
how you treat source material in your reports. There are a number of tools available on the web
page for the projects to check your content yourself before submission.

9.4 Backups

This is so important that it cannot be overemphasized. Keep several backups of your work in various
locations, so in the worst, worst case you still have something to roll back to and are not left with
nothing.

10 Preparing your Project Report

Report writing is an important skill. No matter what field you are engaged in, you will almost
certainly find it necessary to be able to write a clear report on your work. If you have a talent for
technical writing, you will no doubt find it an easier task. However, it is a skill that can be acquired
with practice and it is an essential part of your project work. Be sure to allow yourself enough time
to write the report; the process generally takes at least two weeks.

In the following subsections I suggest an approach to take in structuring and writing your report. It
is not carved in stone; feel free to adjust this to suit your own particular project/style.

10.1 Create a Report Structure

The first step is to produce a draft table of contents, showing how the entire report is to be structured
into chapters, sections, and even subsections. Annotate each item with the purpose it is to serve
in the overall report, and its anticipated length in pages. When you have done this ask yourself the
following questions:

⇤ Is there a logical flow through my report? If it does not flow logically at this high-level stage,
it certainly will not flow well in the end either. Move sections around until you feel there is a
logical thread running through the document.

⇤ Have I written about all the important issues? Pull yourself back from the report and think
about the project in general. You should not write about everything you did ? this is a
report, not a diary ? but do not omit any vital sections either.

⇤ Are the issues that I have written about important? You have probably written sections that
should really be omitted. It is tough to cut out a section that you have laboured over, but
dross in a report has a very negative e↵ect on overall quality.

Once you have a sound overall structure, you can start writing sections knowing that they fit in to
an overall plan. You will know how much preparatory material will have preceded each section, and
you will know to what extent it is expected to lay the groundwork for later sections. You may find
that you have to change the structure later in the writing of the report. As with software, the later
you change the design, the more work it entails.

10.2 How Many Chapters?

The details of the structure will of course depend on the content and nature of the particular project
you are working on. Generally you should break down the report into approximately six chapters.

UCD School of Computer Science & Informatics

c�2013 Page 10 of 16

Mel Ó Cinnéide



One possible template you could use is detailed below, but remember that this template is only for
guidance. You may decide to merge some chapters, or have an extra core chapter. It all depends
on your project and how you wish to present it.

10.2.1 Title page, Project Specification, Acknowledgments and Table of Contents

The title page should state at least the project number, project title, supervisor and your name.
As with the Interim Report the full project specification should be reproduced here. In your Ac-
knowledgments section, give credit to all the people who helped you in your project. A Table of
Contents is essential, but should be produced by the word processing package you are using. The
order of these is usually Title page, Project Specification, Abstract, Acknowledgments and Table of
Contents.

10.2.2 The Abstract

The abstract should provide a short overview of your project that enables a reader to decide if your
report is of interest to them or not. It should be concise, to-the-point and interesting. Avoid making
it read like a verbose table of contents! Avoid references, jargon or acronyms, as the reader may
not be familiar with them. An abstract usually contains a brief description of:

⇤ the project and its context;

⇤ how the project work was carried out;

⇤ The major findings or results.

One paragraph is plenty. The main thing to remember is the principle that the abstract must be
short, and a person reading it should be able to determine if they want to read more. For example,
if your project involves building a compiler for Java, and a major section of your work is focussed
on developing an e�cient parser (rather than say code generation), make this clear in the abstract.
Then a reader who is interested in e�cient parsing techniques knows that your report may be of
interest to them.

10.2.3 Chapter 1: Introduction

Some topics it may contain include:

⇤ A discussion of the original aims of the project, and the modified aims if appropriate;

⇤ The scope of the project and a general justification for the work undertaken, perhaps
providing a brief background description;

⇤ A description of the structure of the report, i.e., a road map for the reader.

10.2.4 Chapter 2: Background Research

The contents of this chapter depend on the nature of your project. If you are working on a research-
oriented project, then you will present the research landscape within which your project is being
conducted and consider approaches that have been adopted by other researchers. In a development
project, you may describe the domain in which you are working and the technologies and program-
ming tools you are using. Tutorial-type descriptions are never appropriate, but if you are using a
specialist tool, e.g., a parser generator, it is reasonable to provide a section that describes the tool
at a high level.

UCD School of Computer Science & Informatics

c�2013 Page 11 of 16



10.2.5 Chapters 3 and 4: The Core Chapters

These are the principal chapters of your report and their structure will vary from project to project.
The aspects of your project that you will describe in these chapters include:

⇤ A detailed account of how you approached your project, i.e. the strategy you employed. This
should be at a high level, separate from design and implementation issues.

⇤ A discussion of the design aspects of your project. Include here a discussion of interesting
problems you encountered and the alternative solutions you considered.

Use the appropriate notations and formalisms in this chapter. Everything you have studied in
your degree is relevant here. If there is a crucial algorithm at the centre of your project and its
performance is important, attempt to provide an analysis of its complexity. If you are describing a
complicated set of conditions, do not write it in English, use first-order logic. If you have performed
an objectoriented design (as many of you will), use the appropriate UML models to describe your
work. Do not mindlessly produce “documentation”, but think about what you want to communicate
to the reader and use the most appropriate method of doing so.

10.2.6 Chapter 5: Detailed Design and Implementation

In doing your project work, a lot of time will be spent on detailed design and implementation. The
nature of programming is that it is a very time-consuming task, and even for experts a “silly” run-
time error may take days to correct. In spite of this, this chapter should not be the main focus of
your report. Make it clear what implementation technology you used and discuss any interesting
implementation issues that arose. For example, if you were using a particular data structure that
had to be optimised in a certain way to be suitable for your project, describe it in this chapter. On
the other hand, if you used an obvious/standard approach, then there is no need to devote much
space to it.

10.2.7 Chapter 6: Testing/Evaluation

You may decide to merge this chapter with another, but I have described it as a separate chapter
as it is very important in its own right.

If the focus of your project is the development of a piece of software, then you should address the
issue of how you demonstrate it to be correct. Formal proof is applicable in a small number of cases,
but more commonly rigorous testing is what is required. You will not have time to really test your
software in the way that industrial software is tested. However it is important to show that you have
taken a methodical approach to testing and that you have tested your software in such a way that
you are justified in having some confidence that it is correct. Any Software Engineering text will
provide you with the basics of software testing; contact me if you want some notes on the topic.

Another type of project involves designing a heuristic or approximate solution to a challenging or
ill-defined problem, e.g., to develop a junk mail filter or to mine a certain type of data from the
web. In this case the precise desired behaviour of the software is hard to specify (what is junk mail
anyway?), so it is more appropriate to describe how you evaluated the solution. This will involve
running a number of experiments and presenting the results. As with testing, this is a complex area
that you should spend some time coming to terms with.

UCD School of Computer Science & Informatics

c�2013 Page 12 of 16



10.2.8 Chapter 7: Conclusions and Future Work

If you are writing this chapter bleary-eyed and ca↵einedup on the day of submission, you are not
going to do your project justice. This is a vital chapter in the assessment of your work. Academics,
in getting the feeling for any type of report, will typically read the introduction and conclusions
first. Your conclusions should not read like “I did all this stu↵, it went great, and here’s other stu↵
someone else might do.” This chapter should cover the following areas:

⇤
Conclusions: In a research-oriented project you will state the overall conclusions you have
come to. In a development project there may not be a conclusion as such, so just state what
has been achieved. Be very critical in this section. Describe the weaknesses of your approach
and avoid making unwarranted conclusions.

⇤
Future Work:Think carefully about how your work might be extended or applied to another
domain. There will probably be some obvious extensions. If you are able to propose some
interesting ideas that are not immediately apparent, this demonstrates that you have a clear
understanding of the field.

It is good scientific style to make strong statements. If a certain statement is warranted by the
results of your project, don’t be afraid to make it. Strange though it may seem, a strong statement
that turns out to be wrong is better than one that is vague and wishy-washy. The former can lead
to a lively debate where the truth may emerge, but the latter will produce meaningless agreement,
because it ultimately says nothing.

10.2.9 References

Use one consistent system for citing works in the body of your report. Several such systems are
in common use in textbooks and in conference and journal papers. Ensure that any works you
cite are listed in the references section, and vice versa. Word-processing packages will manage the
referencing for you, and be sure to make use of this facility. It may take more time in the beginning,
but at the end of the write-up it will certainly have saved you a lot of time.

In approximate decreasing order of quality, the best sources to cite are journal papers, international
conference papers, national conference papers, books and web pages. Don’t just supply a URL if
there is an equivalent conference paper you could cite instead. Also, it strengthens your project if if
at least some of your references are to recently published material.

You may instead opt for a bibliography, which is a list of material (books, papers, web resources)
that you have read in preparing your project. A bibliography must be annotated, i.e., for each entry
you must provide a paragraph summarising the work and stating why it is relevant to your project.

10.2.10 Appendices

Material that you want to include in your report, but that is not directly relevant to the main
thread of your report, can be put in an appendix. Possible examples include program/code listings,
detailed test results, user guides etc. In most cases, appendices are not necessary and it is only in
an exceptional case that it is useful to provide a code listing.

Remember that material in the appendix counts towards report length, so do not exceed the limits
defined in sections 5 and 6.

UCD School of Computer Science & Informatics

c�2013 Page 13 of 16



10.3 Order of Writing

The previous section dealt with one possible logical structure for your report. The order in which
you write it all is another issue. There are no fixed rules here. Some people like to write notes
throughout the project, so when it comes to writing the final report, they already have a lot of
material prepared. This is a very valid idea, but avoid wasting time writing very polished notes
during your project work. The notes/sections you write can be quite rough, and only in the final
report do you bring them up to full report quality. The reason for this is that you may have to tailor
them considerably to fit the context of the report, and this will mean that much of the polishing
will have gone to waste.

Assuming you have created a report structure as described in section 10.1, a good way to continue
is to write the introduction in draft form. You already have a introduction from the interim report,
so you can flesh this out. The reason why you write this in draft form is that you are not yet sure
what you are introducing! Only when the later chapters are completed can you return and finish the
introduction.

Now the Background chapter of the interim report can be revisited and improved for the final
report. Again, you may find that when you write the core chapters later, some of the background
work becomes irrelevant and can be removed. This may seem like wasted e↵ort, but if it results in
a tighter Background chapter, do it.

Next are the Core chapters, followed by the design and testing chapters. When these are complete,
you are in a position to write your Conclusions chapter, and to return to the Introduction and
Background chapters and bring them to completion. Finally, write the abstract.

The next step depends on how much time you have left. Ideally you will reach this point where you
have a first full draft with at least a week to go. Proofread the report once yourself, and pass it on
to other people: your supervisor of course, and anyone else who can read (part of) it and give you
any sort of feedback. Take a rest yourself, so you can return to it in a day or two and re-read the
report with a fresh mind.

Note that at this late stage you can only make local improvements to the report. It is too late
for major overhauls, so at this point the importance of creating a good overall structure becomes
clear. If you have started with a good structure, you can aim to create an excellent finished product.
However if your initial structure was awkward, the final report will not read well no matter how you
tweak it.

10.4 Other Advice

This section contains a number of guidelines that are worth bearing in mind when writing.

10.4.1 Continuity

You may not realise this, but a good academic paper or report, like any good novel you have read,
tells a story. It is valuable to keep this in mind when you are writing your report. There should be a
storyline running through your report and you should make it easy for the reader to hang on to this
storyline:

⇤ At the end of the introduction provide a short description of the layout of the remainder of
the report.

⇤ Start every chapter with a brief recapitulation of the story so far, and an overview of what
the chapter is going to add.

UCD School of Computer Science & Informatics

c�2013 Page 14 of 16



⇤ Finish every chapter with a summary of the material in that chapter, and state how it relates
to what follows.

In the core chapters, you should take care to make absolutely clear the logical connection between
the overall project design and the detailed problems you discuss. If the reader is mired in a detailed
description of your solution to some intricate problem, they will be encouraged to persevere if you
have clearly indicated its place in the overall project.

This continuity material may sound unnecessary and redundant, but it is useful to the reader. It
may help for you to imagine that the reader is coming back to your report after a break of a few
days: they will be greatly assisted by occasional reminders of what has already been said.

10.4.2 Presentation Issues

Focus on expressing your ideas clearly. Part of your report is of course its physical layout and use of
diagrams. Try not to put too much time into this. Simple diagrams are fine, and avoid the use of
colour unless it really contributes something in particular. Do not bother with tricks like adjusting
spacing or margins or fonts in order to make your report seem bigger or smaller.

10.4.3 Managing your Supervisor at this Di�cult Time

Some students unfortunately tend to avoid their supervisor in the weeks preceding the final deadline.
This is perhaps because they are busy and think they need to focus on writing. One or two days
before the deadline, they give their final report to their supervisor. The supervisor typically comes
back to them the next day with a few minor textual corrections and says that everything is fine
otherwise. The student submits their report and thinks that all is well.

The reason why the supervisor finds only few minor textual errors is because at this stage there is no
point in telling the student that their report structure is deeply flawed and that one chapter should
be rewritten. When the supervisor comes to assess the report (and similarly when the PRC assess
and grade the report), they unfortunately have to take into account the errors and poor style that
could have corrected had they been asked to review the report at an earlier stage.

In our opinion, the best way to make use of your supervisor during the writing-up period is this:

⇤ After creating the document structure (see section 10.1), discuss it in detail with your
supervisor. If you have any doubts or questions about it, hammer them out now.

⇤ After you complete each chapter, pass it on to your supervisor and ask for feedback.
Remember that they are busy, so it may take a few days for them to come back to you.

You can expect your supervisor to read at least one full draft of your report. If you are presenting
it to them on a chapter-by-chapter basis, expect that they will read each chapter once.

Do take heed of your supervisor’s advice. Don’t present them with drafts of your report that still
contain errors pointed out in an earlier version, and don’t put yourself in poor light by reproducing
the same errors in the remaining chapters.

10.4.4 Textual Matters

Who do you have in mind as you write your report? A good model to use is that you are writing to
an educated computer scientist who is not directly involved in the field of your project. Your report

UCD School of Computer Science & Informatics

c�2013 Page 15 of 16



is intended to be a technical document, so follow the style you see in the best scientific literature
that you read.

Keep your language clear and avoid colloquialisms and abbreviations. Avoid writing in overly “aca-
demic” tones. In good academic papers you will find a simple, clear style that is easy-to-read and
not overwrought. The previous sentence could also be written as: “You will find, in academic papers
of good quality, a style that is at once both clear and indeed easy-to-read, without being in any
sense overwrought.” This style is only suitable if you are making a crowning point that you wish to
emphasize heavily.

Do not use the word “I”. If at some point you really wish to express a personal opinion, use a phrase
like “it is the opinion of this author that. . . ”. Avoid over-using “we” as well, but don’t use the
passive voice all the time, or your report will be unreadable.

Avoid overuse of italicisation, underlining, bolding, or other devices for emphasis. Underlining is
best avoided, as this was originally a device for informing a typesetter to use italics, and not a form
of highlighting in its own right at all.

Do not place large blocks of code in your report. If you are considering putting code in your report
at all, ask yourself first if an algorithm written in pseudocode is more appropriate. Any code you do
present should earn its place and should be impeccable in construction and layout. Use a suitable
font for code, such as courier, and stick to this consistently.

Pay attention to spelling, punctuation and sentence structure. Poor spelling can be very intrusive
and is unforgivable given that your word-processing software surely provides a spelling checker. Poor
punctuation can destroy the meaning of a sentence. If you are not sure how to use punctuation, use
fewer commas rather than more. Long sentences that are di�cult to write are usually also di�cult
to read, and may turn out in fact not to be sentences at all. If a sentence feels unwieldy, split it in
two.

References

[1] Christian Dawson, The Essence of Computing Projects – A Student’s Guide, Pearson Education,
2000/

UCD School of Computer Science & Informatics

c�2013 Page 16 of 16


