
Code-Imp: A Tool for Automated Search-Based
Refactoring

Iman Hemati Moghadam
School of Computer Science and Informatics

University College Dublin
Ireland

Iman.Hemati-
Moghadam@ucdconnect.ie

Mel Ó Cinnéide
School of Computer Science and Informatics

University College Dublin
Ireland

mel.ocinneide@ucd.ie

ABSTRACT
Manual refactoring is tedious and error-prone, so it is natural
to try to automate this process as much as possible. Fully
automated refactoring usually involves using metaheuristic
search to determine which refactorings should be applied
to improve the program according to some fitness function,
expressed in terms of standard software quality metrics.

Code-Imp (Combinatorial Optimisation for Design Im-
provement) is such an automated refactoring platform for
the Java language. It can apply a range of refactorings, sup-
ports several search types, and implements over 25 software
quality metrics which can be combined in various ways to
form a fitness function. The original goal of the Code-Imp
project was to investigate the use of automated refactoring
to improve software quality as expressed by a contemporary
metrics suite.

In this paper we present a technical overview of the Code-
Imp implementation, and summarise three active research
strands involving Code-Imp: refactoring for testability, met-
rics exploration, and multi-level design improvement.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Software—Restructuring,
reverse engineering, and reengineering

General Terms
Experimentation

Keywords
Refactoring tool, search-based refactoring, search-based soft-
ware engineering.

1. INTRODUCTION
There are many refactoring tools available, most of which

focus on performing specific refactorings as requested by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WRT ’11, May 22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0579-2/11/05 ...$10.00.

developer. In the past number of years, there has been an
amount of interest in automated refactoring tools based on
Search-Based Refactoring [4, 8, 9, 11]. Using Search-Based
Refactoring, it is possible to apply many thousands of refac-
torings without programmer intervention and hence change
the design of the program radically.

In this approach, the process of refactoring is guided by
a metrics suite where a refactoring is acceptable if it, apart
from preserving the behavior of the system, improves the
merit of the design based on the metrics suite. Determining
an effective metrics suite as well as a search technique for
exploring alternative solutions during the refactoring pro-
cess are two challenging tasks. A recent review by Raiha
provides a broad overview of search-based software design,
and specifically search-based refactoring [10].

The remainder of this paper is structured as follows. In
Section 2 we present the design and implementation of Code-
Imp, as well as describe the supported fitness functions and
search techniques. In Section 3 we describe several applica-
tions of Code-Imp in terms of previous, present and future
work, and finally present our conclusions in Section 4.

2. CODE-IMP DESIGN
We recently rewrote Code-Imp, primarily to support Java

6 input and to provide a more flexible platform as an au-
tomated refactoring tool. Our original preference was to
base our implementation on the Eclipse JDT framework1,
however this framework maintains a tight integration be-
tween the source code and its various internal representa-
tions, which is in conflict with our desire to refactor the
ASTs extensively before regenerating the source code. In
the JDT framework, updates to the ASTs are visible only
after rewriting changes to the source code, hence refactor-
ings whose preconditions rely on previous refactorings can
only be applied after the source code has been regenerated.
However, regenerating the source code after each refactoring
is impractical for a large application when many thousands
of refactorings are involved, and we were therefore obliged
to seek another platform on which to develop Code-Imp.

We finally decided to use RECODER2, which is a frame-
work for Java source code metaprogramming that supports
many kinds of Java analysis and transformation.

Figure 1 depicts the current architecture of Code-Imp.
The right side of the figure shows the process of refactor-
ing in detail. Code-Imp first extracts the initial ASTs from

1http://www.eclipse.org/jdt
2http://sourceforge.net/projects/recoder

Figure 1: Overall architecture of the Code-Imp automated refactoring framework

the source code. In terms of memory consumption, the
ASTs generated require approximately 10 times more mem-
ory than the original source code. Code-Imp searches the
ASTs for candidate refactorings. A refactoring is acceptable
if it satisfies all pre- and post-conditions as well as comply-
ing with the demands of the search technique in use3. This
process is repeated many times. After the final refactoring
is applied, the ASTs are pretty printed to source code files.

During the refactoring process, a rollback mechanism is
supported by logging each change to the ASTs. The change
history service makes it possible to perform a rollback at
different levels of granularity. For example, at the finest
level of granularity, individual refactorings can be reversed.
At a coarser level of granularity, a composite refactoring such
as a pull up method (which also contains a pull up attribute
refactoring) can be reversed.

The current version of Code-Imp is not integrated with
any IDE and is used from the command-line.

2.1 Refactorings
Code-Imp currently supports fourteen design-level refac-

torings, as described in the following three categories:

1. Method-Level Refactorings:
Push Down Method: Moves a method from some class
to those subclasses that require it. Pull Up Method:
Moves a method from some class(es) to their imme-
diate superclass. Decrease/Increase Method Visibility:
Changes the visibility of a method by one level, e.g. pri-
vate to package or public to protected.

2. Field-Level Refactorings:
Push Down Field: Moves a field from some class to
those subclasses that require it. Pull Up Field: Moves
a field from some class(es) to their immediate super-
class. Decrease/Increase Field Visibility: Changes the

3In the case of a hill-climb, this means improving the qual-
ity of the design based on the metrics suite. In the case
of, e.g. simulated annealing, a drop in quality may also be
accepted.

visibility of a field by one level, e.g. private to package
or public to protected.

3. Class-Level Refactorings:
Extract Hierarchy: Adds a new subclass to a non-leaf
class C in an inheritance hierarchy. A subset of the
subclasses of C will inherit from the new class. Col-
lapse Hierarchy: Removes a non-leaf class from an in-
heritance hierarchy. Make Superclass Abstract: De-
clares a constructorless class explicitly abstract. Make
Superclass Concrete: Removes the explicit abstract
declaration of an abstract class without abstract meth-
ods. Replace Inheritance with Delegation: Replaces
an inheritance relationship between two classes with a
delegation relationship; the former subclass will have
a field of the type of the former superclass. Replace
Delegation with Inheritance: Replaces a delegation re-
lationship between two classes with an inheritance re-
lationship; the delegating class becomes a subclass of
the former delegate class.

2.2 Fitness Function
In order to guide the search, it is necessary to evaluate if a

refactoring has improved the design of the program. To this
end, we implemented a set of twenty seven software quality
metrics. The fitness function can then be defined based on
any combination of these metrics. Metrics can be combined
using one of two optimality approaches namely weighted-sum
and pareto optimality.

In the weighted-sum approach, the metrics values are sim-
ply added using weights that represent the relative impor-
tance assigned to the different metrics. Choosing weights is
at best an immense challenge and at worst is a theoretically
unsound operation on metrics defined on an ordinal scale.
In pareto optimality, a refactoring is only regarded as an
improvement if it improves at least one metric and does not
degrade any other.

Choosing an appropriate metrics suite to form the fitness
function and deciding on the optimality algorithm to use

depends on the objective of the refactoring process, and we
have used both in our experiments.

A list of the metrics implemented in Code-Imp is provided
below. For space reasons, we omit references for the metric
definitions.

1. Cohesion Metrics:
Low-level Similarity Class Cohesion, Similarity Class
Cohesion, Normalized Hamming Distance, Cohesion
Among Methods of Class, Tight Class Cohesion, Loose
Class Cohesion, LCOM1 to LCOM15, Sensitive Class
Cohesion Metric, Information-Flow-Based Cohesion,
Class Cohesion.

2. Coupling Metrics:
Response for Class, Direct Class Coupling, Data Ab-
straction Coupling, Coupling Factor, Coupling Between
Objects, Message Passing Coupling, Instability, Non-
inheritance ICP, Inheritance ICP, Information-Flow-
Based Coupling.

3. Other Metrics:
Class Interface Size, Number of Method, Data Access
Metric.

2.3 Search Techniques
The first version of Code-Imp used a variety of local and

metaheuristic search techniques, namely hill-climbing, sim-
ulated annealing and genetic algorithms. The new version of
Code-Imp currently supports just two flavours of hill climb-
ing: first-ascent hill-climbing (HCF) and steepest-ascent hill-
climbing (HCS). These are both local search algorithms where
the search examines neighbouring solutions. In HCF the
search moves to the first higher quality neighbour found,
whereas in HCS all neighbouring solutions are examined and
the search moves to the solution of highest quality.

While our best individual refactoring results were achieved
using simulated annealing, the most reliable search tech-
nique proved to be hill climbing [8].

3. APPLICATIONS OF CODE-IMP
In this section, we describe some applications of Code-Imp

in terms of previous work, current projects and future plans.

3.1 Summary of Existing Results
The goal of the original Code-Imp project was to investi-

gate if it was possible to use automated refactoring to im-
prove software quality as expressed by a contemporary met-
rics suite. Of course this is a very ambitious goal, which was
motivated by a belief that automated refactoring can achieve
more than automation of individual refactorings. The key
results of this work are summarised below.

The effectiveness of different search techniques was inves-
tigated by an experimental comparison of simulated anneal-
ing, genetic algorithms and multiple ascent hill-climbing [7].
The results showed that overall, multiple-ascent hill climbing
performed best over a set of five medium-sized open source
Java programs. The success of hill climbing unfortunately
suggests that the refactoring process was not achieving much
in the way of design exploration, i.e., it was ‘giving the pro-
gram a lick of paint’ rather than radically changing its de-
sign. We return to this challenge in section 3.4.

We investigated if automated search-based refactoring could
improve a program’s design [8] in terms of three external

software quality attributes, namely Flexibility, Understand-
ability and Reusability, as defined by the QMOOD met-
rics suite [2]. It was found that medium-sized programs
could indeed be improved significantly using the QMOOD
Understandability function as fitness function. A minimal
improvement was achieved using the QMOOD Flexibility
function while the QMOOD Reusability function was found
to be ill-formed and caused refactoring process to include a
large number of empty classes. This latter result hinted at
another application for Code-Imp — as a platform for inves-
tigating the properties of the software metrics themselves.
Our current work in this area is described in section 3.3.

3.2 Refactoring for Testability
The increasing popularity of Test-Driven Development has

led to a greater emphasis on testability as a desirable prop-
erty of software. To test if automated refactoring could be
used to improve testability, we created a small, uncohesive
Java application and used Code-Imp to improve its cohesion
using the LSCC metric [1]. We then conducted an experi-
ment with industrial software engineers to determine which
program they found easier to write test cases for. On in-
spection, Code-Imp definitely appeared to have improved
the design of the program, though the study of the software
engineers’ responses was inconclusive on the testability ques-
tion [5].

This result prompted us to consider as future work the
possibility of automated refactoring to improve the design
of the software for subsequent automated test case gener-
ation. In this case, the goal of the transformation is not
to refactor the program for the benefit of the developers,
but to transform it so as to enable more effective automated
test case generation4. Test cases are then generated for the
transformed program, but applied to the original one. It is
interesting that in this case the “refactorings” used need not
preserve behaviour, but must preserve certain test adequacy
criteria such as branch coverage or statement coverage [3].

3.3 Exploring Software Metrics
Existing work on search-based refactoring uses software

quality metrics to guide the transformation process that op-
timises the program. In recent work, we have investigated
the possibility of turning this on its head and using the
refactoring process to discover new properties of the met-
rics themselves [6].

In these experiments we used Code-Imp to refactor ten
real-world open source Java applications, up to 88K lines of
code in size5. We used a semi-random refactoring process,
and measured the effects on a collection of structural cohe-
sion metrics. We were able to measure properties such as
metric volatility, propensity for positive change and correla-
tion between the metrics.

The most interesting observations were in the area of met-
ric conflict. Although all cohesion metrics are, in some sense,
measuring the same property (cohesion), we discovered that
some of them are strongly in conflict with each other. Not
only can we detect the conflict, but by studying the refac-

4This idea is appealing as it avoids that bête noire of au-
tomated refactoring — the problem of explaining the refac-
tored program to the programmer.
5This shows the robustness of Code-Imp in dealing with
non-trivial Java applications.

Figure 2: Multi-level Refactoring using Code-Imp

torings that caused it we were able to explain precisely the
nature of the conflict [6].

3.4 Muti-Level Automated Refactoring
The Code-Imp search currently operates at source code

level. Precondition checking and refactoring execution on
ASTs is time consuming, and this limits how extensively
a program can be refactored. Another issue with any fully-
automated refactoring tool is that the programmer only sees
the end result of the refactoring process, and this is likely to
lead to comprehension problems. In order to address both
these issues, we plan in future work to extend Code-Imp to
use multi-level refactoring as outlined in figure 2. Multi-level
refactoring proceeds in two-stages as follows:

1. Design Exploration: A design model is extracted
from the source code and transformed to a better de-
sign in terms of some metrics suite. As most of the
program detail has been abstracted away, precondi-
tion checking and refactoring execution become much
faster. This will enable a far more extensive search of
the design space than has been hitherto possible. At
the end of this process, a number of possible optimal
designs are presented to the programmer, who selects
one as the design they wish to use.

2. Full Refactoring: In this detailed refactoring phase,
the source code is refactored under the general guid-
ance of a metrics suite, but crucially using the design
selected in (1) as the ultimate goal. When this process
completes, the resulting program will have the same
functional behavior as the original, and a design close
to the one chosen by the programmer in stage (1).

The proposed Design Exploration process can be based
existing work in this area, e.g. that of Simons, Parmee and
Gwynllyw [12]. The Full Refactoring phase is essentially
what Code-Imp does now, but with an augmented fitness
function (the desired design). The synergy between these
two approaches is clear, with each one ameliorating the key
problem of the other.

4. CONCLUSION
In this paper we have presented Code-Imp, an automated

refactoring platform for Java programs. Previous work with

the original version of Code-Imp focussed on automated de-
sign improvement. Code-Imp has since been entirely reengi-
neered to support Java 6 and is now built upon the RE-
CODER platform. In our current work we have used Code-
Imp to investigate the relationships between software met-
rics and to explore the possibility improving the testability
of a program. The main aspect of future work we described
in that of multi-level automated refactoring.

Automated refactoring is most promising in areas where
programmers do not have to understand the output of the
refactoring process. The major challenges lie in automated
design improvement where, even if improvement is techni-
cally possible, the difficulty in comprehending the final result
may militate against its use.

5. REFERENCES
[1] J. Al Dallal and L. Briand. A precise method-method

interaction-based cohesion metric for object-oriented
classes. ACM Transactions on Software Engineering
and Methodology, 2010.

[2] J. Bansiya and C. G. Davis. A hierarchical model for
object-oriented design quality assessment. IEEE
Trans. Software Eng., 28(1):4–17, 2002.

[3] M. Harman. Open problems in testability
transformation. IEEE International Conference on
Software Testing Verification and Validation
Workshop, 0:196–209, 2008.

[4] M. Harman and L. Tratt. Pareto optimal search based
refactoring at the design level. In Proceedings of the
Conference on Genetic and Evolutionary
Computation, July 2007.

[5] M. Ó Cinnéide, D. Boyle, and I. Hemati Moghadam.
Automated refactoring for testability. In Proceedings
of the International Conference on Software Testing,
Verification and Validation Workshops, March 2011.

[6] M. Ó Cinnéide, L. Tratt, M. Harman,
I. Hemati Moghadam, and S. Counsell. Analysing
software metrics with search-based refactoring. In
Proceedings of the Conference on Genetic and
Evolutionary Computation (GECCO) (submitted),
July 2011.

[7] M. O’Keeffe and M. O. Cinnéide. Search-based
refactoring: an empirical study. J. Softw. Maint.
Evol., 20(5):345–364, 2008.

[8] M. O’Keeffe and M. Ó. Cinnéide. Search-based
refactoring for software maintenance. Journal of
Systems and Software, 81(4):502–516, 2008.

[9] F. Otero et al. Refactoring in automatically generated
programs. Proceedings of the Symposium on Search
Based Software Engineering, 2010.

[10] O. Raiha. A survey on search-based software design.
Computer Science Review, 4(4):203 – 249, 2010.

[11] O. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class
structure of object-oriented systems. In Proceedings of
the Conference on Genetic and Evolutionary
Computation, pages 1909–1916, Seattle, Washington,
USA, 8-12 July 2006. ACM.

[12] C. Simons, I. Parmee, and R. Gwynllyw. Interactive,
evolutionary search in upstream object-oriented class
design. IEEE Transactions on Software Engineering,
36(6):798–816, Nov. 2010.

