time. Also, if
appropriate reverse logic is included in the Event classes, State transitions can also be reversed.
The concepts of events is also more significant in the Event Sourced State Machine pattern than
in [3]. In [3] an event is used to simply notify a context of a State change. This work proposes
a new pattern, whereby events are used both for data persistence of an Entity, to calculate an
Entity’s subsequent State, and to replay past events.

5.3 Designing an Event Sourced State Machine

In this new pattern, an Entity will receive events that will change its state. It is proposed
that a new class with an explicit State property could be created that would be derived from
a Entity’s generic base class. The base class is called AggregateRoot, and the derived class is
called AggregateRootWithState1. When an Entity with an explicit concept of State is required,
it will be derived from this new State-enabled subclass. Furthermore, an Event sub-class with an
explicit representation of State can be derived from the Event base class (called EventWithState).
The AggregateRootWithState class will contain a reference to a State class that will contain all
required details for the current State of the domain — this could be as simple as a string value.

1 The term Aggregate is used to reflect the fact that CQRS is well suited to Domain-Driven Design (see Section
4.7). One of the main tenets of Domain Driven Design is the principle of an Aggregate. An Aggregate is defined
in [13] as: ”A cluster of associated objects that are treated as a unit for the purpose of data changes. External
references are restricted to one member of the Aggregate, designated as the root. A set of Consistency rules
applies within the Aggregates boundaries.”

5. State Machines with Event Sourcing and CQRS 28

The AggregateRootWithState class also needs to know of all allowable States in which it can
exist, the commands and events that it can receive, and the resulting States to which it can be
transitioned to. In other words, the object needs to be populated with a relevant State Machine.
To achieve this, the AggregateRootWithState class will create an instance of a StateMachine
object that contains a list (i.e. Dictionary object) of allowable State objects. The State’s name
is a searchable Key for the dictionary. Each State object will contain a list of Transition objects.
Each Transition object contains a Command string, an Event string, and a ResultingState string.

This class diagram is shown in Fig. 5.2.

Fig. 5.2: State Machine with Event Sourcing Class Diagram

For example, this is the outline of the State Machine from Fig. 5.1:

5. State Machines with Event Sourcing and CQRS 29

States Transitions

Standard: Command/Event/ResultingState
Upgrade/Upgraded/Priority
DeleteCustomer/CustomerDeleted/Deleted

Priority: Command/Event/ResultingState
Downgrade/Downgraded/Standard
DeleteUser/UserDeleted/Deleted

Deleted: No Transitions

In this example, the State of Active has 2 associated Transition objects. If an Aggregate in
this State receives an Upgrade Command, the Upgraded event will be applied to the Aggregate
and stored in the Event Store, and the Entity’s state will be updated to Priority.

The StateDictionary for the AggregateRootWithEvent can be populated from a database,
an XML file, or any technique that can retrieve a persisted State Machine definition. Rather
than create a new Domain Specific Language, the State Machine definition can be stored using
the State Chart XML (SCXML) format. This is a W3C standard for XML state charts and
“provides a generic state-machine based execution environment based on CCXML and Harel
State Tables.”[25]

5.4 Event Sourced State Machines in the Context of CQRS

In Section 4.10, a sample CQRS framework — Simple.CQRS — was described which included
Event Sourcing as means of persisting Domain Objects. This framework can now be expanded
to include State Machines and the explicit State of an Entity. Steps 8 and 9 are where the
State-Machine specific processing is performed. Fig. 5.3 shows an updated sequence diagram for
this process. Other frameworks such as nCQRS or Axon could be expanded in a similar manner.

1. A command is sent to a Command-Handler service.

2. The Command-Handler service obtains the correct Command-Handler method.

3. If the entity is a new object, the instance is created via a public constructor. Otherwise,
the events that have previously being applied and saved are retrieved from the Event Store.

4. The entity is recreated from the event sequence.

5. The Command-Handler method calls the relevant public method on the entity. Validation
logic is performed in the entity.

6. Based on the results of the validation logic, the type of event to be applied to the entity is
identified.

7. The event is applied to the domain object. This will update private fields of the entity.

8. The next state of the object is retrieved based on (i) the current state, and (ii) the event
type that is about to be applied. The next state can be retrieved from an XML file (e.g. a
SCXML file) or any sort of data-source or DSL that can describe a State Machine. A rejec-
tion or exception can be called at this point if the no event type/Next-State combination
(i.e. transition) is found for the current State.

5. State Machines with Event Sourcing and CQRS 30

9. The event is applied to the domain object. The event will apply both the event logic, and
also update the Entity’s state. Each Event class has a property of NextState that contains
a reference to the next state of the Entity. This can be implemented as a property on an
Abstract Event class.

10. The event is serialised and appended to the Event Store.

11. The event is published to all subscribed Event Handlers.

Fig. 5.3: A CQRS Process with Event Sourcing for State Machine Persistence

This implementation does not implement the Gang of Four State pattern [26], in that the
behaviour of the Entity does not necessarily change based on the current State of the object.
However, a further extension to this process can be deduced, whereby separate derived Entity
classes are used depending on the current state. These could be behaviour classes that are
referenced from a standard Entity, or they could be a complete object that is replaced each time
the state changes.

Step 3 in the above sequence describes what occurs when an existing object is retrieved and
instantiated from the Event Store. Generally, what occurs here is as follows:

1. A request for the event sequence is sent to the Event Store.

2. The list of events for the particular Entity id is retrieved from the Event Store.

3. Each event is applied to the Entity.

5. State Machines with Event Sourcing and CQRS 31

4. After each Event is applied, the NextState property value is retrieved from the Event, and
State of the Domain Object is updated.

The important point to note about this process is that updating an Entity from an existing
event that is retrieved from an Event Store to a new State should never be rejected. This is
because the Event Store only ever records what has already happened. Even if our State Machine
description has changed since the event was recorded, the new State must be allowed. On the
other hand, when a new command is received from a client — the intention to change State
can be rejected if the New State/Event Type combination is not found in the State Machine
description. For example, a Person object might have had its State updated from Invalid to
Priority in the past. Later on, the State Machine was updated to prevent a Person’s Status
being updated from Invalid to Priority. However, because this event has already occurred in the
past, this State Transition must be allowed. On the other hand, if a new command resulted in an
event that attempted to update the Person from Invalid to Priority, then this would be rejected.

5.5 Limitations of an Event Sourced State Machine

The main limitation of an Event Sourced State Machine with a domain object is the fact that
not every domain object will require an explicit concept of state. In many cases, the object can
simply exist without a State property, nor will it ever require one. For example, a Customer
class may never need an Active or Priority state, but would simply exist as a Customer or not
exist at all.

5.6 Benefits of an Event Sourced State Machine in a CQRS Application

One of the major benefits of Event Sourcing is the fact that events can be replayed at any
stage in order to instantiate an object, or to re-populate a Query-side database table (via an
EventHandler). More importantly from a business value point of view, this replay functionality
can also be used to analyse the historical transactions that have occurred over time. In the same
way, the transitions of an Event Sourced State Machine can be replayed and analysed to provide
business value.

One of the major goals of Domain-Driven Design is to control complexity and to make the
domain more understandable to domain experts and developers. As discussed in Section 4.7, a
CQRS application is generally targeted towards a Domain-Driven Design form of development
because the core behaviour of the Domain Objects can be easily encapsulated without the extra
functionality of supplying Query data to a client. By further abstracting the behaviour into
a State Machine, the complexity inherent in an Entity can be reduced and become more un-
derstandable to anyone that can understand a State Transition diagram. However, since Event
Sourcing is a recommended method of persistence within CQRS, it follows that an Event Sourced
State Machine is a natural fit for any State-based Entity. This means that domain experts and
developers can be provided with a clearer understanding of the Domain Logic through the use
of State Chart’s Diagrams and State Transition models.

There are a number of other benefits to using an Event Sourced State Machine with a Domain
Object:

• Code can be generated based on the Domain Object’s State Machine.

• Unit Tests can be generated.

• The history of a State Machine’s transitions within the context of an Entity can be viewed
and analysed via the Event Store records that are associated with the Entity.

5. State Machines with Event Sourcing and CQRS 32

• An Entity’s state transitions can be designed visually via a State-Chart. This raises op-
portunities for visual design of an Entity.

All of these benefits will be explored in the upcoming sections.

6. A VISUAL WORKBENCH FOR CQRS AND EVENT SOURCED STATE
MACHINES

6.1 Introduction

Based on the Simple.CQRS framework, in order to create a new command which will then be
processed by the CQRS infrastructure, the following steps need to be completed:

1. Create the commands that will be issued to the Domain object. This can either be done
on the User layer, or when a on-line request is received from a user.

2. Create the command-handling method that will receive the command as a parameter.

3. In the command-handler, create the code that will create the Domain Object and call a
public method on the Domain Object.

4. In the Domain Object, create the public method that receives the command properties as
parameters.

5. In the Domain object’s public method, create any required validation logic.

6. Create an Event that will be applied to the Domain object

7. Create a private method that will apply the event to the Domain.

8. Write the code that will apply the event to the Domain.

9. Write any event-handler(s) that will handle the published event.

10. Register the event with the event-handler.

Similar steps would need to be completed in other existing CQRS frameworks or in a custom-
built framework. This is due to the fact that, at the very least, a framework needs to implement
commands and events together with the actual Entity code. Also, the events must be handled
in order to populate the Read side.

Compare these steps to a basic 3-tier application that does not incorporate CQRS or Event
Sourcing:

1. In the Entity object, create a public method that can receive requests from the User layer.

2. In the public method, create any required validation logic.

3. On the data-access layer, create the data access method to update the data-store.

4. Return the details of the data-store modification to the user from the Public method.

6. A Visual Workbench for CQRS and Event Sourced State Machines 34

So despite the benefits of CQRS, there can often be a large number of small sections of code
that have to be written. These parts then have to be configured to fit together in order for
any data-store modification to be completed. For example, with a simple Update Person Name
facility, the following coding tasks would be required:

1. Command Class: UpdatePersonName

2. Command-Handling Method: CommandHandlingClass.Submit(UpdatePersonName)

3. Public Domain Method: Customer.UpdateName(UpdatePersonName)

4. Event Class: NameUpdated

5. Private Domain Method: Customer.Apply(NameUpdated)

6. Event Handling Method: ReadLayerClass.Handle(NameUpdated)

With CQRS there appears to be a lot of code spread around the various layers. Of course,
this simply reflects one of the main aims of CQRS which is to allow increased scalability by
segregating functionality based on responsibility. With a lot of different pieces of code integrating
with each other, the possibility for error is increased. Each time a simple piece of functionality
is required, e.g. Update Person Age, new code similar to the above list must be written.

One way to reduce the possibilities of errors occurring is by automating as much of this work
as possible. But, without an explicitly defined upfront representation of the business logic, this
automation is usually impossible. However, consider a situation where the Business Logic can be
implemented as a State Machine. In this case, the Domain logic can be represented in a defined
manner via a Domain Specific Language, such as XML or SCXML. A State Machine can also
be represented visually by converting the XML to a State-chart. The reverse is also true: the
State-Chart can be created visually, and then converted to XML afterwards.

Therefore, if we are looking to automatically generate code for a CQRS Entity, then an Entity
based on a State Machine is a good match. In Section 4.6 it was discussed how Event-Sourcing
is a good fit for persistence in CQRS, while in Section 5.2 it was discussed how Event Sourcing
is a good fit for State Machine persistence.

Given these assumptions it can be hoped that a Visual Workbench can be created which can
be used to design State-based domain logic for a CQRS-based application with Event Sourced
data persistence. It is also hoped that other benefits, such as code-generation, event-replay and
analysis, can be achieved via a Visual Workbench designer.

6.2 The Requirements for the Visual Workbench

If we are dealing with an Entity that contains an explicit State, then this work contends that this
is an excellent opportunity for a CQRS and Event Sourcing Visual Workbench. This workbench
will be able to perform the following tasks:

• Enable a user to design a visual representation of the States and the allowable transitions.
In other words, allow the user to visually design a State-Chart.

• Enable CQRS code generation based on the various State-Chart States and Transitions.
This could be a basic code template or the completed code.

• Generate Integration and Unit tests.

• Also, because the domain is being persisted via Event Sourcing, the persisted events can
be displayed, replayed and altered via the Visual Designer.

6. A Visual Workbench for CQRS and Event Sourced State Machines 35

6.3 Designing and Coding a Visual State Machine Designer

Creating a State-Machine designer will obviously require a visual windowing tool, such as a Java
Swing, Microsoft Windows Presentation Foundation, or a Microsoft Windows Forms application.
After some research, it was eventually decided to use an open-source application that had the
basic functionality for dragging and dropping icons onto a workspace, and connecting each icon
with lines or arrows. This application — known as the WPF Diagram Designer[27] — was
written as a base application to allow other developers to expand upon, and is available under
the Code Project Open License (CPOL)[28].1 Fig. 6.1 shows how the designer looked prior to
any modifications.

Fig. 6.1: Basic WPF Designer

Although this application proved to be an ideal starting point, a large amount of work was
still required to enable a user to design and save State-Chart diagrams. Indeed the first task was
to remove any unnecessary functionality from the application. For simplicity, only three icons
are being supported — Start, End and State. The Alignment and Arrange functionality was also
removed in order to make space for the icons that would be required later on. This resulted is
the screen displayed in Fig. 6.2.

Following this, the following still needed to be implemented:

• Labelling the State icons.

• Labelling the connecting transition lines.

1 Article 3.a of the license states: “You may otherwise modify Your copy of this Work (excluding the Articles)
in any way to create a Derivative Work, provided that You insert a prominent notice in each changed file stating
how, when and where You changed that file.” Throughout the application, I have attempted as much as possible
to identify where I have made any modifications. However, for convenience, the majority of modifications were
done in separate folders and files, and are identified as such.

6. A Visual Workbench for CQRS and Event Sourced State Machines 36

Fig. 6.2: Visual Designer Start

• The ability to connect a State icon to itself.

• Exporting and Importing to SCXML.

These features were soon implemented, which meant that a visual representation of a State-Chart
could now be designed, such as in Fig. 6.3.

Once completed, it was soon fairly trivial to implement the ability to import and export
SCXML files to and from the application. The only caveat being that when importing an SCXML
file, no formatting was available — the user had to organise the icons into a viewable state (see
Fig. 6.4 and 6.5).

6.4 Domain Properties, Commands and Events

One of the reasons for using CQRS (as outlined in Section 4.7) is the ability to model a Domain.
With any Domain, it has various properties that can be assigned, either in the form of simple
Field properties (in the case of a single Object), or in the form of referenced Objects (in the case
of an Aggregate root). At this stage, it was decided (for the moment) to only model a simple
Domain object that would map to a single class. Therefore, a dialogue was created that would
allow a User to create a list of simple properties, as well as the Domain’s name (and Namespace,
for use in a C# project). See Fig. 6.6.

A State Machine for a CQRS/Event Sourced application requires implementing the principles
of commands, and their resulting events, as described in Section 5.2. The transition lines in the
State Chart should hold more than simply a label. They should also hold a reference to a
command and its resulting event. The aim of a command is to update a Domain’s properties,
while the aim of an event is to reflect the changes that have occurred to a Domain. Therefore,
a user should be allowed to enter a command and event pair, and also assign whatever Domain

6. A Visual Workbench for CQRS and Event Sourced State Machines 37

Fig. 6.3: Designer With Labels and Scxml

Fig. 6.4: Import SCXML (Unformatted)

6. A Visual Workbench for CQRS and Event Sourced State Machines 38

Fig. 6.5: Import SCXML (Formatted)

Fig. 6.6: Domain Properties

6. A Visual Workbench for CQRS and Event Sourced State Machines 39

Properties that the command/event pair were updating. This resulted in the dialogue displayed
in Fig. 6.7 being created.

Fig. 6.7: Command and Event Dialogue

An application that could create a simple State Machine, together with the required properties
and events was now completed. In order to do this a user had to perform the following steps:

1. Create the State Chart manually via drag and drop, or by importing an existing SCXML
file.

2. Enter the Domain Name, Namespace, and Domain properties.

3. Create the commands and events, and assign the affected properties.

This State-Chart was also save-able via the Save and Save As buttons. The State-Chart was
saved as a .smf file. A .smf file records both the visual representation of the State-Chart, but
also the State Machine’s SCXML representation and the Domain Name, Namespace, and Domain
properties.

6.5 Implementing a State Machine in a CQRS Framework

At this stage, we now had a working version of the State Machine designer. However, a base
CQRS infrastructure on which to operate was also required. The options here are to implement a
custom CQRS framework, or use an existing (Open-Source) framework, such as Lokad, nCQRS,
or Axon. However, any framework created or used would require some amount of coding to handle
the idea of explicit Entity “State” or State Machine persistence — something that no existing
CQRS framework supports. As the Simple.CQRS framework had already been researched in
terms of extending it for State Machine persistence (see Section 4.10), this was the one that was
selected.

The default data-storage implemented by Simple.CQRS is to simply store the Domain Events
to memory. Therefore, the first task was to implement a physical data-store. Fortunately, the

6. A Visual Workbench for CQRS and Event Sourced State Machines 40

existing Simple.CQRS framework code referenced an Event Store interface (IEventStore), so it
was fairly trivial to write a new concrete class that implemented IEventStore. A new project
— Cqrs.EventStore — was created for this purpose. Two distinct implementations of the Event
Store were written:

• Cqrs.EventStore.RavenDb. This implemented Event Storage using RavenDB. RavenDB is
a NoSQL database written on the .Net framework.

• Cqrs.EventStore.SqlServer. This is an implementation written for Microsoft SQL Server.

So, with the CQRS infrastructure and the data-storage format decided, the next step was to
extend the existing CQRS framework to enable the persistence and loading of a State Machine
generated via the Designer.

In order to create the new State-based classes and code, an Entity object — in this case,
a Customer class — was first written that implemented CQRS and Event Sourcing persistence
without any of the new State Machine functionality. This was a basic, working Customer class
that used the existing Simple.CQRS framework, and generated events based on commands (such
as UpdateName) that were submitted via a basic Web Service. These Events were also persisted
to the RavenDB database.

Once done, a slow refactoring process was initiated to enable the Customer class to:

• Accept a State Machine XML file.

• Expose an explicit State property.

• Using reflection, verify that the commands and events in the State Machine file had a
corresponding Command and Event classes with the same name in the Entity’s assembly
(.exe or .dll file).

• Update the Entity’s State based on the events that had been created.

• Only permit the transition from one State to another based on the supplied State Machine
XML.

• Save and Load the Entity object to and from storage, applying any events and State
changes.

As per Section 5.3, there were four new classes added to the Simple.CQRS framework:

• AggregateRootWithState. This derives from the AggregateRoot class. It is used to initialise
the StateMachine class, hold a reference to the Current State, and perform any State-based
Entity persistence and loading. The AggregateRootWithState class accepts a State Chart
XML (SCXML) file in order to initiate a State Machine in the context of the Entity.

• EventWithState. This is derived from the Event class and simply contains a String property
that identifies the next State that would result if this event was applied.

• State. This identifies an actual State, and any allowable event transitions.

• StateMachine. This is an implementation of the supplied State Machine. It is a look-up
Dictionary of all States and transitions for the Domain object. It accepts a state name as
a lookup string, and returned a resulting State object.

6. A Visual Workbench for CQRS and Event Sourced State Machines 41

The only changes to the Customer class were: (a) deriving from AggregateRootWithState
rather than AggregateRoot, and (b) accepting a State Machine XML file as a constructor param-
eter. The Customer class did not implement any state transition logic itself, but rather delegated
this to its base AggregateRootWithState class. When the Customer class saves an event (see
Section 5.4), the AggregateRootWithState class will first check to see if this event is allowable
given the current State. The Event Store code was also unaffected by the refactoring, and all
EventWithState objects were saved without any issues.

To test this design, a number of other different Entities were also written that implemented
the AggregateRootWithState class. For example, a Timer class that had states of Stopped,
Started, Paused, SplitTime, etc. was developed. No major difficulties were found at this stage,
and it was found to now be relatively easy to implement an Entity class (i.e. one derived from
AggregateRootWithState) that required an explicit State property within the CQRS framework.

6.6 Replaying, Analysing and Altering Persisted Events

The project had reached a stage where an Entity that implemented a State Machine could be
created, and the resulting events persisted to a database. However, there was a major opportunity
at this point to extend the functionality of the State Machine designer. As stated in Section 5.2,
the events associated with an Entity can map directly to the set of Output values and functions
in the Designer’s State Chart. Therefore, if the Designer can connect to the Event Store, then
the possibility of displaying or replaying the events via the State Chart exists. A user could view
and analyse the events that have been applied to an Entity. A user could also potentially view
what might happen if the saved events were removed, re-ordered or changed.

In order for this functionality to be implemented, there are three pieces of information that
are required by the designer:

• The actual Entity component. In the case of a .Net application, this would be a .dll or .exe
file.

• The State Machine XML (SCXML) file. This is passed into the constructor of the compo-
nent on loading.

• The location of the RavenDB database.

Fig. 6.8: Load Component Screen

6. A Visual Workbench for CQRS and Event Sourced State Machines 42

This resulted in the screen in Fig 6.8 being developed.2 Once the UI form was created, the
code to connect to an Event Store and instantiate an existing Entity was written. After this, the
Designer was extended to allow the user to:

• Select a specific instance of an Entity in the database.

• View all events that have been applied and saved for the Entity instance.

• View all properties (private and public) of the Entity instance, and its current state.

• Alter an Entity instance by deselecting or re-ordering the saved events.

• Highlight the transitions that have been made by the Entity instance in its associated
State-Chart.

A large amount of development work resulted in the new additions and forms to the Workbench.
This included a Selected Aggregate form, and a Debugger panel on the main designer screen. A
State Machine assembly developed using the CQRS infrastructure could now be loaded via the
following steps:

1. Click the Load Component button to Load an Assembly (an .exe or .dll file). See Fig. 6.8.

2. Within this Assembly, a specific Domain class can be selected (see Fig. 6.9). When a class
is selected, this will display the State Chart in the main designer area. The Load... button
in the Debugger panel will also become enabled.

3. Click the Load... button in the Debugger panel to display the Select Aggregate screen (See
Fig. 6.10). This screen displays (on the left-hand panel) all Aggregate Roots currently
saved in the Event Sourcing database. It also displays an output of all public and private
properties, and fields of the currently selected Entity (or Aggregate) in the right-hand
panel.

4. The list of events that have been applied to an Aggregate, the details of each selected
event, and the state of Aggregate based on any selected events can now be viewed in the
debugging panel in the main designer. See Fig. 6.11.

Once this was completed, the functionality was found to be an excellent method of viewing
the transitions of an Entity over time. By selecting or deselecting from the events listed on the
event list, a user can change the current overall state of an object and view the transitions that
have occurred to reach that state. See Fig. 6.12.

6.7 Generating Code

Another primary aim of the Designer was to generate basic code for use with the CQRS appli-
cation. Given the steps outlined in Section 4.10, there are 4 different sections of code that are
required when developing using the Simple.CQRS framework:

• Commands.

• Events.

2 Although the three input boxes are available for selection by the user, this UI form will attempt to locate the
default settings where possible. Therefore, if a State Machine XML file is located in the same directory as the
Domain component, this will be automatically selected. Similarly If the RavenDB folder is located in the same
directory, this will be chosen. The user is free to select any other SCXML or Db location.

6. A Visual Workbench for CQRS and Event Sourced State Machines 43

Fig. 6.9: Select Domain Type

Fig. 6.10: Select Aggregate

6. A Visual Workbench for CQRS and Event Sourced State Machines 44

Fig. 6.11: Debugging Panels

Fig. 6.12: State-chart Changes

6. A Visual Workbench for CQRS and Event Sourced State Machines 45

• Command-Handlers.

• Aggregate Properties and Methods.

• Unit Tests.

A process of reverse-engineering was initiated to achieve the required code generation. In other
words, rather than building the code generation code and templates from scratch, a basic CQRS
Entity was written, and the code generation templates were subsequently created from these.

In [15], Martin Fowler describes two types of code generation techniques: Transformer Gener-
ation and Templated Generation. He also states that in most cases, both techniques are usually
mixed together, and this is what was done here. However, for all but the Unit Tests, Templated
Generation was the primary method used. Templated Generation is when a basic Template file is
used, and markers placed in the file are then replaced by generated code at runtime. In the case
of the Unit Tests, Transformer Generation was primarily used. In this case, the code generated
in full at runtime and then outputted to a target file.

Files known as a Text Template Transformation Toolkit (T4), developed by Microsoft, were
used to create the Code Generation templates. These are files that use static text for any code
that does not change, and place-holders for dynamic code generation. C# code is used for
the dynamic code generation, and also for any required generation logic, such as looping and
decision statements. Note that although C# is used as the generating language, any text can
be output, so that any language could be produced such as Java or Ruby. The Generation
project was implemented separately from the main Designer project. This meant that a new
implementation could be easily created and plugged into the Designer project if a new language
or CQRS framework needed to be supported. From the Designer’s point of view, it simply passes
in a number of parameters to the Code Generation project:

• A StateMachine object.

• The project’s Domain Name and Namespace.

• A list of the Domain Properties.

• The location of the SCXML file.

The Generation project then returns a set of string values with the generated code. Listing 6.1 is
an example of a T4 code template that generates the declaration for an EventWithState class:

Listing 6.1: A Ssample Event Sourced Class

<#
foreach (CommandEventModel commandEvent in

generatorModel . CommandEventModels)
{
#>

pub l i c c l a s s <#= FormatUti l s . RemoveNonAlphaChars (
commandEvent . EventName) #> : EventWithState

{
\\ Class gene ra t i on code here

}
<#
}
#>

6. A Visual Workbench for CQRS and Event Sourced State Machines 46

This T4 template is executed by the C# runtime to produce output code based on parameters
that are passed into the T4 file.

A period of development was spent creating the required T4 files. An important point to note
was that any generated code must be designed in a way that would never require any modification
from the user. As stated by [15], there are two general rules when using generated code:

• Generated code should never be modified by a developer.

• Generated code should be clearly separated from manually written code.

In order to achieve this in the Visual Workbench, the manually created code were written as
abstract classes, and generated code implemented these abstract classes in separate files. In
this way, the manual and generated code could be kept separate. For example, the Aggregate-
RootWithState object is a manually written abstract class, and this is then implemented by code
generated from the Workbench. Partial classes and partial methods were also used to allow a
developer to write custom validations for each public method in the domain objects. A partial
class allows a developer to implement some code in a generated file, and other code in a manu-
ally written file. The partial classes are then combined into one class at compile-time. A partial
method is a method with no implementation — it is used in a partial class and can be imple-
mented by a developer in a manually written class. Generated code can call a partial method,
and if this method has been implemented by the user in the handwritten class, the method will
be executed, otherwise it has no effect.

The process for developing the templates was very much a slow, iterative process: each section
of code was generated by taking existing, working code and copying it into a T4 file. It was then
refactored to produce T4 template code. This T4 template was then used to generate code which
was copied into a new C# project. This project was at that point compared to the original
working code, and compiled to verify that the code was still working correctly.

A UI screen was also created to view outputted data — See Fig. 6.13. The generated code
could also be saved to a single file, known as [DomainName].GeneratedCode.cs.

Fig. 6.13: Code Generation Screen

6. A Visual Workbench for CQRS and Event Sourced State Machines 47

6.8 Generating Unit tests

The final code to be generated was Unit Tests. In order to do this, a method for testing State
Machines known as a Transition Tour[29] was used. A Transition Tour simply attempts to
identify all different transition permutations that can occur throughout a State Machine. In this
case, a single tour represents a unique sequence of commands that can occur. Whenever a State
is reached from which multiple possible commands are possible, a new tour is created. In order
to create code that enables the testing of a State Machine without a dependency on a RavenDB
implementation, an In-Memory Event Store was used. The In-Memory event store was developed
using the In-Memory implementation provided by Greg Young’s Simple.CQRS, although it was
extended slightly to allow it to be used with the Visual Designer and the State classes.

For example, in the State Machine displayed in Fig. 6.14, there are two possible tours:

• GoToState1→ GoToEnd.

• GoToState1→ GoToState2→ GoToEnd.

Fig. 6.14: Transition Tour Example

These tours are then used to create the nUnit Unit Tests described in Listing 6.2. Each
function — Tour n — contains a unique sequence of commands that can be submitted by a
Developer. After each command is submitted, an Assert is called to ensure that the resulting

6. A Visual Workbench for CQRS and Event Sourced State Machines 48

State is equal to the expected State in the Designer’s State-Chart. These tests use the in-memory
event store for event storage. Each time a test is run, a new instance of the Event Store is created.

Listing 6.2: Generated Unit Tests

[TestFixture]
pub l i c c l a s s I n t e g r a t i o n T e s t s
{

TestDomainCommandHandlers commandHandler ;
Repository<TestDomain> r e p o s i t o r y ;
s t r i n g s m f F i l e = @”C:\ TransitionTourExample . smf” ;
p r i v a t e void Asse r tS ta te (Guid testDomainId , s t r i n g s t a t e)
{

Assert . That (r e p o s i t o r y . GetById (
new TestDomain (s m f F i l e) , testDomainId)

. CurrentState .Name == s t a t e) ;
}
[SetUp]
pub l i c void I n i t ()
{

IEventStore eventStore = new InMemory (new EventPubl i sher ()) ;
r e p o s i t o r y = new Repository<TestDomain>(eventStore) ;
commandHandler = new TestDomainCommandHandlers (

r e p o s i t o r y , s m f F i l e) ;
}
[Test]
pub l i c void Tour 1 ()
{

Guid testDomainId = Guid . NewGuid () ;
commandHandler . Submit (new GoToState1 (testDomainId , 0)) ;

As se r tSta te (testDomainId , ” State1 ”) ;
commandHandler . Submit (new GoToState2 (testDomainId , 1)) ;

As se r tSta te (testDomainId , ” State2 ”) ;
commandHandler . Submit (new GoToEnd(testDomainId , 2)) ;

As se r tSta te (testDomainId , ”End”) ;
}
[Test]
pub l i c void Tour 2 ()
{

Guid testDomainId = Guid . NewGuid () ;
commandHandler . Submit (new GoToState1 (testDomainId , 0)) ;

As se r tSta te (testDomainId , ” State1 ”) ;
commandHandler . Submit (new GoToEnd(testDomainId , 1)) ;

As se r tSta te (testDomainId , ”End”) ;
}

}

7. CASE STUDY: DEVELOPING AN APPLICATION USING THE VISUAL
WORKBENCH

7.1 Introduction

This chapter will describe the attempts to create a complete, working CQRS/Event Sourcing
application, developed using the Visual Workbench, with code generated from the Designer’s
State-Chart. The example focuses on a fictitious product, called Meditime. This is software that
enables the recording of shift times for hospital staff. There are three main sections:

• Allow an administrator to add and edit hospital staff members.

• Allow a staff member to enter their working times.

• Allow a Manager to view the times recorded by a staff member.

The Designer will generate the code for the Command side of the CQRS/ES application, while
code for the UI and the Query side will be written manually.

For simplicity, the application will be a self-contained Windows Form application, so that the
only setup will be a single installer. Therefore it should run on any Windows machine, without
the need to set up a web server or other required software.

7.2 Developing the Administration Screen

A hospital staff member can be in a number of states: Contracted, Full-Time and Inactive.
The Inactive state represents members who are no longer assigned to the hospital. Given these
requirements, a simple State-Chart can be designed as shown in Fig. 7.1. A simple UI project,
called Meditime.UI, was created that would allow a user to add, edit or delete a user. A second
project, called Meditime.Domain.StaffMember, was created to hold the actual business logic
code generated by the Visual Workbench. The Generate Code facility was then used to produce
the StaffMember.generated.cs file. Finally, the required references were added to the projects
(RavenDB, Cqrs.EventStore, Cqrs.Common and Cqrs.Infrastructure).

The process of developing the UI that would allow a user to view existing members and ad-
d/edit Staff Members was then started. Two screens — List of Staff Members, and Add/Edit
Member were created. The code behind these screens would instantiate any of the required
commands and submit them via the Command-Handlers generated by the Visual Designer. It
was surprisingly easy to write the code that would add the new member to physical storage.
Indeed, once the code to create a CreateFulltimeStaff command and submit the command to a
Command-Handler was written, there was little else to do with regard to business logic. Most
of the code had already be created as part of the Visual Designer code generation. The largest
area of coding at this stage was writing the Event Handlers on the Query side of the application.
These handled any published events from the Command side and wrote them to a denormalised
view or table on a SQL Server Compact Edition database1. After writing the first Event Handler

1 SQL Server Compact Edition is a lightweight file-based edition of SQL Server.

7. Case Study: Developing an Application using the Visual Workbench 50

Fig. 7.1: Staff Member State-Chart

Fig. 7.2: Revised Staff Member State-Chart

7. Case Study: Developing an Application using the Visual Workbench 51

(FulltimeStaffCreated), and registering this Event Handler with the CQRS Infrastructure, the
first major issue was discovered. As shown in Fig. 7.1, the State-Chart had two command/event
transitions coming from the New State. This resulted in the Code only generating one Construc-
tor for the StaffMember Domain class. This Constructor only processed one of the commands
(in this case the CreateContractStaff command). This meant that the FullTimeStaffCreated
event was not being published or handled. Therefore, a change was required to the Designer to
restrict the Start state to one command. This resulted in a StateChart listed in Fig. 7.2.

The main reason for stating this issue here is that this was also an excellent test for the
Visual Designer in how to handle logic changes. After the State Chart was updated, the code
was generated and saved to the Meditime project. This resulted in a number of compiler warnings
on the UI project due to the fact that the CreateFulltimeStaff and FulltimeStaffCreated classes
no longer existed. However, these were easily fixed to handle the new CreateStaffMember and
StaffMemberCreated classes, and within minutes these were being processed correctly.

The handling of the new events published from the CQRS framework was subsequently writ-
ten. As each event was processed by the CQRS Infracture, it was handled by the registered
event-handler in the Meditime UI. This would receive an event, and process them as required.
In this case, the data in a StaffMemberCreated object is retrieved and a new row inserted in a
StaffMembers table in a SQL Server CE database. The StaffMembers table can then be queried
to display all members. It was at this stage that all sections of the CQRS architecture had, in
some way, been used. A command could be created, submitted and stored on the Command
side. Meanwhile, a resulting event could be published, handled and stored on the Query side.
Yet the creation of most of the domain logic had been done via the Visual Workbench and the
code generation tool. Any other code at this stage was simply creating the UI, handling events
and displaying Query results.

The code to instantiate the remaining commands were similarly written. At this point, it was
becoming quite clear how little manual interaction with the generated Domain Logic was required.
One issue that was observed was the fact that the various states of a Domain object were not
available to the developer as symbols or constants. This could prove problematic for developers
when the name of a State changes. Therefore, a change was made to the code Generation tool to
output a list of State string values as a Static class (see Listing 7.1). This generated code means
that if the name of a State is changed, or removed, any code interacting with the Domain object
will fail to compile, thereby requiring a code change from the Developer.

Listing 7.1: Generated States

pub l i c s t a t i c c l a s s S ta t e s
{

pub l i c s t a t i c readonly s t r i n g Contracted = ” Contracted ” ;
pub l i c s t a t i c readonly s t r i n g New = ”New” ;
pub l i c s t a t i c readonly s t r i n g FullTime = ” Full−Time” ;
pub l i c s t a t i c readonly s t r i n g I n a c t i v e = ” I n a c t i v e ” ;
pub l i c s t a t i c readonly s t r i n g Created = ” Created ” ;

}

At this stage, some custom (non-generated) code that did not affect entity state was required:
the user needed to be able to update the Staff Member’s name. In order to do this, a Command,
a Command-Handler, an Event and the Domain Logic was written. The value of the Generated
Code was fairly clear at this point, as these four classes would have been easily generated using
the code generation tool. However, it is also clear that attaching a Command/Event such as
UpdateName/NameUpdated would not be suitable (or user-friendly) as this sort of command
is not related to any State or Event. If a user wanted to allow UpdateName to occur when
the Domain is at some or all States, then the Command/Event would potentially need to be
created multiple times on each State. Therefore, functionality was added that would allow a

7. Case Study: Developing an Application using the Visual Workbench 52

user to generate Ad-Hoc Command/Command-Handler/Domain/Event code using the existing
Code Generation functionality. A simple screen was added that would allow a user to add
Command/Event without the need to “attach” it to a transition (see Fig. 7.3). When code was
generated it would be created based on the Event class, rather than the EventWithState class.

Fig. 7.3: List of Ad-Hoc Methods

This completed the code for the Staff Member section. The two completed Staff Member
Administration screens are shown in Figs. 7.4 and 7.5.

7.2.1 Concurrency

One issue that was discovered at this point was in the area of concurrency in a CQRS application.
Because a command is issued in an asynchronous manner, it is very easy for a user to receive
concurrency errors when issuing multiple commands. Concurrency in an application like this is
usually done via an Optimistic Concurrency pattern. In this case, the client application includes
the current version number in the command sent to the domain object. Before the resulting event
is saved, the highest version number in the Event Store is retrieved. If this Event Store version
number is the same as the version number sent with the command, the event is saved as normal.
Otherwise a concurrency error is thrown. But it is possible that a User could send multiple
commands asynchronously in quick succession with the same version number each time. After
the first command is sent, a concurrency error will be thrown. Therefore. it is imperative that
the developer of a CQRS application takes this into consideration. In this application’s case, the
solution was to ensure that the complete command submission process was done synchronously
from the command being submitted right through to the event being publishing. In other words,
the Staff Member data-grid is locked until the event has been processed by the Query database.

Although the concurrency issue was easy to resolve in this instance, it is something that could
be problematic in other systems, especially in areas where asynchronous processing is required.

7. Case Study: Developing an Application using the Visual Workbench 53

Fig. 7.4: List of Staff Members

Fig. 7.5: Add/Edit Staff Member

7. Case Study: Developing an Application using the Visual Workbench 54

7.3 Developing the Shift Recording Screen

Although the Staff Member screen uncovered some required functionality with the Designer, it
was hoped that the second screen — Shift Recording — would be a cleaner development process.
The Shift Recording screen is the UI that would be used to enter times worked. A staff member
could have a number of Shift States, i.e. On-Call, Off-Duty, Working, etc. With this in mind,
the State Chart in Fig. 7.6 was developed. From there, a ShiftRecording.generated.cs file was

Fig. 7.6: Shift Recording State Chart

created, and this was added to a new Meditime.Domain.ShiftRecording project. Again, as the
State-Based Domain Logic was created, it was simply a case of creating the UI logic for the
screen, creating Views on the SQL Server CE database, and coding the event handlers. This
resulted in the screens displayed in Fig. 7.7 and 7.8 being created.

One section of this screen that required some consideration was in the New Status drop-
down box. The code was initially created whereby this box was populated with all States via a
table on the Query database. However, when the Add button was pressed, there needed to be
a way to identify which command could be submitted based on the Current State and the New
State. As it stood, there was no way to identify this. However, the fact that a State Dictionary
(as created by the Visual Designer) is stored with the AggregateRootWithState class would
prove hugely beneficial. A new public method was added to the AggregateRootWithState called
GetStateMachine. This would retrieve the StateMachine object stored with the Entity. The
StateMachine object holds all States, and the associated Transitions (containing a Command,
an Event and the Resulting State). Once the StateMachine object was retrieved, it was a simple
matter to retrieve and display only the new States available to the user in the drop-down box.
For example, if the current State is “Working”, then the only States that would be displayed
would be “OnCall”, “OnHoliday” or “OffDuty”. Each State in the drop-down box also holds
a reference to the Command that would be issued to reach that State. When a user clicks the
Save button, the correct Command based on the selected State is created and submitted to the
CQRS infrastructure.

7. Case Study: Developing an Application using the Visual Workbench 55

Fig. 7.7: List Shift Times Screen

Fig. 7.8: Add a Shift Time

7. Case Study: Developing an Application using the Visual Workbench 56

7.4 Validation and Business Logic

Although the Meditime application works as expected, there is some scope to add validation or
business logic to the application. There are three of these additions to be made to the application:

• A Staff Member must be over 18 years of age when added to the system.

• A Shift Time that is entered must be greater than any previous times entered.

• A hypothetical law is assumed whereby Off Duty shifts must be at least 8 hours long.

Although these validations could (and should also) be performed on the UI, there is often a
requirement for validations to be performed at the Domain Logic level. Fortunately, the generated
code includes partial methods that allow a developer to write these Domain-level validations. For
example, the constructor of the StaffMember class was generated as follows:

Listing 7.2: StaffMember Constructor

p a r t i a l void Val idateCreateStaf fMember (
Guid id , s t r i n g name , DateTime dateOfBirth) ;

pub l i c StaffMember (s t r i n g smfFi le , Guid id ,
s t r i n g name , DateTime dateOfBirth) : base (smfF i l e)

{
t h i s . Veri fyAssembly (Assembly . GetAssembly (t h i s . GetType ())) ;
Val idateCreateStaf fMember (id , name , dateOfBirth) ;
t h i s . ApplyChange (new StaffMemberCreated (id , name , dateOfBirth)) ;

}

This constructor is preceded by the ValidateCreateStaffMember Partial Method. As described
in section 6.7, this means that the developer is free to create a concrete version of the method if
they so chose. If the method is not created, the code will still run and compile as normal. In this
case, the ValidateCreateStaffMember would be implemented manually by the user as follows:

Listing 7.3: ValidateCreateStaffMember

pub l i c p a r t i a l c l a s s StaffMember
{

. . .
p a r t i a l void Val idateCreateStaf fMember (

Guid id , s t r i n g name , DateTime dateOfBirth)
{

i f (dateOfBirth . AddYears (18) > DateTime .Now)
throw new Appl i cat ionExcept ion (

”The S t a f f Member must be over 18 years o f age . ”) ;
}

. . .
}

The generated code contains similar partial methods for each public Domain Method, e.g.
ValidateUpdateName:

Listing 7.4: ValidateUpdateName

p a r t i a l void ValidateUpdateName (Guid id , s t r i n g name) ;
pub l i c v i r t u a l void UpdateName(s t r i n g name)
{

ValidateUpdateName (t h i s . Id , name) ;
t h i s . ApplyChange (new NameUpdated(t h i s . Id , name)) ;

}

7. Case Study: Developing an Application using the Visual Workbench 57

Fig. 7.9: Analysing the Staff Member Domain Object

Fig. 7.10: Analysing the Time Recording Domain Object

7. Case Study: Developing an Application using the Visual Workbench 58

By using this technique all three validations were easily added without any changes to the
generated code. The Shift Recording code is listed in Appendix B.

A complete working version of the Test Case Application was now developed. Furthermore,
both the StaffMember and ShiftRecording assemblies could be loaded by the Visual Designer. A
Domain object stored in the RavenDB Event Source database could then be selected with the
various event viewable and replayable in the Debugger section. Finally, the user can select or
deselect the stored events to see the effect these have on the Domain Object. This is displayed
in Fig. 7.9 and Fig. 7.10.

7.5 Unit Testing

Although the application had now been developed, unit tests for both assemblies that had also
been generated - 58 Transition Tour tests had been created for the ShiftRecording assembly, and
52 for the StaffMember assembly. An example of a ShiftRecording Unit Test is shown in Listing
7.5.

Listing 7.5: ValidateCreateStaffMember

[Test]
pub l i c void Tour 1 ()
{

Guid s h i f tR ec o r d in g I d = Guid . NewGuid () ;
DateTime s h i f t S t a r t = DateTime .Now;
Guid staffMemberId = Guid . NewGuid () ;
commandHandler . Submit (new AddToRoster (

sh i f tRecord ing Id , s h i f t S t a r t , staffMemberId , 0)) ;
As se r tSta te (sh i f tRecord ing Id , ” Rostered ”) ;
commandHandler . Submit (

new StartWorking (
sh i f tRecord ing Id , s h i f t S t a r t . AddHours (10) , staffMemberId , 1)) ;

As se r tSta te (sh i f tRecord ing Id , ”Working”) ;
commandHandler . Submit (

new StartOnCall (
sh i f tRecord ing Id , s h i f t S t a r t . AddHours (10) , staffMemberId , 2)) ;

As se r tSta te (sh i f tRecord ing Id , ”OnCall”) ;
commandHandler . Submit (

new StartWorking (
sh i f tRecord ing Id , s h i f t S t a r t . AddHours (10) , staffMemberId , 3)) ;

As se r tSta te (sh i f tRecord ing Id , ”Working”) ;
}

When the Unit Tests were run for the StaffMember assembly, all tests passed. However, when
the tests were run for the ShiftRecording assembly, a large amount failed. This was due to the
extra custom validations that were added - in particular the rule whereby ”Off Duty” shifts must
be at least 8 hours long. It is hoped that a future version of this type of workbench would be
able to incorporate custom validations into the generated code. For example, by allowing a User
to add State Machine guard conditions to the Visual Workbench, these logical conditions could
also be created in the generated code and the generated Unit Tests.

8. ANALYSIS AND FUTURE DEVELOPMENTS

8.1 Summary

This work began by defining Event Sourcing and Command-Query Responsibility Segregation.
From there, it discussed the applicability of using Event Sourcing as a means of persisting a State
Machine, before describing how this could be used within the context of a CQRS framework. A
Visual Workbench was created which allowed a Developer to create a State-chart and generate
code and tests. Once this generated code was developed as an application, the resulting events
could be viewed, replayed and altered via a Debugger in the Visual Workbench. Finally, the
topics discussed in the previous chapters were used to develop a working test case application.

8.2 Analysis

By developing a workbench and subsequently a test-case application, this work attempted to
illustrate how using the principles of Command-Query Responsibility Segregation and Event
Sourcing can result in new forms of persistence and entity analysis. A mathematical description
was used to show how Event Sourcing and State Machines are closely related. Based on the visual
nature of a State Machine’s State-Chart, it was relatively simple to imagine a Visual Workbench
that could design a State-chart for use with an Event Sourced entity. As discovered when creating
the test-case application, designing a State-Chart visually using the workbench provided a very
useful and interactive method in which to design a Domain Entity. Similarly, analysing an Entity
using this State-Chart was also an excellent way of taking advantage of the benefits offered by
Event Sourcing.

The biggest benefit provided by the Visual Workbench was in the area of code generation.
By adhering to the principles outlined by Martin Fowler regarding Code Generation in [15] (see
Section 6.7), the ability to quickly create a CQRS application became a reality.

However, the main advantages of CQRS/Event Sourcing and the Visual Workbench only
became fully apparent by creating an application based on a real-life scenario. This was achieved
by developing Meditime. With the exception of some validation logic, the domain layer for this
application was developed and generated using the Visual Workbench. In essence, by having a
visual designer available, it proved very easy to develop the various State Transitions that can
occur between the various States in the Staff Member and Shift Recording Entities.

Meanwhile, the User Interface and the Event Handlers on the Query side were written manu-
ally. It proved to be surprisingly straightforward to write the UI as these were simply submitting
commands. The SQL Server tables and event-handlers were also simple to create as each query-
side view was a basic table without any joins. The main difficulty in the UI was dealing with the
area of threading, and concurrency. Because CQRS will very often implement an architecture
where commands are submitted asynchronously, this is potentially an area where development
problems could arise.

Once the application was written, the ability to view State Changes on the Staff Member
and Time Recording screens were now available, as displayed in Figs. 7.9 and 7.10. This work
proposes that this type of Event Sourcing functionality and State Machine analysis is unique

8. Analysis and Future Developments 60

to this application, and was enabled by the implementation of an Event Sourced persistence
mechanism.

The code generator also managed to create a huge amount of unit tests based on the Transition
Tour method. These tests all ran successfully when no validation was applied. However, once
validation was inserted into the Domain projects, some of the tests failed, e.g. the tests did not
take account of the fact that a Staff member had to be over 18 years of age. Therefore, in the
case of the Unit Tests, the generated code was a good start but would often need to be manually
modified by the User in order to handle validations. For example, in the case of the date of birth
validation, it was possible to change the date of birth in the Setup method of the unit test.

8.3 Possible Future Developments and Improvements

At present, the Visual Workbench only works with a particular framework — in this case Sim-
ple.CQRS. If a different, or custom framework was used, some amount of re-coding or refactoring
would be required to enable a Developer to plug in a different Event Source or CQRS framework.

The software is also written in code that is dependent on the Microsoft .Net stack. However,
the principles outlined in this work can still apply to software created in, for example, the Lin-
ux/Java stack. Furthermore, although the application currently creates C# code, it was designed
with enough separation of responsibilities to be easily extended to support other languages. How-
ever, the debugging and analysis facilities in the designer still require the use of the (extended)
Simple.CQRS framework, and the RavenDB database. A future version would require a more
pluggable CQRS infrastructure that could support other non-.Net languages.

As stated in section 7.5, one major addition that could be made to the software is the
implementation of guard condition functionality. This would allow validations to be added to
the State-Chart and only allow transitions to occur given the condition or value of an Entity’s
property. These guard conditions could then be added to the generated code and unit tests.

Another possible addition is that the Designer could be implemented as a Microsoft Visual
Studio extension. A State Machine could then be created as a new project similar to class
library project. The State Machine designer could then be used to create State-Chart code and
generated code as an integrated part of a Visual Studio project. Visual Studio has the ability to
let users create VS extensions using Windows Presentation Foundation (WPF) code. The Visual
Workbench is built using WPF, so the transition to a VS extension shouldn’t be too great. If
the designer was written as a Java swing application, the same principle could apply with regard
to creating an Eclipse plug-in.

APPENDIX

A. CQRS WORKBENCH INSTALLATION AND INSTRUCTIONS

A.1 Installation

In the installation folder, double-click the Setup.exe file. Follow the instructions as displayed.
The setup will place a Visual Workbench icon on the desktop.

A.2 Creating a State Chart

To create a State-Chart, drag and drop the State icons from the Toolbox section on the left hand
side of the screen onto the main designer surface. To connect 2 states together, hover over a
State, click on one of the small connector-boxes that appear, and drag to another connector box.
There are a couple of rules that apply when creating a State-Chart:

• A State-Chart must have at least one Start State.

• A State-Chart can have only one Start State.

• A State-Chart can have only one End State.

A.3 State Transitions

A State-Chart contains transitions that connect each State and display how the State of an entity
can be changed. In the case of an entity used within the context of a CQRS/Event Sourced
architecture, an entity can transition from one state to another when it receives a command. A
command will cause an event to be fired. This event is eventually saved in an Event Store. These
Command/Event transitions can be modelled by double clicking on a connecting line between
two States.

A.4 Domain Properties

An entity will normally have a number of properties associated with it, e.g. Name, Address,
Status. Some of these properties will need to be updated when the State of an entity changes. For
example, a CreateCustomer/CustomerCreated command/event will need to update a Customers
Name property. To add properties to an Entity, open the Domain Properties screen via the icon
at the top of the main designer.

A.5 Ad-Hoc Methods

In many cases, a Command/Event transition is required that does will not update the State of
an Entity. For example, UpdateName/NameUpdated will update an Entity but will not cause a
transition to a new State. For these cases, a user can add an Ad-Hoc method. Click the Ad-Hoc
icon to open the list of Ad-Hoc Method dialog.

A. CQRS Workbench Installation and Instructions 63

A.6 Generating Code

When a State-Chart is complete, code can be generated for use in the CQRS framework. The
CQRS framework is based on Greg Youngs Simple.CQRS framework, which has been extended
to take account of Domain State. Clicking the Generate Code icon will create C# CQRS code
for this entity. This generates all the required code for the entity including Command-Handlers
and Unit Tests. The Unit Tests uses nUnit together with an In-Memory event store. Note
that the generated code also contains a reference to the .smf file that contains the XML for the
State-Chart.

A.7 Creating a CQRS project

In order to use the Generated Code as part of a project, the generated C# file needs to be added
to a C# project. For example, in Visual Studio 2010, a C# Console Application can be used:

1. Create a new C# Console Application and add the generated file to the project. Ensure
the target framework is .Net Framework 4.

2. In the application, add a reference to: Cqrs.Common, Cqrs.EventStore and Cqrs.Infrastructure.
These can all be found in the c:/Program Files/CQRS State Machine Visual Workbench
folder.

3. Add a reference to nUnit to the project. This is easily done with the Nuget Visual Studio
extension. Via the Package Manager Console execute: install-package nunit. The project
should now build without any errors.

4. Run the nUnit tests via a Test runner, e.g. the nUnit test runner. All generated tests
should run successfully.

A.8 Using the CQRS Project with RavenDB.

The generated code can also be used with RavenDB. The implementation at present is for
RavenDB-Embedded, which is a lightweight version of RavenDB that runs in the process of a
host executable. Add RavenDB to the console application by entering “install-package RavenDB-
Embedded” in the Package Manager Console. Replace the Program.cs code with the following
— this assumes the location of a door.smf file in the c: folder:

Listing A.1: A Sample Event Sourced Class

us ing System ;
us ing System . IO ;
us ing System . R e f l e c t i o n ;
us ing Cqrs . I n f r a s t r u c t u r e ;
us ing Cqrs . I n f r a s t r u c t u r e . Database ;
us ing EventStore ;
namespace DoorPanel
{

c l a s s Program
{

s t a t i c void Main (s t r i n g [] a rgs)
{

Repository<Door> r e p o s i t o r y ;
// Replace t h i s with the l o c a t i o n o f your . smf f i l e :
s t r i n g s m f F i l e = @’ ’C:\Door . smf ’ ’ ;

A. CQRS Workbench Installation and Instructions 64

IEventStore eventStore = new RavenDb(
Path . Combine (Path . GetDirectoryName (

Assembly . GetExecutingAssembly () . Locat ion) , ‘ ‘Db’ ’) ,
new EventPubl isher ()) ;

r e p o s i t o r y = new Repository<Door>(eventStore) ;

Guid doorId = Guid . NewGuid () ;
i n t v e r s i o n = 0 ;
DoorCommandHandlers commandHandler =

new DoorCommandHandlers (r e p o s i t o r y , s m f F i l e) ;
commandHandler . Submit (

new OpenDoor (doorId , DateTime .Now, ve r s i on ++));
commandHandler . Submit (

new CloseDoor (doorId , DateTime .Now, ve r s i on ++));
commandHandler . Submit (

new LockDoor (doorId , DateTime .Now, ve r s i on ++));
commandHandler . Submit (

new CloseDoor (doorId , DateTime .Now, ve r s i on ++));
}

}
}

Executing this code will submit 4 commands into the CQRS infrastructure. These commands
will result in four events being stored to the Raven DB Event Store. The location of the RavenDB
database is in the DB folder in the same location as console .exe file.

A.9 Viewing the Stored Events in the CQRS State Machine Visual Workbench

The CQRS Visual Workbench has another feature that allows a user to view and analyse the
events stored in the RavenDB database via the Designer State-Chart:

1. Click on the Load Component icon to load a .dll or .exe file.

2. Select a .dll or .exe Assembly via the first ellipses button “...”.

3. After an Assembly has been selected, select a particular Entity type. A message may appear
stating that the .smf file does not exist. By default, the application will attempt to locate
the .smf file in the same directory as the assembly. If it does not exist, the user must select
the file manually. Also, the application will assume the RavenDB location is in a DB folder
in the same location as the assembly. If it is in a different location, this should be selected
manually by the user.

After the assembly has been loaded, the State-Chart will appear in the Designer. Also, the
Load... button in the Debugger panel will become enabled. Press the Load... button to display
and select a list of entities that have been saved in the RavenDB database. The debugger panel is
now populated with all events that have been stored for the selected entity. These events can be
selected/de-selected which will highlight the relevant States and Transitions in the State-Chart
in the main designer. It also displays the properties and fields of the selected event, and the
current state of the entity in the Domain Object panel.

B. TEST CASE VALIDATION CODE

Listing B.1: Shift Recording Validation Code
us ing System ;
us ing System . Co l l e c t i on s . Generic ;
us ing System . Linq ;
us ing System . Text ;
namespace Meditime . Domain
{

pub l i c p a r t i a l c l a s s Sh i f tRecord ing
{

p a r t i a l void ValidateMarkAsOffDuty (Guid id , DateTime sh i f t S t a r t , Guid staffMemberId)
{

CheckShiftStartTime (s h i f t S t a r t) ;
}

p a r t i a l void ValidateGoOnHoliday (Guid id , DateTime sh i f t S t a r t , Guid staffMemberId)
{

CheckShiftStartTime (s h i f t S t a r t) ;
}

p a r t i a l void ValidateRemoveFromRoster (Guid id , DateTime sh i f t S t a r t , Guid staffMemberId)
{

CheckShiftStartTime (s h i f t S t a r t) ;
}

p a r t i a l void Val idateStartOnCal l (Guid id , DateTime sh i f t S t a r t , Guid staffMemberId)
{

CheckShiftStartTime (s h i f t S t a r t) ;
}

p a r t i a l void Val idateStartWorking (Guid id , DateTime sh i f t S t a r t , Guid staffMemberId)
{

CheckShiftStartTime (s h i f t S t a r t) ;
i f (t h i s . CurrentState .Name == State s . OffDuty && th i s . Sh i f t S t a r t . AddHours (8) > s h i f t S t a r t)

throw new Appl icat ionExcept ion (”Off−Duty Sh i f t s must be at l e a s t 8 hours in length . ”) ;
}

pr iva t e void CheckShiftStartTime (DateTime s h i f t S t a r t)
{

i f (s h i f t S t a r t . CompareTo(t h i s . Sh i f t S t a r t) == −1)
throw new Appl icat ionExcept ion (

”A new s h i f t cannot be added that i s e a r l i e r that the Current Sh i f t s t a r t time . ”) ;
}

}
}

BIBLIOGRAPHY

[1] National Institute of Standards and Technology. Finite State Machine. url: http://

xlinux.nist.gov/dads/HTML/finiteStateMachine.html.

[2] A. S. S. Victorio, Andre V. Saude, and Gabriel C. A. Coutinho. “Persistent State Pattern”.
In: (2010).

[3] Anatoly Shalyto, Nikita Shamguno, and Georgy Kornee. “State Machine Design Pattern”.
In: 2006.

[4] Robert C. Martin and Micah Martin. Agile Principles, Patterns, and Practices in C Sharp.
Prentice Hall, 2006.

[5] Paul Adamczyk. “The anthology of the finite state machine design patterns”. In: In Pro-
ceedings of the Pattern Languages of Programs Conference (PLoP.

[6] Karnig Derderian et al. “Automated Unique Input Output sequence generation for confor-
mance testing of FSMs”. In: The Computer Journal 49 (2006), p. 2006.

[7] Fujiwara Bochmann Khendek et al. “Test Selection Based on Finite State Models”. In:
IEEE Transactions on Software Engineering 17 (1991), pp. 591–603.

[8] Greg Young. “CQRS Documents by Greg Young”. In: (2010).

[9] Greg Young. CQRS and Event Sourcing. Feb. 2010. url: http : / / codebetter . com /

gregyoung/2010/02/13/cqrs-and-event-sourcing/.

[10] Udi Dahan. Clarified CQRS. Dec. 2009. url: http://www.udidahan.com/2009/12/09/
clarified-cqrs/.

[11] Martin Fowler. CQRS. url: http://martinfowler.com/bliki/CQRS.html.

[12] Martin Fowler. Event Sourcing. url: http://martinfowler.com/eaaDev/EventSourcing.
html.

[13] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley Professional, 2003.

[14] Roy Osherove. The Art of Unit Testing: With Examples in .Net. Manning Publications,
2009.

[15] Martin Fowler. Domain-Specific Languages. Addison-Wesley Professional, 2010.

[16] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Profes-
sional, 2002.

[17] Project ”a CQRS Journey”. 2011. url: http://cqrsjourney.github.com/.

[18] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1994.

[19] Rick Cattell. “Scalable SQL and NoSQL Data Stores”. In: (2011).

[20] Neal Leavitt. “Will NoSQL Databases Live Up to Their Promise?” In: (2010).

[21] Udi Dahan. Employing the Domain Model Pattern. Aug. 2009. url: http : / / msdn .

microsoft.com/en-us/magazine/ee236415.aspx.

BIBLIOGRAPHY 67

[22] Microsoft Inductive User Interface Guidelines. 2001. url: http://msdn.microsoft.com/
en-us/library/ms997506.aspx.

[23] Greg Young. Task-Based UI. url: http://cqrs.wordpress.com/documents/task-

based-ui/.

[24] Werner Vogels. “Eventually Consistent”. In: Acm Queue (2008).

[25] State Chart XML (SCXML): State Machine Notation for Control Abstraction. url: http:
//www.w3.org/TR/scxml/.

[26] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

[27] Sukram. WPF Diagram Designer - Part 4. Mar. 2008. url: http://www.codeproject.
com/Articles/24681/WPF-Diagram-Designer-Part-4.

[28] The Code Project Open License (CPOL) 1.02. url: http://www.codeproject.com/info/
cpol10.aspx.

[29] S Naito and M Tsunoyama. “Fault Detection for Sequential Machines by Transition-Tours”.
In: (1981).

