
Final Year Project Report

A Comparison of Android and iOS
application development

Máire Regan

A thesis submitted in part fulfilment of the degree of

MSc (hons) in Advanced Software Engineering

Supervisor: Mel Ó Cinnéide

UCD School of Computer Science and Informatics

College of Engineering Mathematical and Physical Sciences

University College Dublin

December 22, 2011

Table of Contents

Abstract . 3

1 Introduction . 5

1.1 Background and Cultural Influences . 5

1.2 Resources . 7

1.3 LiveBus Mobile Application . 7

1.4 Report Layout . 8

2 Getting Started with Development . 9

2.1 Platforms . 9

2.2 Integrated Development Environments . 9

2.3 Tools . 10

2.4 Devices . 15

2.5 Summary . 16

3 Languages . 17

3.1 Object Creation . 17

3.2 Message Passing . 18

3.3 Properties . 18

3.4 Memory Management . 19

3.5 Categories . 20

3.6 Blocks . 20

3.7 Summary . 21

4 Design . 22

4.1 Platform Architecture and Frameworks . 22

4.2 Patterns . 23

4.3 Application Structure . 25

4.4 Application Lifecycle . 27

4.5 Summary . 32

Page 1 of 60

5 Features of Mobile Applications . 33

5.1 Menus . 33

5.2 Multi-threading and Concurrency . 35

5.3 Storage . 38

5.4 Web Services and XML . 42

5.5 Location Based Services . 44

5.6 Security . 47

5.7 Summary . 49

6 Distribution . 51

6.1 Process . 51

6.2 Cost . 52

6.3 Payment . 53

6.4 Summary . 53

7 Conclusion . 54

7.1 Flexibility and Restrictions . 54

7.2 Reusability . 55

7.3 Popularity . 55

7.4 Alternatives . 55

7.5 Summary . 56

7.6 Personal Reflections . 57

Page 2 of 60

Abstract

The smartphone market has experienced huge growth over the last couple of years, and with
this has come a corresponding increase in the number of mobile applications downloaded.
With the introduction of developer programs, mobile software development kits and ded-
icated application markets, this increasingly important area is accessible to any developer
who is interested and willing to learn.

Mobile application development differs significantly from traditional software development so
different user interface guidelines, application lifecycles and performance considerations must
be taken into account. There are a large number of both hardware and software vendors in
the smartphone market, and the developer must decide which platforms, tools and devices
best suit their needs.

This thesis aims make a practical comparison of Android and iOS development, starting
with the basic hardware and software required, the tools provided and the languages used
for development. It then continues onto topics covering design and implementation of mobile
applications, leading up to a discussion on the distribution of the completed application. All
this is examined from the point of view of a developer new to Android and iOS application
development.

Page 3 of 60

Acknowledgments

I would like to thank my supervisor Dr Mel Ó Cinnéide for all his guidance and support over
the course of the project. Thanks also to Karl Connon for his work on the back end web
service that provides the data for the LiveBus application.

Thanks to my family for their patience and encouragement, not only over the last two years,
but over the whole course of my education. Thanks especially to Mick for his endless patience,
love and support.

Page 4 of 60

Chapter 1: Introduction

Research by Gartner shows that smartphones accounted for 25% of overall mobile device
sales in the second quarter of 2011, an increase of 74% on the previous year [23]. With
this explosion in popularity, more and more developers are turning to mobile application
development. There are several different mobile operating systems to choose from, however,
this report will focus on the current market leaders: Apple’s iOS and Google’s Android.
According to a recent study of new smartphone purchases in the USA by Nielsen, purchases
of Android phones stood at 56% of the smartphone market while iOS phones were in second
place at 28% [30]. Between them, these two operating systems hold 84% of the market,
and if current trends continue this is set to rise even further. This figure does not include
tablet devices, or other devices such as the iPod touch which does not have mobile phone
functionality. Varying figures can be seen in the many different reports into this area, but
the overriding trend is that Android and iOS are the market leaders.

This chapter will briefly discuss the origins and history of iOS and Android application
development, set out the topics covered in this report and introduce the LiveBus mobile
applications which were developed for the purpose of investigating both platforms. In sec-
tion 1.1 background information is provided, and culture is discussed with regards to both
platforms. In section 1.2 information is provided on the resources available to a developer
working in Android and iOS development. Section 1.3 gives detail on the application that
was developed for both platforms while researching this report. Section 1.4 describes the
topic covered in this report.

1.1 Background and Cultural Influences

Android is an open-source software stack created for mobile devices. It is an open-source
project which contains an operating system, middleware and a set of core applications for
mobile devices. Work on Android began at Android Inc., a private company, however,
not much is known about its early development before it was bought by Google in 2005.
Google then formed the Open Handset Alliance [41], a collection of hardware, software and
telecommunications companies, with the aim of producing an open and free mobile platform.
The Open Handset Alliance is led by Google and today has over 80 members from a wide
variety of background industries. It is responsible for the distribution and maintenance of
the Android Platform. The Android Open Source Project also attempts to keep in sync
the conflicting aims of the hardware manufacturers, application developers, etc. that use
the Android operating system through the Android Compatibility Program. This sets out
standards that device manufacturers must meet in order to use the Android trademark, and
also provides a set of tools to ensure that developer applications run on licensed devices.

The Android kernel is based on the Linux kernel and this code is made available under
version 2 of the Free Software Foundation’s General Public License (GPLv2). The majority
of Android software, however, is developed under Apache 2.0 Open Source License [3]. This
was chosen for the userspace (non-kernel) software as it allows for open source development,
but does not force others using it to open up their software. This allows the use of Android
code in products that are not open-source without restricting their distribution in any way.

Page 5 of 60

Parts of Android are developed in private by Google and only made public once a new
version of Android has been released. Other parts of Android, e.g. the Android Market,
are kept completely private by Google and source is not available to third party developers
for this. The Android platform is continually and rapidly evolving due to the work by the
Open Handset Alliance, the open-source community and Google. Android 1.0 was released
in late 2008 and only 5 years and 13 releases later, Android 4.0 or API level 14 has just been
released.

The architecture of the Android platform is another feature which promotes openness and
reuse. Android was designed to allow third party applications to use the device’s core func-
tionality through the same framework APIs as the Android core applications. Any applica-
tion can access the phone’s contacts, messaging, camera, global positioning service, etc. as
long as it has the correct permissions. These are agreed by the user when the application is
installed. Reuse is encouraged as any application can publish its capabilities, and these can
then be used by other applications with the correct permissions. This mechanism also allows
the device user to replace certain applications if they prefer others with the same capabilities.

Apple entered the smartphone market with the launch of the iPhone in 2007, having originally
started in the 1970s as manufacturer of personal computers and operating systems. Apple
was a pioneer in this field, being one of the first to introduce graphical user interfaces,
however its fortunes had receded by the 1990s with the growing popularity of IBM PCs and
the Windows operating system. Apple refocused on the Macintosh line, a more expensive
computer aimed at professionals and colleges. The iMac line was released in the late 1990s
and in 2001 Mac OS X was released. iTunes for the Mac was also released in 2001 and this
was followed by the release of the iPod, Apple’s breakthrough MP3 music player, towards
the end of the same year [8].

Several new models of iPod were released in quick succession over the next few years, leading
up to the initial release of the iPhone in 2007. The iPhone merged mobile phone, touch-
screen iPod and internet communications into one device. The iPhone quickly earned a cult
following for its aesthetically pleasing design and unprecedented functionality, with a mil-
lion devices sold in just 74 days [11]. Apple’s next move in this area was the launch of the
iPhone Developer Program and the iPhone Software Development Kit. For the first time,
third party developers could develop applications for the iPhone and sell these in the App
Store, Apple’s online marketplace for purchasing applications for the iPod and iPhone [7].
The iPhone 3G proved phenomenally popular with one million devices sold within 3 days of
its launch in 2008 [10]. With the launch of the iPhone 3G came the public launch of the App
Store which proved enormously popular with users; in its first weekend of launching over 10
million apps were downloaded [9]. Apple’s successes have continued with the latest model,
the iPhone 4S, selling over 4 million devices in its first weekend on sale [15], and App Store
downloads passing 15 billion in July 2011 [12].

Apple provides a number of frameworks to provide applications with access to core function-
ality, e.g. address book, media player, mapping etc. One area where iPhone development
differs substantially from Android development is that Apple does not allow developers to
submit their own versions of native iPhone apps to the App Store. As this is the only way
to distribute iPhone applications, this restricts the user in their choice of core functionality
for their iPhone.

Page 6 of 60

1.2 Resources

There are a huge amount of resources available to application developers for both Android
and iPhone development. Both have official developer programs, Android Developers [2],
and iOS Developer Program [14], along with a huge amount of third party forums, blogs,
tutorials, etc.

The Android Developers website has links to download the latest software development kits
and tools, developer guides on how to set these up, tutorials on application development,
sample code and examples of using various parts of the framework, best practice guides,
guides for publishing applications, javadoc for the APIs, videos, blogs and other resources.
A number of Google Groups mailing lists exist for Android development, not to mention sites
like Stack Overflow [50] where developers help each other solve problems with application
development.

Similarly for iOS, once enrolled in the iOS Developer Program the software development
kits is available for download along with a wealth of other material. Apple provides the iOS
Developer Library which has documents to help get started with iOS application develop-
ment, sample code, and coding how-to articles, framework reference documents, release notes
and videos. Another useful resource is the Apple Developer Forums website where Apple
engineers and other developers provide answers to development questions.

Many universities have started offering mobile application development modules as part of
their computing courses, and a number of commercial organisations also provide training in
this area. Also available are online courses on iTunes University, e.g. Stanford University
provides the free course CS193P iPhone Application Development [27] which includes 8 weeks
of recorded lectures and notes.

A number of application development books are also widely available, from familiar names
such as O’Reilly Media and Wiley, to the not so well known. Two recent publications for
learning iOS development are Head First iPhone and iPad Development [43] and iOS 4
Programming Cookbook [39]. Two comparable publications for Android development are
Professional Android 2 Application Development [34] and Beginning Android 3 [38].

1.3 LiveBus Mobile Application

The LiveBus mobile application was developed for the purpose of comparing Android and
iOS application development. LiveBus allows a user to track the position of Wexford Bus
in real time. It is designed to complement the TextMeMyBus system [52], which allows the
user to also register for text messages to inform them when a particular bus is due. Both
systems use information provided by a web service from Imeall Software based on live data
from Wexford Bus. On opening the application the user is presented with a list of bus stops.
A map view is also available which shows the bus stops along with the current bus positions.
More information for the bus stop may be viewed by tapping on the stop on either the list
or map. A separate page shows the location of the bus stop in more detail, along with the
next bus due time, and the scheduled pickup times for the stop. Favourite stops may also
be recorded.

Page 7 of 60

1.4 Report Layout

This report chronicles the entire process for developing a mobile application for Android
and for iOS. This starts with research into the required hardware and software, followed by
the differences in languages for developing in each platform. Applications for both Android
and iOS are structured differently and have different lifecycles, so different patterns apply
and different constructs must be used. Along with this, implementation details differ for
various features found in mobile applications today. The final stage is the distribution of the
finished applications and again there are stark differences between both Android and iOS.
The following is a brief overview of the structure of this document:

Chapter 2 provides information on hardware and software requirements for developing
Android and iOS applications.

Chapter 3 discusses the languages used for Android and iOS application development.

Chapter 4 looks at design considerations for Android and iOS applications.

Chapter 5 gives details on the implementation of some of the main features commonly used
in mobile application development.

Chapter 6 provides information on the distribution of iOS and Android applications.

Chapter 7 discusses the merits and demerits of both platforms, along with some alternatives.

Page 8 of 60

Chapter 2: Getting Started with Development

For the developer beginning mobile application development, it can be hard to know where
to start. Specific hardware and software may be required in order to run the supported
development environments, new tools must be used, and the developer may or may not have
access to physical devices for testing.

This chapter aims to explore all these issues for Android and iOS development. Section
2.1 gives details on the platforms required for development. This is followed by section
2.2 which details the Integrated Development Environments available for both. Section 2.3
gives more detailed information on the tools available for the developer working on both
Android and iOS applications, and section 2.4 provides information on the available devices
for both Android and iOS. Section 2.5 provides a summary of the information contained in
this chapter.

2.1 Platforms

iPhone development is essentially restricted to Mac OS X with no supported tools available
for development on other operating systems. Android is much more flexible however, with
tool support for Windows, Mac OS X and Linux along with a wide variety of development
environments.

2.2 Integrated Development Environments

iOS development is only supported using the Xcode integrated development environment
(IDE) and Interface Builder graphical user interface design tool. All the required development
tools are available to download from the iOS Developer Program website or from the Mac
App Store. Additional tools such as the Instruments analysis tool and the iOS Simulator
are also provided, along with the latest version of the iOS Software Development Kit (SDK).
More recently, JetBrains have released a new IDE called AppCode [6], which can open XCode
projects and is compatible with Interface Builder and the iOS Simulator. However, this is
not free and is not officially supported by Apple.

The use of the Eclipse IDE and the Android Development Tools (ADT) plugin is recom-
mended for Android development. Eclipse is an open source project and so is available for
free, and may be extended with a variety of plugins depending on the developer’s needs. The
Android SDK is a separate download to the Eclipse ADT plugin and must be downloaded
before the ADT. The SDK contains only the core tools and can be used to download other
required components such as the latest Android platform. Support also exists for the use
of other IDEs such as IntelliJ from JetBrains [28]. However, the documentation for this is
not maintained by the Android Open Source project and again the IDE is not free. If the
developer would rather not use an IDE for development, the tools bundled with the Android

Page 9 of 60

SDK may be run from the command line.

Both Xcode and Eclipse, and the platform SDKs can be downloaded for free and contain all
the tools that a developer will need in the course of developing a mobile application. These
tools are discussed in more detail in the following section.

2.3 Tools

A large selection of tools is available for both iOS and Android development; the vast majority
of these come bundled with the IDEs for both. The subsections below assume the use of
Xcode for iOS development, and Eclipse and the ADT for Android development.

2.3.1 Source Code Management Integration

Both Xcode and Eclipse support the use of either Git or Subversion for source code manage-
ment (SCM). Xcode comes with built-in support for both, allowing the developer to configure
SCM repositories in the Organizer. Xcode has an additional feature that allows the developer
to take a snapshot of their project, which can be restored at any time. Git is required in
order for this to work. Eclipse does not come with built-in SCM support, but it can be easily
extended to include this by installing plugins such as Subversive [51] or EGit [20]. Eclipse
plugins are also available for other SCM systems.

2.3.2 Debugging

Eclipse comes with a built-in Java Debug Wire Protocol (JDWP) compliant debugger that
allows the developer to debug their application on the Android Emulator or on a physical
device. This provides the standard debugger functionality of setting breakpoints, inspecting
variable values, stepping through code, etc. The SDK provides the Android Debug Bridge
(adb) which provides the means to communicate with the emulator or device and provides
various device management functions. Also integrated in Eclipse is the Dalvik Debug Monitor
Server (DDMS) which uses adb to communicate with the device. DDMS can simulate phone
calls and user location, and provide device file system access. It can be used to gather thread
and stack information and to view log messages, and has a number of other features. The
debugger, however, can be quite slow to start up with the developer left waiting for the
application to attach after making only minor code changes.

Xcode also provides a debugger that allows you to debug applications on the Simulator
or on a device. Again it allows the developer to set breakpoints, view running threads,
inspect values and step through code. It however, offers less functionality than the Eclipse
debugger as the developer cannot change variable values or perform tasks such as simulation
of incoming calls, messages or core location.

Page 10 of 60

2.3.3 Profiling and Analysis

Xcode ships with the Instrumentation analysis tool which allows you to analyse your ap-
plications using a number of different analysis instruments and record the data in a trace
document. The same data can be collected repeatedly over multiple runs and displayed side
by side, or different types of data can be displayed in the same way. A library of different
instruments is provided and the developer can choose any combination of network or file
activity, memory allocation, CPU usage, core animation and core data monitoring to name
but a few. Instruments can even be used to create test harnesses by recording a user’s inter-
action with the application. The profiled data is displayed in a graphical format and points
of interest in the graph can be expanded to see the exact line of code that is causing the
problem. Another tool provided by Xcode is the Static Analyzer. This will run thousands of
possible code paths against your project source, and reports any potential bugs that might
exist. This is extremely useful for highlighting memory management issues.

Heap usage and memory allocation in Android applications is monitored through the use of
DDMS mentioned previously in section 2.3.2. Heapdumps can be exported from the DDMS or
programatically in code and examined in detail using the Eclipse Memory Analyzer. Method
profiling is also supported from the DDMS and Traceview is used to provide a representation
of the profiled code. Threads are shown in the Timeline Panel while individual methods are
shown in the Profile panel, again allowing the developer to drill right down to the code that
is causing problems. For stress testing of Android applications, the Android SDK provides
the Monkey command line tool. This generates a pseudo-random stream of user events that
can be played back repeatedly. Clicks, touches and other gestures, along with certain system
events are included.

Both platforms provide very useful tools for the developer to investigate and improve the
performance of their applications. Android does not have a comparable tool to the iOS Static
Analyzer, however as garbage collection is used on the Android platform this is not a major
issue. More detail on memory management can be found in section 3.4.

2.3.4 Emulation/Simulation

Android provides an Emulator as part of its SDK, whereas Apple provides a Simulator.
The Android Emulator emulates both the hardware and the software environments that the
application will run on, while the iOS Simulator only mimics the software environment that
the application will run on. For this reason, Apple places strong emphasis on device testing,
as issues such as running out of disk space will rarely be seen on the Simulator which has all
the resources of the Mac on which it is running. Because of this lightweight approach, the
Simulator is very quick to launch with little time needed between code changes to rebuild,
reinstall and relaunch the application. Apple provides 3 Simulators with Xcode; iPhone,
iPhone with Retina display and iPad, and a number of iOS versions can be used with these.
It is not possible to fully test every application on the iOS Simulator, however, as it does
not provide support for features such as mimicking phone calls or user location.

Android provides the Android Virtual Device (AVD) manager which allows the developer
to set up many different Android platforms and hardware configurations. The Android
Emulator claims to mimic all of the hardware and software features of a mobile device, with
the only caveat being that it cannot place actual phone calls. Due to the large numbers
of different Android devices and operating system versions, a large number of AVDs will
be needed by the developer when testing their application. As mentioned previously in
subsection 2.3.2, the Emulator also allows for debugging, providing the ability to simulate
phone calls and messages, hardware events, network access and device location. Android

Page 11 of 60

also allows the running of multiple emulators at the same time, and built-in commands can
be used to simulate phone calls between them, or to configure network redirections to allow
one emulator to send data to another.

Figure 2.1: Screenshot of the iPhone Simulator

Because the Android Emulator provides both hardware and software emulation, it can be
slow to load, often taking up to a minute on its first launch. Less time is needed to rebuild
and reinstall the application after code changes as the AVD does not need to be restarted,
but it is still not as quick as the iOS Simulator in testing updated code.

Figure 2.2: Screenshot of the Android Emulator

2.3.5 User interface design

Xcode comes with Interface Builder, a graphical design tool for building iPhone and iPad
user interfaces. Interfaces built with this tool are saved in a special type of file called a nib
file with a .nib or .xib extension. Interface Builder provides a drag and drop interface where
the developer can simply drag a particular type of view object onto the device window, set

Page 12 of 60

its properties, and choose which elements in the code to connect it to. Alternatively the
developer can create the user interface directly in the code.

iOS comes with a built-in set of user interface objects that can be used, and these can be easily
found in the Object and Media library in Interface Builder. Developers may also implement
custom views by subclassing one of the standard views if they so desire. On screen objects
can be connected to code objects using IBOutlets and IBActions. E.g. an IBAction is
used to communicate from the user interface to the background code so would be used for a
button, and an IBOutlets is how your application controller can communicate with the user
interface so may be connected to a text field on the screen. Interface builder provides various
menus to allow the developer to correctly size and align user interface objects. Autosizing
controls are also included which allows the developer to pin the object to one or more of the
edges and to control whether it stretches to fill the available space or not.

Figure 2.3: Interface Builder and BusStopViewController.xib

Before the release of the iPad, iOS application developers did not really need to worry
about application layout on different screen sizes and resolutions. When the iPad launched
originally, iPhone applications would only use the portion of the screen that was required to
show the application on an iPhone, or it could be stretched to twice that size, which often led
to pixelated displays. This meant the applications did not make the most of the screen space
available to them. To combat this Apple introduced the Universal Application. This allows
a developer to provide separate nib files for both iPhone and iPad and to use programming
idioms in the code to discover which device the application is actually running on and how it
should behave. Controllers may be shared with the code forking depending on which device
is in use, or an alternative approach is to use subclasses of controllers to determine display
behaviour.

User interface layout in Android is defined in one of two ways; using XML, or programatically
at runtime. In general most layout in Android is done using XML files, but can be manip-
ulated through the code at runtime. The major advantage of keeping the layout defined in

Page 13 of 60

the XML is the separation of presentation from the code that controls the application. An-
other reason is that it is extremely easy in Android to provide alternate layouts for different
screen sizes and resolutions. The layout XML files are copied into specific subfolders of the
res/layout folder for an application, and each version can be customised to the best layout
for that particular screen size, density etc. Android will work out what the device screen
size and resolution is, and which resource to use that will display the best on this combina-
tion. Additional layouts can also be included for orientation and aspect ratio. Within the
XML it is easy to enforce how the views will display on different size screens by setting the
fill parent1 or wrap content attributes on a view’s horizontal and vertical layout parame-
ters. Specific sizes may also be set, with the available units being pixels, density-independent
pixels, scaled pixels, inches or millimetres.

Android comes with a set of predefined layouts and widgets that can be used by the applica-
tion developer. These layouts can be nested inside each other to combine into more complex
layouts. A simple example of this is how scrolling can be added to an application. The
ScrollView is set to be the root view of the XML and any other views, e.g. LinearLayout

are nested inside this. Any of the existing widgets can be easily included in the XML or in
the code, e.g. Buttons, Checkboxes, Progress bars, Spinners, Time Pickers etc. User input
can be handled in the code by implementing Listener interfaces for each of these widgets
and views. Android also allows the developer to provide their own custom views and wid-
gets by extending the core layout APIs. These interfaces and classes can be found in the
android.widget package and are well documented.

Figure 2.4: Eclipse Graphical Layout editor

Eclipse does not include a full graphical design tool for user interface layouts in Android.
There is a Graphical Layout tab for editing layout XML files, but this is poor in comparison
to Interface Builder. It may be simpler for the developer to edit the XML manually in
the XML editor. The use of the various AVD configurations is essential for determining
the actual screen layout, as one can be created for every screen size and density required.
Another useful tool included in the Android SDK is the Hierarchy Viewer. This provides
static snapshots of the View objects that make up the user interface of the activity that is
currently running, the relationships between these and the various properties that each View
has. Android also provides the layoutopt tool which can be run against the layout XML files
to highlight any inefficiencies in the view hierarchy.

The graphical user interface design tool provided by iOS is far superior to the one provided

1This has been renamed to match parent from API level 8 onwards

Page 14 of 60

by Android. Android attempts to address this by providing extremely flexible layout options
through the use of XML. Android also allows for the testing of various layouts using the
AVD, however this can be quite slow. Both platforms allow for the separation of the view
from the controller code which is extremely useful to the developer.

2.4 Devices

Apple is the sole manufacturer of the iPhone and therefore has total control over the hardware
and software on the phone. This means that Apple does not have to compete with other
manufacturers offering similar phones with iOS in the way that Android manufacturers do.
Because of the phenomenal success of the iPhone, and being the sole manufacturer of the
device allows Apple to negotiate with hardware manufacturers, e.g. for components such as
flash memory or retina displays. Apple controls the standard of component going into the
device and knows exactly how the operating system will perform on it.

Having only one manufacturer of devices for iOS means that developers need to worry less
that their applications will not work on all iOS devices. Having said that, there have been
4 models of iPod touch, 5 models of iPhone and 2 models of iPad since the initial launch.
The iPhones all have the same 3.5 inch screen and resolution, with the only difference being
the iPhone 4S doubles the resolution, so developers have had little to worry about in terms
of how their applications will look on iOS devices. With many different devices running
different versions of iOS, developers are also able to restrict their applications to certain
devices and iOS versions in the App Store by setting the required device capabilities in the
application properties, and configuring the base SDK and deployment target settings on their
applications in Xcode.

A wide range of Android devices are available on the market today. These are produced by
manufacturers such as HTC, LG, Samsung, Motorola, Sony Ericsson and a number of other
smaller manufacturers. Because Android is used by numerous device manufacturers, and on
many different handsets, fragmentation is more of a worry for the Android developer. How
does the developer ensure that their application will operate in a consistent way on the various
devices running the Android OS? This is exacerbated by the fact that manufacturers and
telecommunications companies often put their own skin on top of Android, e.g. HTC Sense.
Ensuring consistency is one of the main focuses of the Open Handset Alliance mentioned
in section 1.1 and so far they seem to be doing a good job. Android devices tend to be
priced slightly lower than iOS devices and this is probably due to the increased competition
of having a range of devices available for the same platform. As Apple is the only iOS device
manufacturer they are in a stronger position than Android device manufacturers and are
most likely making a higher profit because of this.

The Android Market allows the developer to specify certain hardware and software capa-
bilities that are required for the application to run on a device. These are defined in the
Android Manifest and applications are filtered out of the market view for devices which do not
meet these requirements. Developers can also specify minimum and maximum SDK versions
for their applications, and Android have recently introduced the option to provide different
versions of the same application which are targeted at different versions of the platform.

Having a single manufacturer for iOS devices means less work for the developer to ensure
that their applications run consistently across all iOS devices. The Android developer must
be careful to consider other resolutions, hardware capabilities and software versions. Android
attempts to address this by allowing the developer specify different layouts and resources for

Page 15 of 60

different device specifications, and by filtering the applications that are available to device
users in the Android Market.

2.5 Summary

This chapter has covered the initial steps that a developer must take in order to start de-
veloping for Android or iOS. If developing for iOS the developer needs a Mac and Xcode,
whereas if developing for Android the developer has a choice of operating system and IDE.
Once these are in place the developer should become familiar with the large variety of tools
available to them. Developers can choose whichever SCM solution they prefer, but are lim-
ited to the debuggers, emulators or simulators and user interface design tools that come
with each software development kit and integrated development environment. Finally, the
developer must bear in mind the target devices for their applications and, if possible, obtain
some for testing purposes. In the case of Android there are a huge number of devices avail-
able, with different resolutions, hardware capabilities and running different versions of the
Android operating system. In the case of iOS, Apple is the sole device manufacturer so the
developer has much less to worry about.

The next stage for the developer is to make sure that they have a good understanding of
the languages used to write these native applications, and this is covered in the following
chapter.

Page 16 of 60

Chapter 3: Languages

A major consideration for the developer starting mobile application development is the lan-
guage that is used to write the application. If a developer is not familiar with the required
language, a considerable amount of time and effort may be required for the developer to learn
it. iOS native applications are mostly written in Objective-C, although Ruby and Python
can also be used. Android applications are mostly written in Java, although the Android
Native Development Kit (NDK) is also provided to support the implementation of parts of
applications in native-code languages such as C and C++. This chapter will focus on the
use of Objective-C and the Cocoa application frameworks, and Java and the Android frame-
works. Both languages are object oriented and offer the standard features such as classes,
polymorphism, inheritance, method overriding, etc.

Objective-C [40] is an extension to the standard ANSI C language which enables object
oriented programming. As Objective-C is an extension of C, C and C++ code may also be
included in applications, and functions outside of the Cocoa frameworks may be called.

Android makes use of the Java language [29] and the majority of the Java Standard Edition
class libraries, adding its own libraries while leaving others out. When the code is compiled,
Java .class files are first created, and these are then transformed into the .dex format and
executed on a Dalvik VM. Each application runs on its own Dalvik VM.

Section 3.1 begins by comparing the constructs required for object creation in Objective-
C and in Java. Section 3.2 details how methods are invoked in each language, and this
is followed by section 3.3 which discusses the use of properties in Objective-C. Section 3.4
compares and contrasts how memory is managed in both platforms. Section 3.5 and section
3.6 provide information on categories and blocks, neither of which are supported in Java.
Section 3.7 provides a summary of the information discussed in this chapter.

3.1 Object Creation

Object instantiation in Objective-C is done using alloc and init. alloc dynamically allo-
cates memory for the instance variables belonging to the object and initialises these all to 0.
The init method is then responsible for initialising these instance variables to be something
useful, and may be implemented to take in additional parameters.

MyObject myObject = [[MyObject alloc] initWithName:@"Object Name"];

Objective-C uses id as the general type for any kind of object, however objects can also be
statically typed. NSObject should be used the base class of all classes in Objective-C. nil
is used in Objective-C for defining null objects. Sending a message to nil is allowed and has
no effect at runtime.

In Java objects are instantiated using the new keyword, which causes the object constructor
to be invoked. If no constructor is defined, a default constructor from Object is used. Object
is the base class of all classes in Java. Java classes are statically typed.

Page 17 of 60

MyObject myObject = new MyObject("Object Name");

3.2 Message Passing

In Objective-C to get an object to do something, you send it a message telling it which method
to apply. Objects in Objective-C are dynamically typed at runtime. This means that the
exact message invoked is only determined at runtime and not when the code is compiled.
Messages can also take parameters or arguments. The parameter name is suffixed with a
colon and the parameter follows immediately afterwards. Methods that take parameters
should be named in such a way that the method name describes the parameters used, as the
parameter names are included when calling the message.

[myObject doStuff];

[myObject moveFromPoint:point1 toPoint:point2];

In Java methods are invoked directly on the instance of the class to which they belong. In
Java the parameter names are not included when calling the method.

myObject.doStuff();

myObject.moveFromPointToPoint(point1,point2);

3.3 Properties

Getters and setters are commonly used by developers to control access to instance variables.
In Objective-C the convention is to simply use the variable name as the name of the getter
method and to prefix this with ”set” for the setter method. E.g.

-(NSString*)name;

-(void)setName:(NSString*)myName;

Objective-C has introduced the concept of a property to make it easier to access instance
variables using dot notation. Adding the @property notation for the instance variable in the
header file causes the compiler to automatically generate the getter and setter declarations.
The getter and setter methods for the instance variable can be invoked as follows:

NSString *objectName = myObject.name;

myObject.name = @"Object Name";

Further addition of the @synthesize notation for the instance variable in the implementation
causes the compiler to automatically generate the getter and setter for the variable. This
means that the developer does not have to implement these methods unless custom processing
or validation is needed. This also keeps the code tidy as simple getter and setter code does
not need to be included in the object implementation.

Page 18 of 60

This concept is unique to Objective-C as Java does not have anything comparable. Most
modern IDEs, however, offer the ability to generate getters and setters for instance variables,
but the code for these methods must be explicitly included in the Java interface and imple-
mentation. The developer can easily generate these methods and customise them further if
required.

3.4 Memory Management

With the limited capabilities of mobile devices, memory management becomes extremely
important. No developer wants their application to be uninstalled because it is not respon-
sive, because it crashes at runtime, or because it is draining the battery, so it is important
to balance carefully the creation of objects needed by an application. Each application is
responsible for creating only the amount of objects that it actually requires, and to ensure
that these get destroyed correctly when they are no longer needed so that resources are not
wasted.

Objective-C supports three kinds of memory management: automatic reference counting
(compiler), manual reference counting (programmer) and garbage collection (not available
for iOS). Manual reference counting is provided by NSObject and the runtime environment,
but the developer is responsible for keeping track of objects used. Objects are allocated using
alloc and init as described in section 3.1, and must be retained, released and deallocated
correctly in the application code. Automatic reference counting is supported for iOS 4
and 5 and uses the same reference counting mechanism as manual reference counting, but
the appropriate release, retain and autorelease calls are inserted at compile time so the
developer does not have to do this manually. If Core Foundation framework objects are used,
however, these still need to be managed appropriately so the developer cannot completely
forget their memory management responsibilities. Automatic reference counting is enabled
by the use of a compiler flag. Garbage collection is supported by Objective-C but not by
iOS so does not apply to mobile application development.

In Android applications, the Dalvik runtime is garbage collected, but developers must still be
aware of their application’s use of memory. As the garbage collector looks after the allocation
and freeing of memory, the developer does not need to write code for this, but instead must be
careful not to retain references to objects that are no longer needed. Doing so will prevent
these objects being garbage collected and will prevent the allocated memory from being
reused. With device rotation, the entire activity in view is destroyed and recreated. If there
are any static references to the original view this will cause the memory used by that view’s
objects to remain on the heap so it will never be garbage collected. This means that there
is now less memory available to the application.

Within Android there is a hard limit on the amount of heap size available to each application.
This is device dependent so devices with more memory will allow each application a larger
heap size. Because the heap size is limited, if an application has already exhausted its
allocated size and tries to create a new object, an out of memory error will be seen. The
length of time required for garbage collection also depends on the heap size and this is an area
that has recently been improved upon with the release of Android 2.3. Previous to this, a
“stop the world” garbage collector was used, where the application was paused while garbage
collection was in progress. This could lead to the application seeming to be unresponsive.
With the release of Android 2.3 concurrent garbage collection has been introduced. This
means that the garbage collection runs in a concurrent thread to your application, collecting
in the background, which leads to a huge improvement in application pause times.

Page 19 of 60

3.5 Categories

Categories allow the developer to extend the functionality of a class without subclassing.
They allow the developer to add additional methods to any class, and these methods are
added to the class type. Categories are supported by Objective-C but Java does not offer
a similar construct. Categories are defined with the same interface name as the class it is
adding to, and the unique name of the category in brackets afterwards. The header and
implementation files are usually named with the class being added to joined with a plus sign
to the name of the category. E.g. MyClass+MyCategory.h, MyClass+MyCategory.m

@interface MyClass (mycategory)

-(NSString*)myNewMethod;

@end

@implementation MyClass (mycategory)

-(NSString*)myNewMethod{

// implementation code goes here

}

@end

All that is required to use this is the import for the category header file and the methods
will now be available on all MyClass objects. At runtime there is no difference between
methods added in a category and methods declared on the class itself, and both are available
to subclasses. Categories have access to the instance variables of the class they are adding
to, but cannot add instance variables of their own. Multiple categories may be added for the
same class, but each must have a unique name and must declare different methods.

3.6 Blocks

The use of blocks has been a feature of scripting and programming languages such as Python
and Ruby for some time now1. iOS 4 introduced the use of blocks in Cocoa application
development. Java currently does not offer a similar feature, however this may be added in
Java 8 so will probably also make its way into Android. Blocks are essentially anonymous
functions, encapsulating a set of instructions and the data required by them, and can be
passed around like objects. Blocks can be anonymous or named, can take in parameters and
can return values. Blocks close around the variables that they make use of, i.e. if an instance
variable is used inside a block, the value used in the block is the value that it had when the
block was instantiated.

When used as method arguments, blocks are a form of callback which allow the developer to
customise the called method’s code. Since iOS 4 new methods which take blocks have been
added to the collection classes, the NSNotification class, UIView for animations, and to
many other places. In the example below the animations parameter is a block which simply
causes the view to fade out.

[UIView animateWithDuration:1.0

animations:^ {bgDisplay.alpha = 0.0;}];

1Blocks are also referred to as closures or lambdas.

Page 20 of 60

One common use of blocks is completion blocks. A completion block is a block that is passed
as a parameter with a message and which is executed on completion of the called method.
Another common use is error handling blocks, where the block is again passed as a parameter
to a method and is executed if an error occurs in the called method. This allows the developer
to inject custom error handling code. Blocks are a vital feature of Grand Central Dispatch,
a concurrency mechanism which is discussed in more detail in section 5.2.

3.7 Summary

Some of the major differences between Objective-C and Java have been discussed in this
chapter. While both languages are object oriented, there are a wide range of differences
between them, as discussed in the sections above. Due to this, a developer familiar with only
one of these languages may disregard development in the other as the overhead of learning it
is simply too great. Objective-C offers a number of features that Java has no support for, for
example categories, properties and blocks. The use of properties can reduce the amount of
code a developer has to write, and reduces clutter in object implementations where no further
customisations are needed. Categories make it extremely easy to add new functionality to
a class without subclassing. Developers who have never used blocks before may find this an
alien concept at first, but with a little experience find that blocks are extremely flexible and
useful to the developer. Java developers in particular may struggle with the object creation
and memory management that must be carefully considered with Objective-C development,
whereas Objective-C developers may prefer the manual control over the amount of resources
in use at any one time rather than relying on garbage collection.

Once a developer has a good knowledge of the language they will be working with, they can
move on to their next major task, the design of the application itself.

Page 21 of 60

Chapter 4: Design

Good design is crucial for mobile application development. If an application is not designed
correctly from the beginning, minor changes at a late stage may require major rework of
the application code. Application code should be easy to maintain so that any bugs can be
quickly fixed, and so that new features can easily be added. It is also important to ensure
that the application performs well, as inefficient code or mismanagement of memory will lead
to applications being uninstalled by disgruntled users.

This chapter deals with the design of iOS and Android applications. Section 4.1 begins by
looking at the architectures of the Android and iOS platforms. This is followed by a discussion
on the software patterns that are commonly found in Android and iOS applications in section
4.2. Section 4.3 and section 4.4 go into more detail on the internals of each type of application
with an in depth exploration of the application structures and application lifecycles. Section
4.5 provides a summary of the information discussed in this chapter.

4.1 Platform Architecture and Frameworks

The Android operating system is made up of a number of core components which can be
seen in figure 4.1.

Figure 4.1: The Android Architecture, source Android Developers [2].

Page 22 of 60

Core and third party applications are at the top layer and sit on top of the application
framework. This is made up of a number of components which allow the developer to
manage activities, windows, resources, location, etc. in their applications. These components
are based on a set of libraries and the Android runtime. These Android libraries are mostly
written in C and C++ and are exposed to application developers through the framework
APIs. The application framework components depend also on the Android Runtime. This
consists of the core Android libraries which provide most of the functionality of the core Java
libraries, and the Dalvik Virtual Machine upon which all applications run. At the base of
the Android platform is the Linux Kernel. This handles hardware, power, process, security
and memory management and provides functionality to the Dalvik VM such as threading
and low-level memory management.

The iOS architecture can be viewed as a set of 4 main layers which can be seen in figure 4.2.

Figure 4.2: Layers of iOS, source iOS Developer Program [14].

The Cocoa Touch layer is at the top of the stack and is the one most used by application
developers. It provides object oriented abstractions for the lower layers. The lower layers may
also be used by application developers who want to use them directly or access functionality
not exposed by higher layers. The Cocoa Touch layer provides multitasking, notifications,
gesture recognisers, standard system view controllers, etc. It is made up of a number of
frameworks such as Address Book, Event Kit, Game Kit, iAd, Map Kit, Message, Twitter
and UI that developers can use in their applications. The next layer in the iOS stack is the
Media layer and this is responsible for graphics, audio and video technologies on iOS devices.
It consists of a number of core frameworks along with other frameworks such as OpenGL
ES [31], Media Player and Assets Library which can be used for multimedia integration. The
Core Services layer contains the fundamental system services that all applications use and
is built upon by many other parts of the system. This area holds vital technologies such
as Block support, Grand Central Dispatch, SQLite [49] and much more. The Core Data,
Foundation, Location, Telephony, and many other commonly used frameworks are found
in this layer. The Core OS layer is the foundation of the stack and holds the lower-level
features that the other technologies are built upon. This contains the security, system level,
bluetooth, acceleration and external accessory frameworks. Functionality in all of these layers
is available to application developers, however, they are encouraged to use the highest layer
possible that contains the functionality they require.

4.2 Patterns

A number of common patterns can be seen in native mobile applications, regardless of plat-
form. Model-View-Controller (MVC) is probably the most common of these [45] [46]. MVC
was first described by Reenskaug in 1978 with regards to Smalltalk-80 but is still relevant

Page 23 of 60

in object oriented programming today. MVC involves separating the code to handle the
application data (the model), from the code used to display this to the user (the view), and
also separating out the code to determine the interactions between these two (the controller).
In general this is extremely useful as separation of data and user interface means that, for
example, a new database can be used, or a new user interface can be swapped in with mini-
mal disruption to the rest of the application. MVC is a composite pattern so several other
patterns are used within it. The model object holds the application data, the view presents
data to the user, and the view controller communicates with the model and the user interface
and determines what data the view should display.

In the LiveBus application, one example of the MVC pattern can be seen in the context of
the bus stop. The class responsible for the bus stop data, i.e. their locations and scheduled
pickup times, is the model and the controller is responsible for getting this information for
the user and setting up the view that is to display them. In the iOS application the controller
is BusStopViewController while BusStopViewController.xib contains the user interface
information with the map and the table views to display the relevant data. Similarly in
the Android application, BusStopActivity is the controller and the BusStop.xml layout file
contains the map and the table views to display the given data. In both cases the views are
generic widgets provided by the platform and the data to be displayed is simply fed to them
by the controller. There is no direct communication between the model and the view, all
communication is initiated by the controller. The controller is the data source for the view
rather than the model, and determines what subset of the model’s data should be displayed
on the view. The model implementation is specific to the data that needs to be displayed,
while the view is generic, and the controller is the bridge between both.

Delegation [33] is commonly seen in the MVC pattern. In this case the view needs to com-
municate with the controller when certain events happen, however, as the view is a generic
one provided by the platform, the view cannot know any specific information about the con-
troller. When the controller first sets up the view, it sets itself as the delegate of the view.
The view knows that the delegate responds to a certain set of messages, but knows no more
about the delegate object. This allows the view to get more information from the controller
by calling the delegate methods. In the iOS application, the BusStopViewController adopts
the UITableViewDelegate protocol by implementing the required methods. When the view
is created by the controller it sets itself to be the delegate of the UITableView to display
the pickup times. On selection of a row in the table, the UITableView knows to inform
its delegate by calling the method tableView:didSelectRowAtIndexPath:. In the case of
BusStopViewController this is not implemented as it is an optional method on the protocol
and no processing is required when a pickup time is selected.

Another way that the view can communicate with the controller is using the target-action
mechanism. This is a simplification of the Command pattern as documented by Gamma et
al [22], and is commonly seen in Objective-C development. For example, the controller wants
to know when a button is pressed so sets up a target action and gives this to the view. In
BusStopViewController the controller itself is set as a target on the favourites button with
a method selector as the action for the event the controller is interested in.

[favButton addTarget:self

action:@selector(favouriteStop)

forControlEvents:UIControlEventTouchUpInside];

A selector is simply an identifier for a method in the target. When the required event occurs,
the view then sends the given action message to the given target. The view only knows that it
is sending the message to some target, and knows nothing about the implementation details.
The view can pass itself as a parameter with the message so the target can query the view

Page 24 of 60

for the details of the event that has occurred.

If the model needs to communicate with the controller, for example, to let it know that the
data has changed and the view should be refreshed, there are a number of options available.
The model should not communicate directly with the controller, the link is one-way and
should only be from the controller to the model. The view should instead broadcast a
notification which the controller (among others) can listen for, or use a technique like key
value observing where the observer is directly notified of the change. In iOS broadcasts are
done using NSNotification, while in Android Intents and BroadcastReceivers are used.

MVC groups can be combined to create more complicated applications. These work together
to form the whole application. In the LiveBus application, a MVC group can be seen for
the list of bus stops, the favourite bus stops and also for individual bus stops. When a bus
stop is selected from the list of bus stops or favourite bus stops, the controller for the bus
stop is launched and the view for the individual bus stop is shown. In certain cases the
view pointers of some controllers can connect to sub-controllers rather than directly to a
view. Also models can be shared and views can be reused between MVC groups. With MVC
groups working together to form a complete application, the developer needs to be careful
to set object responsibilities and boundaries correctly. The developer should aim to keep to
a minimum the number of connections in and out, and to minimise interactions with others.

4.3 Application Structure

Four main application components exist for building Android applications: Activities, Ser-
vices, Content Providers and BroadcastReceivers. Each of these is a unique entry point for
an application and helps define how it behaves. Each component has a specific purpose and
a distinct lifecycle that determines how it is created and destroyed.

Activities are most familiar to an Android developer as they correspond to a single screen
in the user interface. Typically Android applications are made up of a number of activities
which are linked together. Each activity is an independent entity and so can be reused
across applications if desired. The LiveBus application consists of a number of activities:
BusStopsActivity, FavouriteBusStopsActivity and BusStopActivity.

A service can be thought of as a background operation which is designed to handle long
running tasks or remote operations, and which does not have an associated user interface.
The BusPositionService in the LiveBus application is an example of this. It repeatedly
polls a web service for bus position data.

A Content provider is responsible for the management of a set of shared data between
applications. The data can be stored in a number of different ways, and any application
with the required permissions can query or modify it. A number of system content providers
are accessible to Android developers, one of these being the ContactsContract which allows
access to a wide range of functionality around the user’s contacts. Developers can write their
own content providers to share data with other applications.

A broadcast receiver is a component that listens for and responds to system-wide broadcast
events. Broadcasts may come from the system, for example, Low Battery, or from another
application. Broadcast receivers generally do not have an associated user interface, but quite
often use status bar notifications to alert the user that something has occurred. Often the
broadcast receiver is simply used to listen for an event, and then start a service to perform

Page 25 of 60

some processing based on this event occurring.

Activities, services, and broadcast receivers are all started from Intents. This is an asyn-
chronous message and may be implicit or explicit, i.e. the intent may define a message to
start a particular component, or a particular type of component. For activities and services
an intent may also contain information required to start the activity or service, e.g. the
URI of data to be used. For broadcast receivers the intent simply states that an event has
occurred. Content providers are not accessed using intents but by using ContentResolver

queries. ContentResolvers provide a layer of abstraction between the content provider and
the component using it.

Activities, services, broadcast receivers and content providers are tied together to form an
application using the information provided in the ApplicationManifest. This is an XML
file which defines which components form the application and any permissions, hardware,
OS versions etc. that are required for the application to run.

For iOS applications, the UIKit framework manages the application’s behaviour through the
UIApplication object. This manages the application event loop by handling system events
and passing them onto the application delegate which contains custom code for processing
these events. The delegate is also responsible for setting up the initial navigation structure
for the application, as can be seen in application:didFinishLaunchingWithOptions: in
the TextMeMyBusApplicationDelegate implementation.

Most iOS applications contain a single window which is set up by the application delegate.
The content displayed on the window is determined by the current view controller and
the application delegate sets up the view controllers and sets the view to be used in the
application:didFinishLaunchingWithOptions: method.

Figure 4.3: iOS application structure, source iOS Developer Program [14]

View controllers manage the presentation of application data on the device screen. A view
controller is responsible for a single content view. However, this view may have multiple
subviews. The applications custom view controllers are responsible for initialising and loading
views, handling device rotation, and responding to events from the user interface usually
through the use of delegation or action methods. Usually views are made up of standard

Page 26 of 60

UIKit view objects, for example, text areas or buttons, and may also contain custom views
or subviews of the existing view objects. Animation may also be added thorough the use of
the Core Animation frameworks, and if more sophisticated drawing is required OpenGL ES
views may be used.

All the application configuration data for an iOS application is stored in the Info.plist file.
This structured key-value pair data file is used by the operating system to determine how to
interact with the application. It stores information such as the Minimum OS version, icon
files, device hardware requirements, the main nib file name, custom application information
and any other information required to run the application.

4.4 Application Lifecycle

There are five possible states for an iOS application: Not Running, Inactive, Active, Back-
ground or Suspended. The normal state for an application is Active which means that it is
running in the foreground and is receiving events. If an application is in the foreground but
is not executing events it is said to be Inactive, in this case it may be executing long running
code, or the system is prompting the user to respond to some event, so the application cannot
handle user interface events. Applications may also be run in the Background where they
can still execute code. If the application is running and, for example, the user answers a
phone call, the application is Suspended which means that it is in the background, but not
executing any code. An application is in the Not Running state if it has never been started,
or has been terminated by the system, for example, to free up resources.

Figure 4.4: State changes in an iOS app, source iOS Developer Program [14].

There are a number of methods in the UIApplicationDelegate protocol that handle these
state changes for an iOS application.

• application:didFinishLaunchingWithOptions

• applicationWillResignActive:

• applicationDidBecomeActive:

Page 27 of 60

• applicationDidEnterBackground:

• applicationWillEnterForeground:

• applicationDidReceiveMemoryWarning:

• applicationWillTerminate:

These methods allow the developer to respond to state changes in their application in an
appropriate way. For example, in the LiveBus iOS application, there is no need to read
the bus stop arrival prediction times when the application is in the background. The
applicationDidEnterBackground method stops the timer when the application has moved
to the background, and the applicationWillEnterForeground method is used to reload
the predictions to start a new timer when the application is about to move to the foreground
once more.

As well as UIApplication lifecycle changes, the iOS developer has UIViewController life-
cycle changes to deal with also, and there are a number of methods that can be implemented
for this. These methods fall into two cycles, the load cycle and the unload cycle.

If the view is created with Interface Builder and stored in a .xib file, initWithNibName:bundle
should be implemented with the appropriate information and should be used to initialise the
view controller. When the view is actually loaded for the first time loadView is called and
the default implementation for this is to load the view from the nib file specified previ-
ously. If the view is not created in Interface Builder but instead is created programatically,
initWithNibName:bundle is not needed and the developer should override the implementa-
tion of loadView to create the necessary view objects and assign the container view to the
controller’s view property. The viewDidLoad method is invoked next to allow the controller
to perform any additional load time tasks. Taking the BusStopViewController in the Live-
Bus application as an example, this is loaded from a nib file so initWithNibName:bundle

is implemented, and loadView is not overridden. The viewDidLoad method is responsible
for loading the pickups from the web service, and setting up the map annotation and region,
and the favourites bar button item.

The main methods the developer is concerned about for the unload cycle are viewDidUnload
and didReceiveMemoryWarning. The didReceiveMemoryWarning method is called when
the system is low on memory and should be used to release all non-critical data used by the
view. The viewDidUnload method is called when the UIViewController releases its views
and should be used to release any view specific data e.g. view outlets. The dealloc method
should never be called directly, but is called by the infrastructure and should be used to
release all data structures associated with the view controller.

A number of additional methods are provided by the UIViewController to allow the devel-
oper to respond to view events.

• viewWillAppear

• viewDidAppear

• viewWillDisappear

• viewDidDisappear

These are called right before and after the view appears and disappears, and allow the devel-
oper to do any further processing that might be required. Usage of viewWillAppear can be
seen in the CoreDataTableViewController implementation in the LiveBus application. This

Page 28 of 60

is the superclass of BusStopsViewController and FavouriteBusStopsViewController,
and calls the method performFetchForTableView before the view appears. This fetches the
data to be displayed in the table from core data and calls reloadData on the UITableView.
An example of functionality that could be put into the viewWillDisappear method is saving
user entered data, although the developer should be careful not to do long running tasks at
this stage.

Each of the four android components mentioned previously have distinct lifecycles with
Activity and Service being the most complex. There are three main states that are possible
for an Android activity: Resumed, Paused and Stopped. A Resumed activity is in the
foreground and has focus, it is running. A Paused activity is also in the foreground and is
visible, but no longer has focus as another smaller or partly transparent activity is visible on
top of it and this has the focus. All state and member data is retained and it is still attached
to the window manager, however, a paused activity may be terminated if system memory
becomes very low. A Stopped activity is in the background and is completely hidden by
another activity. State and member data is maintained, but it is no longer attached to the
window manager. The activity can be terminated by the system when memory is needed.
Paused and Stopped activities can be terminated by the system either by calling the finish

method or by killing its process.

Figure 4.5: The Android Activity lifecycle, source Android Developers [2].

Page 29 of 60

The following callback methods are provided to allow the developer to maintain the correct
state for their activity through state transitions.

• onCreate

• onRestart

• onStart

• onResume

• onPause

• onStop

• onDestroy

Any implementation of these methods must call the superclass implementation before any
custom code is executed. These methods define the entire activity lifecycle and can be
separated into three main execution loops: the entire lifecycle which occurs between onCreate

and onDestroy, the visible lifetime which occurs between onStart and onStop, and the
foreground lifetime which occurs between onResume and onPause. Figure 4.5 represents a
number of possible lifecycle paths for an activity.

onCreate is called when the activity is first created and view setup should be done here.
This takes in a bundle of the previous activity state if applicable and is always followed by
onStart which is called just before the activity becomes visible to the user. This is followed by
onResume if the activity comes to the foreground, or onStop if it becomes hidden. onResume
is called just before the activity starts interacting with the user and when the activity is at
the top of the activity stack. In BusStopsActivity in the LiveBus application, this is used to
register a BroadcastReceiver to get updates from the BusPositionSevice, and to redraw
the map with the data available. onPause always follows onResume and is called when the
system is about to resume another activity. In BusStopsActivity the activity unregisters
for broadcasts from the BusPositionSevice. These are no longer needed as the activity
will not be in the foreground. The developer should be careful not to perform long running
tasks here as the next activity will not resume until this method has completed. onStop is
called when the activity is no longer visible to the user, either because another activity has
resumed and is hiding it, or because it is being destroyed. If the activity is coming back to
the user onRestart is called which is followed by onStart, or if the activity is going away
completely onDestroy is called. onDestroy is called either because the activity is finishing,
or because the system is killing it to regain resources. In BusStopsActivity onDestroy is
used to close off the database connection.

The Service component always runs in the background as it has no user interface and falls
into two categories, Started and Bound. A Started service is created when another com-
ponent such as an activity calls startService. Once started the service runs indefinitely
in the background until it is stopped by the component calling stopService, or until it
has completed its function and has stopped itself by calling stopSelf. If neither of these
things happen the service will run indefinitely in the background. BusPositionService in
the LiveBus application is an example of a Started service. A Bound service is started when
a component calls bindService and offers a client-server interface that allows multiple com-
ponents to interact with it. A Bound service runs as long as a component is bound to it and
when the last component is unbound it is destroyed by the system.

Services can actually be both Started and Bound, and this is determined by the implemen-
tation of the required callback methods.

Page 30 of 60

• onCreate

• onStartCommand

• onBind

• onUnbind

• onRebind

• onDestroy

Figure 4.6: The Android Service lifecycle, source Android Developers [2].

onCreate is called for both Started and Bound services and does the setup for the service.
If the service is Started, onStartCommand is called next. In the BusPositionService this
method sets up a Runnable which reads the bus positions from the service.1 If the service is
Bound onBind is called instead of onStartCommand. This method must return an IBinder

which the bound components use to call methods on the service. BusPositionService

returns null for this method as it is not a Bound service. When all clients have unbound
from the service, onUnbind is called. If the service is also a Started service, stopSelf should
be called here to explicitly stop the service. If not, onUnbind can return true which indicates

1The BusPositionService also provides an implementation of the onStart method to provide backwards

compatibility with systems running a version of Android previous to API level 5. This method has since been

deprecated and replaced with onStartCommand.

Page 31 of 60

that clients may rebind to the service, at which stage onRebind will be called instead of
onBind. If the service is not a Started service the default implementation of onUnbind may
be used and there is no need to call stopSelf as the system will do this automatically.
onDestroy is called for both Started and Bound services and should release all remaining
resources for the service. In BusPositionService, this removes any callbacks from the
Runnable created for the service.

The Content Provider lifecycle is mainly managed by the android system rather than though
another component. When a request is made via a ContentResolver the system inspects the
URI to determine the correct ContentProvider to query. If this is not running, an instance
of it is created and this same instance is used for future requests. When implementing the
ContentProvider, setup should be done in the onCreate method which is run on the main
thread. The remaining methods that are to be implemented may be accessed by any thread
so the developer must be careful to be sure that their implementation is threadsafe.

A BroadcastReceiver is only valid for the duration of the onReceive call, and once this
is complete it is no longer considered active by the system. BroadcastReceivers may be
explicitly declared in the application manifest or registered from within another component,
for example, BusStopsActivity registers a receiver for the bus position updates in onResume

and unregisters it in onPause.

4.5 Summary

This chapter has covered the aspects of Android and iOS application development that
a developer should take into consideration when designing their mobile application. The
architectures of both platforms are different, however, many of the patterns that apply are
the same. Model View Controller features strongly on both along with the use of delegation,
observation and notifications to name but a few. The structure and lifecycle of Android
and iOS applications are very different, and the developer must take care to implement
the required methods correctly. Android applications are built using Activites, Services,
ContentProviders and BroadcastReceivers and each of these has its own particular lifecycle.
iOS applications consist of UIApplicationDelegates, UIViewControllers and UIViews and
have a completely different lifecycle to an Android application. In particular the developer
must be careful not to waste system resources and to create and destroy objects at the
appropriate points, as inefficient use of resources will lead to poor performance as applications
run out of memory.

Once all these areas have been mastered, the next challenge for the developer is the imple-
mentation of the required features for that platform, and this is covered in the following
chapter.

Page 32 of 60

Chapter 5: Features of Mobile Applications

A number of features are to be expected in mobile applications today. Among these are
menus, the ability to run in the background, data storage, access to remote services, location
based services and security. Not all are applicable to every application, but a number of
these will most likely be found in any application.

This chapter goes into detail on the implementation of each of the features described above
on both the Android and iOS platforms. Built-in support is provided for some features,
and some require considerable effort on the part of the developer. Section 5.1 describes
the implementation of menus in a mobile application. This is followed by section 5.2 which
provides details on what is required for an application to make use of multithreading and
concurrency. Section 5.3 describes the various storage options available to the developer, and
following on from this, section 5.4 describes the use of external services by an application.
Section 5.5 investigates the location based services supported by Android and iOS. Section
5.6 takes a look at the security models used by both platforms and the responsibilities of
the developer with regard to this. The chapter is closed with 5.7 provides a summary of the
features investigated in this chapter and is accompanied by table 5.1.

5.1 Menus

All Android devices have a menu key so every application can take advantage of this fact and
every activity can have an options menu if desired. Like other user interface items, menus
can be declared in XML or in code. The recommended way to create an options menu is by
adding a menu XML file to the res/menu folder and inflating this in code by implementing
the onCreateOptionsMenu method in an Activity. Similarly the code for determining what
happens when a menu item is selected should be implemented in onOptionsItemSelected.
An example of this can be seen main.xml in the LiveBus Android application and in the cor-
responding method implementations in BusStopsActivity. Menu items can also be modified
at runtime and this is done with the List and Map menu items in the BusStopsActivity,
where only one of these menu items should be available at any time and this is determined
by whether the list or map view is visible.

With the release of Android 3.0, there have been a number of changes to how menus are
supported. Primarily support for an Action Bar has also been added, which means that
menu items are added to an Action bar across the top of the Activity and are accessible
directly from here or from its overflow menu. In addition to this, an onClick attribute has
also been added for each menu item, meaning that the developer does not have to implement
onOptionsItemSelected but can define the method to be called when each menu item is
clicked.

Another type of menu available in Android is the context menu. This is displayed when a user
performs a “long press” on a user interface item, e.g. an item in a list. The menu is generally
specific to the item selected by the user. Again, these menus can be inflated from XML or
created purely in Java code, and the onCreateContextMenu and onContextItemSelected

methods must be implemented to handle this.

Page 33 of 60

Figure 5.1: Screenshot of the LiveBus application menu

Android also offers more advanced features such as submenus, checkable menu items, menu
groups, shortcut keys, and the dynamic addition of menu items to launch other activities
based on intent options. Menus are a very flexible and powerful resource available to a
developer.

Custom menus have only been supported in iOS application development since iOS 3.2.
Previous to this, a Cut, Copy and Paste menu was available in text fields but no other
options were supported. This has been extended to allow developers to use menus in other
places and to add their own menu items. An instance of UIMenuController is obtained
through the sharedMenuController method and custom menu items are created and added
to this. The code below is an example of adding a single custom menu item to the menu.
and might be executed as part of a gesture recogniser or touch handler.

[self becomeFirstResponder];

UIMenuItem *menuItem =

[[UIMenuItem alloc] initWithTitle:@"Change Color"

action:@selector(changeColour:)];

UIMenuController *menuController = [UIMenuController sharedMenuController];

[menuController setTargetRect:self.frame inView:self.superview];

menuController.arrowDirection = UIMenuControllerArrowLeft;

menuController.menuItems = [NSArray arrayWithObject:menuItem];

[menuController setMenuVisible:YES animated:YES];

A number of additional methods must be implemented in order for the menu to appear
correctly. The canBecomeFirstResponder method in the UIViewController must be im-
plemented to return YES, and the canPerformAction:withSender method must be imple-
mented to inform the UIMenuController which menu items should be enabled. In addition
to this, the method specified as the menu item action must also be implemented. In the
example above this is the changeColour method.

An alternative which is supported for iPad applications is the use of UIPopoverController.
The UIPopoverController may contain any type of view, so the container view may be

Page 34 of 60

implemented as a menu style view if the developer requires it. This is commonly used with
UISplitViewController. A UISplitViewController contains two UIViewControllers

which are displayed side by side when the device is in landscape orientation and uses a
popover for the first UIViewController when the device is in portrait orientation. The two
views in the UISplitViewController are generally nested inside UINavigationControllers
as this makes it easier to add titles and bar buttons. The UIPopoverController manages
a custom view which is tied to a bar button item and hovers over the main view when
the iPad application is in portrait mode. When the iPad is in landscape mode the view
previously displayed in the popover is shown in the left hand view of the split view. A
number of UISplitViewController delegate methods must be implemented to show or hide
the popover as appropriate and to do any extra processing that may be required.

If the popover is required for both portrait and landscape, then UISplitViewController

should not be used. The UIPopoverController is intialised with a UIViewController

to display the contents and the popover can be presented from any user interface item
using the presentPopoverFromBarButtonItem:permittedArrowDirections:animated or
presentPopoverFromRect:inView:permittedArrowDirections:animated methods. The
size of the popover can be set directly or returned from a method implemented in the
popover’s UIViewController, and the popover is dismissed either when the user clicks out-
side the popover, or programatically in code, e.g. in response to a user selection.

Android provides a much simpler way for developers to add menus to their applications.
The ability to specify these in XML also creates a clear separation of user interface and
application logic. There is no way for a developer to define menus outside of the code in
iOS application development, so the UIViewController can become cluttered with code
for both presentation and application logic. Buttons can be added to navigation bars to
open up additional views but these may become cluttered especially on iPhones and iPod
touch devices if more than a couple are required. Android manages this in the action bar by
automatically adding an overflow menu to prevent it from becoming overcrowded.

5.2 Multi-threading and Concurrency

Multi-threading and concurrency is very important on mobile devices as users are most likely
to uninstall unresponsive or slow applications. This is something that needs to be considered
early in the design phase for mobile applications. Multi-threading and concurrency adds
considerable complexity to application logic, and different solutions may be required for the
different problems to be solved. One important task for the developer is to correctly identify
the concrete units of work that can be done asynchronously, and any dependencies between
these tasks.

iOS provides a number of ways in which multi-threading and concurrency can be executed.
Grand Central Dispatch (GCD) is the preferred technology for this as it provides an asyn-
chronous approach, with thread management code hidden at the system level. The developer
simply has to define the tasks that they want to be run asynchronously and the dispatch
queue that they should be run on. Dispatch queues are a C-based mechanism which exe-
cutes on a first-in first-out basis, either serially (one task in queue at a time) or concurrently
(many tasks simultaneously). Tasks in this case are either blocks (see section 3.6) or func-
tions. Dispatch queues are preferred to threads as they are more simple and more efficient
than the corresponding thread code. There are three types of dispatch queues: private dis-
patch queues (one task runs at a time in order of insertion), global dispatch queues (multiple
run tasks concurrently, in order of insertion), and the main dispatch queue (tasks run on

Page 35 of 60

main thread, interleaved with other execution on application run loop). With GCD and dis-
patch queues, the system manages threads more efficiently than the developer can, scaling
dynamically based on system conditions and available resources. An example of the use of
dispatch queues and blocks can be seen in the iOS LiveBus application in the loadPickups

method in the BusStopViewController implementation. A serial queue is created and a
block to read the pickup times is added asynchronously to this. Once these have been read
from the web service, the block uses the main queue (the user interface queue) to display the
pickup times.

// read and add pickup times in another queue

dispatch_queue_t pickupsQueue = dispatch_queue_create("PickupsQueue", NULL);

NSString *busStop = self.busStop.name;

dispatch_async(pickupsQueue, ^{

NSDictionary *routesAndPickups =

[TextMyBusServiceHelper getPickUpsForBusStop:busStop];

[routesAndPickups retain];

// go back to main queue

dispatch_async(dispatch_get_main_queue(), ^{

// display the pickup times

});

});

dispatch_release(pickupsQueue);

Similar to dispatch queues are dispatch sources, which process specific types of system events
asynchronously. Again blocks or functions are used to define the code that should be executed
when the particular system event occurs. Dispatch sources can be used for timers, monitoring
signals, file and socket based operations, process events, Mach related events, and custom
events. When configuring a dispatch source, the developer must specify the event to be
monitored, the dispatch queue to use and the event handler code to be executed when the
event is triggered.

Also available to the developer are operation queues which are Objective-C objects that act
like dispatch queues. A NSOperationQueue handles scheduling, execution and all thread
management and allows for dependencies between tasks which can be used to determine
the order of task execution. Operation queues use key-value observing (KVO) notifications
which allows the developer to monitor task progress. Task execution in operation queues is
usually concurrent, although serial execution is possible with the configuration of dependen-
cies between tasks. Tasks added to the operation queue are subclasses of NSOperation. Two
subclasses are provided which are simple to use; NSInvocationOperation which is based
on a given object and selector, and NSBlockOperation which executes a given block object.
Developers can also provide a custom implementation of NSOperation, although this is much
more complex. Some of the advantages of using operation queues are the dependency graph
for operations, the optional completion block, the use of KVO notifications, the ability to
set operation priorities and the ability to cancel operations.

If none of the options described previously are desirable to the developer they can still use
threads directly. This, however, places the burden on the developer to implement their
threading solution in an efficient and scalable way. Within threads itself, there are two dif-
ferent approaches available for iOS development; Cocoa threads and POSIX threads. Cocoa
threads use NSThread, and all objects which extend NSObject can spawn threads to execute
any of their functions. POSIX threads are a C based thread interface and may be considered
by the developer if their code is to be reused across applications and platforms. This provides
a simple and flexible API. With both of the approaches above the developer is responsible

Page 36 of 60

for managing thread creation and termination, communication and memory usage.

In Android a single thread is used for executing each application. This thread handles all
application code from background processing to user interface updates. Due to this, long
running background tasks may make applications unresponsive as they cannot redraw or
respond to user input while running a background task. If an Application is unresponsive for
more than 5 seconds, an application not responding method is displayed. Android provides
a number of ways in which a developer can implement a solution to this. Standard Java
threads can be used to perform intensive operations, however, they are not permitted to
update the user interface. Android have provided a number of methods on the Activity and
View class to handle this, however, this code can quickly get complicated as you end up with
nested Runnable objects.

A version of this can be seen in the Android LiveBus application in BusPositionService.
Here the code to read and store bus positions is executed in a Runnable, however, the service
does not have to worry about displaying this information on screen. On completion of the
task a broadcast is performed so any listening activities know that the positions have been
updated and should be redrawn. Additionally a Handler is used here to reschedule the
Runnable at 30 second intervals and this is repeated until the service is destroyed.

An alternative to the use of Java threads is AsyncTask. This allows the developer to per-
form asynchronous tasks on the user interface thread, with the work being done on a separate
thread, and the results being published on the user interface thread when execution is com-
plete. This is used by subclassing AsyncTask and implementing the required methods. An
example of this can be seen in the BusTimesActivity where the inner class BusTimesTask ex-
tends AsyncTask and is used to read the pickup times from the web service, at the same time
allowing the user to access the map displaying the bus stop. The onPreExecute method is
used to inform the user that pickup times are being read. The doInBackground method reads
the pickup information from the web service, and following its completion, onPostExecute
is called which causes the pickup times to be displayed if any were found. Additional meth-
ods also exist to allow the developer to monitor and control the execution, allowing for
cancellation of the task if needed.

class BusTimesTask extends AsyncTask<Void, Void, BusRouteListAdapter> {

@Override

protected BusRouteListAdapter doInBackground(final Void... params) {

// read the pickups and return the adapter

}

@Override

protected void onPreExecute() {

// Tell user we are reading pickups

}

@Override

protected void onPostExecute(final BusRouteListAdapter adapter) {

// Display the result from the adapter

}

}

iOS provides many options to the developer for handling multithreading. Objective-C de-
velopers may prefer the use of NSOperationQueue, whereas a developer more familiar with
languages such as Ruby or Python may prefer the use of GCD and blocks. The developer

Page 37 of 60

may also use Threads directly. Apple recommends the use of GCD which is simple to use,
provided the developer has a good understanding of blocks. The code for completing the
task is included in the block passed to the background queue, and within this another block
is used to update the user interface on the main queue. Android provides two options for
multithreading; the use of AsyncTask, and the direct use of Thread or Runnable. Android
recommends the use of AsyncTask as it is simple to use and encapsulates both the code to
be run in the background and the code to update the user interface. The implementation of
multithreading on both platforms is comparable, with neither one having a clear advantage
over the other, as both are easy to use and perform well.

5.3 Storage

Android provides a variety of options for application data storage. For simple data such as
user preferences, the SharedPreferences framework may be used. This is used for storage
of simple key-value pair data such as user preferences, and persists even after the applica-
tion has been closed. Android further supports this by letting the developer declare their
preference screens in XML, and provides the PreferenceActivity or PreferenceFragment
superclasses for the implementation of activities to manage this. 1

Android applications may also store their data in files; either internally on the device storage
or externally, e.g. on a SD card. Android includes the java.io package with a wide range
of different file readers and writers. Files stored internally are restricted to access by the
application only and are not even accessible to the user. More details on this can be found
in section 5.6 on security. This data is removed if the application is uninstalled or if the user
chooses to clear data in the Android Applications Manager. External storage is also available
and this may be on removable storage, or alternatively in a shared storage location on the
device itself. This storage is not private and data may be accessed, modified or removed by
any application or by the user. Android provides a number of methods in the Environment
class for checking the status of the storage area itself, and of data that resides there. If static
files are required to load application data, these can be stored in the res/raw directory at
compile time and loaded using the generated resource ID. These files can be read using an
InputStream but cannot be used to store data by the application. An example of this can
be seen in the TextMeMyBus activity where the bus route information is read from a static
XML file supplied as a raw resource with the application.

final InputSource inputSource = new InputSource(

getResources().openRawResource(R.raw.busroutes));

Database support in Android is provided through the use of SQLite. Any databases created
by an application are accessible by any class in it, but by nothing outside of it. Database
access is generally implemented using a subclass of SQLiteOpenHelper to get an instance of
the requested database. The returned SQLiteDatabase object allows the developer to access
and update the data, with a Cursor being used to access values returned from database
queries. SQLite usage can be seen in the Android LiveBus application in BusStopDBAdapter,
and the busStopFromCursor and busStopListFromCursor methods in the BusStop class
show how to retrieve data from a cursor. More complex queries can be performed using the
additional parameters on the SQLiteDatabase query method. An example of this can be
seen in BusStopDBAdapter where the favourite bus stops are read.

1Prior to Android API 11, PreferenceActivity was used to implement activities to display and edit user

preferences, since API 11 the use of PreferenceFragment and preference header XML resources is preferred.

Page 38 of 60

public Cursor fetchFavouriteBusStops() {

return mDb.query(DATABASE_TABLE, new String[] { KEY_ROWID, KEY_CODE,

KEY_LATITUDE, KEY_LONGITUDE, KEY_FAVOURITE }, "favourite=1",

null, null, null, null);

}

The developer also needs to consider how to share data within an application. In the LiveBus
application, a large amount of data is shared among the various activities and services. The
BusPositionService is responsible for reading the bus position data from the web service,
but this is needed by the BusStopsActivity and FavouriteBusStopsActivity. This data
is shared through the use of the singleton BusPositionStore, and an Intent is broadcast to
inform the activities every time this data is updated. Intents can also be used to pass data
between activities. When a bus stop is selected from the list, an intent is created to launch the
BusStopActivity. The busStopID, busStopCode, latitude and longitude are passed as extras
to this intent, and startActivity is called. In the onCreate method of BusStopActivity,
these extras are available as a Bundle from the getIntent().getExtras() call. Similar
to this is the startActivityForResult method, which is used when one activity requests
data from another. When the child activity exits, it calls setResult to return data to its
parent, and the result is received in the parent activity’s onActivityResult method. If more
complex data needs to be passed between activities, it can be done by passing weak references
to the data in an intent. For example, if an Application class is implemented, it can hold
a central map of data. When an activity wants to share data with another activity, it stores
this in the map, and sends the key to the data to the other activity. The second activity
also has access to the application class and to the map so can read the shared data using
the key. Another option would be to use public static fields or methods in an application as
these are accessible to all classes in the application.

For sharing data with other applications, there are a few options. One such option is the
use of content providers which are discussed in section 4.4. As mentioned previously in this
section, the external file storage may also be accessed by other applications and so could
potentially be used to share data. Intents can also be used to pass data between applications
as they can be used in Android to start activities in other applications, e.g. an application
can launch the camera activity to take a photo, and this will return the location of the saved
photo to the parent application on return.

iOS also provides a comparable number of options for data storage. For simple data such
as user preferences, the NSUserDefaults object is recommended. This allows for key-value
data storage and is very simple to use. For slightly more complex data where use of a
database is not necessary, plists can be used. A plist file is a structured file which uses
key-value storage and can be used to stored serialized data. In iOS development this is
stored in XML format, and files can be read and written to, using the methods available
in the NSPropertyListSerialization class. Related to this is data archiving. This allows
the developer to store any object which implements the NSCoding protocol to an archive,
and this may be unarchived and the object restored at a future point. This may be useful,
e.g. for restoring application state when it is restarted. Static documents may also be read
from the application bundle, but these are strictly read only and must be copied to another
directory if they are to be updated by the application.

NSString *filePath = [[NSBundle mainBundle] pathForResource:@"myBusRoutes"

ofType:@"xml"];

BusRouteXMLParser *busRouteXMLParser = [[BusRouteXMLParser alloc] init];

[busRouteXMLParser parseXMLFile:filePath];

Applications can only write documents inside their own sandbox, e.g. each application has

Page 39 of 60

its own documents, cache and tmp directories. Files stored in the documents directory can
be shared via iTunes. Files in the cache directory are not shared but may be removed by
the system in times of low resources, and files in the tmp directory are not shared and
should be removed by the application when no longer needed so as not to waste device
resources. NSFileManager provides utility methods to allow access to the filesystem, though
most of the functionality for reading and writing files is found in classes such as NSData or
NSString. Since iOS 5 there is support for a document-based application approach which
may be a better option for developer if the whole application is heavily document based,
e.g. a text editor application which allows the user to create and manage documents. This
is implemented by creating a custom subclass of UIDocument to represent the document
data, and by providing a recommended set of functionality to allow the user to list, view,
create, delete, and perform other document management functions. The document itself can
be stored as a file on the device, on iCloud or in a database depending on the application
design.

When it comes to database storage in iOS, the Core Data framework is the preferred op-
tion. Xcode provides a core data application template and the developer can define their
data model using a graphical editor and generate code to form the basis of their custom
data model objects. Entities and relationships can be modelled graphically, and the gen-
erated code takes care of the background relationships, saving the developer from having
to worry about writing complex SQL. Core data is built on top of SQLite. In the LiveBus
application, the Core Data framework is used to store information on the Bus Stops. In
BusStopsTableViewController the bus stops are read from the SQLite database in the
initWithManagedObjectContext method. This uses an NSFetchedResultsController to
read all records from the BusStop entity. Much of the code to manage the core data objects is
contained in the CoreDataTableViewController implementation, which is the superclass of
both BusStopsTableViewController and FavouriteBusStopsTableViewController. The
use of predicates in requests saves the developer from having to write SQL queries as can be
seen in initWithManagedObjectContext in FavouriteBusStopsTableController.

- initWithManagedObjectContext:(NSManagedObjectContext *)context

{

if (self == [super initWithStyle:UITableViewStylePlain]) {

NSFetchRequest *request = [[NSFetchRequest alloc] init];

request.entity = [NSEntityDescription entityForName:@"BusStop"

inManagedObjectContext:context];

request.sortDescriptors = [NSArray arrayWithObject:

[NSSortDescriptor sortDescriptorWithKey:@"name" ascending:NO]];

request.predicate =

[NSPredicate predicateWithFormat:@"favourite == YES"];

NSFetchedResultsController *frc =

[[NSFetchedResultsController alloc] initWithFetchRequest:request

managedObjectContext:context

sectionNameKeyPath:nil

cacheName:nil];

[request release];

self.fetchedResultsController = frc;

[frc release];

self.titleKey = @"name";

}

return self;

}

If the developer does not wish to use the core data framework, the SQLite libraries are

Page 40 of 60

also available, and allow the developer to access and manipulate the database and its tables
directly. This approach requires the developer to write the SQL for queries and updates
rather than having it generated in the background.

Within an iOS application, data can easily be shared. When launching one view controller
from another, the first view controller creates an instance of the second view controller, sets
a property with the required data for the second view controller, and pushes the second
view controller on to its parent navigation controller’s stack for display. This can be seen
in the managedObjectSelected method of BusStopsTableViewController. This method
is invoked when a bus stop is selected from the list and the BusStop managed object is
set as a property on the BusStopViewController before it is pushed onto the navigation
controller for display. All view controllers within an application also have access to the SQLite
databases for an application, either by using the core data framework or by using the SQLite
databases directly. As with Android a singleton class can be used to centrally store more
complex data, or the data can be shared in an object such as the ApplicationDataStore

which is stored on the application delegate in the LiveBus application. This is accessible to
all view controllers in the application and could be used to share many data objects.

For sharing data with other applications there are very few options. There is no shared
storage on an iOS device so there is no option to share files between applications. An
alternative could be to share files via a remote server, e.g. a custom server or to use a
service such as Dropbox. Services such as iCloud can be used to share data among instances
of an application, e.g. the user has an iPhone and an iPad with the application installed
so data is accessible to both. iOS applications can also provide custom URL schemes to
accept data from other applications. For example Apple provides custom URL schemes to
deal with mailto links, so that when an email link is clicked on in an application, it can
request the services of the mail application to deal with this. At this point control passes
to the second application and there is no way to pass back data to the calling application.
The UIDocumentationInteractionController uses a similar concept to this to handle the
management of document types that it does not understand. For example an application
displays a list of files downloaded from the internet, when the user selects a document,
the application can pass off responsibility for displaying this to another application using
the UIDocumentInteractionController. This knows what applications can handle certain
document types, and can present the user with a list of applications that can open the
selected file.

Both platforms provide a number of options for data storage. The use of NSUserDefaults

and SharedPreferences for storage of simple user data is comparable. However, Android
makes this even simpler by allowing the developer to simply declare preference screens in
XML and use a PreferenceFragment to automatically save changes as the user interacts
with the screen, without needing to write additional code to handle this. Both platforms
use SQLite for database storage, however, iOS provides an additional Core Data layer on
top of SQLite. With this, the developer gets a graphical model of their data and generated
code to handle the database access. This can be useful for the developer to visualise the
relationships between data stored in the SQLite database, and removes the need to write
complicated SQL. This is a clear plus for a developer who does not have a lot of exposure
to SQL, and Android has nothing comparable. Where iOS falls down, however, is in its
restrictions on data sharing. Android allows shared access to files (in certain areas of the
filesystem), and the exchange of data between activities or applications with the correct
permissions.

Page 41 of 60

5.4 Web Services and XML

Quite often mobile application developers need to make use of remote services in their appli-
cations. The web service used in the LiveBus application is a Simple Object Access Protocol
(SOAP) based web service which, unfortunately, does not have a lot of support in either
iOS or Android. The use of Representational State Transfer (REST) based web services
and JavaScript Object Notation (JSON) seems to be the preferred option for mobile op-
erating systems as neither operating system provides native SOAP libraries but both do
for JSON. REST based web services overload the HTTP protocol to locate and update re-
sources on a remote service based on the URI and the HTTP verb used. Data is usually
returned in the JSON format which is compact and relatively simple to parse. Apple pro-
vides the NSURL APIs to handle the remote communications and in iOS 5 introduced the
NSJSONSerialization class to handle the response. Android provides the org.apache.http
package for handling the communication with a web service and the org.json package for
parsing the responses.

The web service used by the LiveBus applications is a SOAP based web service. Both the
Android and iOS applications use third party APIs to handle the HTTP communications
and SOAP messages, as well as requiring custom parsers to handle the XML data returned.

The wsdl2objc [54] tool was used for the iOS application to generate Objective-C code from
the Web Service Definition Language (WSDL) for the LiveBus web service. This generates
Objective-C objects to handle the HTTP communications and the SOAP requests and re-
sponses. The majority of this generated code can be found in TextMeMyBusServiceSvc and
is used in the TextMeMyBusServiceHelper implementation. All functions on the web service
are called synchronously and an example of this can be seen in the getCurrentBusPositions
method. This is called from reloadBusPositions in BusStopsTableViewController, but
is run in a dispatch queue using GCD as described in section 5.2. Once the data from the
web service has been returned and parsed, control returns to the user interface thread where
the map is updated with the latest bus positions.

+ (NSArray *)getCurrentBusPositions

{

TextMyBusServiceSoapBinding *binding =

[[TextMyBusServiceServiceSvc TextMyBusServiceSoapBinding] retain];

TextMyBusServiceServiceSvc_getCurrentBusPositions *params =

[[TextMyBusServiceServiceSvc_getCurrentBusPositions alloc] init];

TextMyBusServiceSoapBindingResponse *response =

[binding getCurrentBusPositionsUsingParameters:params];

[params release];

[binding release];

NSString *data = [TextMyBusServiceHelper getDataFromResponse:response];

// parse the returned data

BusPositionXMLParser *xmlParser = [[BusPositionXMLParser alloc] init];

[xmlParser parseXMLString:data];

NSArray *result = xmlParser.busPositions;

[busPositionXMLParser release];

return result;

}

Page 42 of 60

The ksoap2-android libraries [32] were used in the implementation of the Android application.
A java tool, similar to wsdl2objc, that worked with the WSDL from the web service could
not be found, but the use of the ksoap2 libraries proved much simpler. This can be seen
in the getDataFromWebservice method in WebServiceHelper. This makes a synchronous
call to the web service using the given operation name and parameters, and returns the data
as a string. Because all calls to the web service are synchronous, they are not done in the
main thread. The BusPositionService performs a call to the web service in a Runnable

which sends a broadcast when new data is available. This broadcast is listened for by the
BusStopsActivity in the user interface thread and the map is redrawn with the new bus
positions when the correct broadcast is received.

public String getDataFromWebservice(final String operationName,

final Map<String, Object> propertyMap) throws Exception {

// create the soap request

final SoapObject request = new SoapObject(WSDL_TARGET_NAMESPACE,

operationName);

// add any request parameters

if (null != propertyMap) {

final Set<String> keySet = propertyMap.keySet();

for (final String key : keySet) {

request.addProperty(key, propertyMap.get(key));

}

}

final SoapSerializationEnvelope envelope = new SoapSerializationEnvelope(

SoapEnvelope.VER11);

envelope.setOutputSoapObject(request);

final HttpTransportSE httpTransport = new HttpTransportSE(SOAP_ADDRESS,

DEFAULT_TIMEOUT);

httpTransport.call(SOAP_ACTION, envelope);

final Object response = envelope.getResponse();

return response.toString();

}

As well as the generated code for the SOAP communications, XML parsers were required
for parsing the data returned from the web service. As the returned data simply needed to
be parsed once and not modified in any way, a Simple API for XML (SAX) parser [48] was
chosen. SAX parsers are event-driven, and call out to specific handler methods whenever
certain XML elements are encountered. A major advantage of using a SAX parser in a mobile
application is that it requires less memory than Document Object Model (DOM) parser [18],
as it only deals with one XML construct at any time. DOM parsers use a tree-based model
which loads the whole XML tree into memory at once.

Apple provides the NSXMLParser and NSXMLParserDelegate classes for event-driven XML
parsing. Each operation on the service required a separate parser to handle the returned data.
This was done by implementing the NSXMLParserDelegate protocol in each parser class and
required the implementation of the didStartElement and didEndElement methods. This
can be seen in the BusPositionXMLParser implementation which also includes sample XML.
Each parser extends from a custom parser class, TextMeMyBusServiceXMLParser. This class
contains the common code required for all parsers, for example, methods to parse from a file
or string, and the foundCharacters and parseErrorOccurred methods.

Page 43 of 60

For the Android application, individual parsers were again needed for every operation called
on the web service. As before event-driven parsers were the preferred option. Each cus-
tom parser extends the DefaultHandler superclass and provides an implementation for the
startElement, endElement and characters methods. An example of this can be seen in
the BusPositionXMLHandler, which is used by the readBusPositionsRunnable and the
loadBusPositionsFromXML method in the BusPositionService.

The lack of support for SOAP on both platforms is striking, although this is most likely Apple
and Google trying to encourage use of the more efficient Restful web services and JSON. The
third party libraries used in the Android and iOS applications proved easy to use, despite the
different implementations for each one. The ksoap2-android libraries will most likely prove
the easiest to maintain in the long run, as any changes to the WSDL for the web service will
require the developer to rerun wsdl2objc in order to regenerate all the required classes. The
was no real difference in terms of the parsers required for both applications, as both were
SAX based and so similar methods were implemented for both platforms.

5.5 Location Based Services

With the advent of GPS in mobile devices, location based services (LBS) have become very
important, both to users and to vendors. There are many different geo-location technologies
available for mobile LBS some of which are described by Rao and Minakis [44]. The main
technologies that application developers make use of are GPS, assisted GPS and cell identifier
location information. GPS and assisted GPS provide fine detail on the user’s location, but
are restricted in that the user must be outside, and these can place a higher drain on the
device’s battery depending on the frequency and granularity of updates required. Location
based on the identification of mobile network cells provides much more coarse information
on the user’s location as this is calculated based on the location of the mobile network base
station that the device is currently using. Location information is useful to the developer, not
just for mapping or navigation applications, but also enables other services such as targeted
advertising based on location. Care must be taken, however, when dealing with user location
information as this is sensitive data which can be abused. In April 2011 it was reported that
iPhones were recording and backing up the device location without the user either being
aware of it or giving permission. However Apple was simply maintaining a cache of Wi-Fi
hotspot and cell towers around the user’s location, and this was mistakenly being backed up
by iTunes. Apple was forced to issue a statement to reassure users of their intentions, and
to issue a software update which fixed a number of bugs in this area [16].

Within iOS application development there are a number of frameworks available to devel-
opers. The CoreLocation framework provides most of the functionality and developers can
leverage this by implementing the CLLocationManagerDelegate protocol. This requires
the developer to implement locationManager:didUpdateToLocation:fromLocation and
locationManager:didFailWithError. The first method provides the delegate with the new
location every time one is received. It is up to the developer to determine if this location
is new enough, and if the accuracy is sufficient. The developer can use this, for example,
to update an annotation on a map to show the user’s current location. The second method
is used to handle errors when location updates fail. This may be because the user has dis-
abled location updates for the application, or simply because the device is unable to get a
fix on the current location, for example, if it is indoors. Apple recommends that developers
check if location updates are enabled for the device and are authorised for the application
before using this in code; it could be extremely annoying for the user who has intentionally
disabled location services for whatever reason, to be repeatedly requested by an application

Page 44 of 60

to re-enable them. Developers should also be careful to only request location updates when
they are really required and to turn these off when they are no longer needed. All this can
be managed by calling methods on the CLLocationManager class.

Figure 5.2: Screenshot of the LiveBus iPad application showing the user location

For displaying location information to the user, Apple provides Google Maps integration
through the MapKit framework. This allows the developer to specify which region of the
map should be displayed, the level of zoom, and any annotations, etc. that may be re-
quired. The developer can add a MKMapView to an existing view either by using Interface
Builder or in code. A number of configurations are possible such as whether zoom con-
trols are enabled, whether the map should pan, whether the map type is default, hybrid or
satellite, and whether the map should display the user’s location. The MKMapView has its
own location manager that may be used to display the user’s location if the functionality
of the CoreLocation framework is not required. This is enabled by simply setting the prop-
erty showsUserLocation = YES on the map view. Usage of this can be seen in the findMe

method in BusStopsTableViewController which uses the user location from the map view
to zoom to the user’s location on the map. The functionality of the CoreLocation framework
is still needed here, however, as there is no other way to check whether location services are
enabled. Custom annotations can also be added to the map and this is done for both bus
stops and bus positions in the BusStopsTableViewController. This is done by implement-
ing the mapView:viewForAnnotation method and returning custom views for these types of

Page 45 of 60

annotations. In BusStopsTableViewController, different pins are used to display bus stops
and bus positions, and bus position annotations include the Wexford Bus logo, whereas bus
stop annotations have a callout accessory view. When this callout accessory view is clicked,
the mapView:annotationView:calloutAccessoryControlTapped method is called and in
the case of bus stops, is used to call a method to push the BusStopViewController to the
navigation controller and display the bus stop information.

Location Services are provided as a system service by Android and an instance of the
LocationManager can be obtained with getSystemService(Context.LOCATION SERVICE).
This provides access to the LocationProviders for the device and allows an application
to register for updates to these. Developers can register for updates from more than one
provider, for example, the GPS provider and the Network provider, but this will only work
if the application has the required permissions to access each. A LocationListener imple-
mentation handles the returned updates, and it is again up to the developer to determine if
the update is new enough and accurate enough to warrant action. This can be seen in the
DeviceLocationListener inner class in BusStopsActivity. The developer must also be
careful to specify a location frequency that is not excessive and to remove location updates
when they are no longer required so as to not drain the device’s battery.

Figure 5.3: Screenshot of the LiveBus Android application showing the user location

In order to display the user’s location on a map in Android, the developer must include the
Google Maps API, for which they must obtain a license key. This differs to iOS, where the
developer does not have to obtain a license key, but still has to abide by the Google Maps
terms and conditions. With Android development, a debug key can be used until the ap-
plication is ready for deployment. The map view can be specified in an XML layout file, or
added in the code. The developer has a number of options as to how the map is configured,
what area is displayed, what the zoom level is, etc. In the BusStopsActivity, bus stops and
bus positions are represented by OverlayItems drawn on the map. BusStopOverlayItem,
BusPositionOverlayItem and CurrentLocationOverlayItem hold the details of the rele-
vant point of interest, and the DrawableItemizedOverlay class handles the management of
the overlay items on the map, and what happens when on of these is tapped on. In the case
of a bus position, a Toast is displayed with the relevant information, and in the case of a bus
stop, a Dialog is displayed which allows the user to open the BusStopsActivity. Google
Maps in Android doesn’t offer the same annotation view functionality as iOS so this is why
Toast and Dialogs were used to display the information, rather than views with icons and

Page 46 of 60

callouts. There are also issues in Android with having more than one MapActivity in an
application. All activities in an application, by default, run in the same process, so the map
activities tend to interact in strange ways and often do not display properly. Google recom-
mends only using one MapActivity per application, or running each MapActivity in its own
process. This will not work in the case of the LiveBus application, as multiple map activities
are needed, and running in multiple processes causes problems accessing the BusRoute and
BusPosition data which is held in static singletons shared across the activities. Also run-
ning the activities in separate processes seems to prevent debugging except for on the main
application process.

iOS and Android provide broadly the same functionality when it comes to location based
services. However, there are a few key differences. Android allows the developer to specify
the source of the location updates, so GPS can be used if high levels of accuracy are required,
whereas the Network location can be used if less accuracy is needed. The use of GPS drains
the battery on the mobile device so the ability to turn off updates is very useful. iOS does
not give the developer the same options, but makes use of whatever hardware is on the device
to determine the user’s location, whether it is required or not. Both platforms make use of
Google Maps. Surprisingly, the MapKit APIs for Google Maps integration in iOS proved
much more reliable and provided more useful functionality in terms of annotation views,
than the Google Maps APIs for Android.

5.6 Security

With the growing popularity in smartphones (and the vast amount of personal data they
contain) has come a corresponding increase in the number of malicious applications and
attacks on mobile devices. Apple and Android have differing views on how this should be
handled and this can be seen in their respective operating systems, application capabilities,
and application distribution.

iOS takes a sandboxing approach for each application installed on an iOS device. Every
application lives in its own area, with no access to other application data, to system files,
resources or to the kernel. Some access to other application data is given, but only though
the iOS resource APIs so this is strictly controlled. For example, no access is given to
a user’s SMS. Applications can only be installed on an iOS device from the Apple App
Store and every application submitted to the App Store must be approved before it is made
available for distribution. In order to submit an application to the App Store, developers
must join Apple’s Developer program and pay a yearly fee. Every version of every application
is reviewed by Apple, and the inclusion of functionality such as the dynamic generation of
code, or not following Apple guidelines will result in an application being rejected. This
ultimately gives Apple control over which applications may be installed on a device, so
should prevent malicious applications from ever getting included in the App Store. Further
to this, Apple has the ability to remotely remove malicious applications from every device
they are installed on, if a malicious application does slip past Apple’s inspection. More
detailed information on the distribution of iOS applications can be found in chapter 6. Even
the distribution of applications that are not available on the App Store is strictly controlled.
Applications developed privately may only be installed on devices provisioned by Apple,
and this also requires the developer or development team to be registered with the Apple
Developer program and to have paid the yearly fee.

All iOS applications must be signed with a certificate issued by Apple through the developer
program. At runtime, the iOS system checks the application signature to make sure that

Page 47 of 60

it has not been tampered with since the application was last used. Apple offers further
opportunities to secure applications, by providing a number of features such as keychain
services and hardware encryption. Keychain services can be used to encrypt and store
sensitive data such as user usernames and passwords, and this data is only accessible to
the application that created it. Apple also allows developers to make use of the hardware
encryption APIs, where certain files can be locked by the system when the device itself is
locked, thus making the file inaccessible by the application itself, as well as by others. A
number of additional encryption APIs are also included in the iOS libraries.

Android also uses a sandboxing approach when it comes to applications. However, it also
permits inter-application communication through the use of Intents, and allows access to
shared areas in external storage. All of this is subject to an application having the correct
permissions. Permissions are defined for functionality such as internet access, access to
removable storage, location information, etc. and are stored in AndroidManifest.xml. On
choosing to install an application, the user is presented with a list of all permissions that
the application declares, and must agree to these in order that the application to installed
on the device. Permissions cannot be altered after an application has been installed. The
following permissions are those required by the LiveBus application:

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

Applications are run on the device in their own virtual machine, and as their own Linux
user. The Linux kernel handles much of the security at the process level through the use of
user and group IDs and file access permissions.

Android applications also must be signed before they can be submitted to the Android Mar-
ket, but the certificate is not granted by Android and developers sign their own applications
with their own certificates. Every new version of an application is checked to ensure that it
is signed with the same key as the original version, thus checking that it is from the same
source. It is the responsibility of the developer to keep their key secure and prevent it from
being used by potentially malicious sources.

Neither are the applications reviewed before they are accepted onto the Android Market.
Android allows users to review and comment on applications so those that are unresponsive,
buggy or do not behave as advertised will soon get negative reviews. Users may also report
applications which are found to be malicious, and again Android has a mechanism which
allows them to remotely uninstall any application from every device on which it is installed.
Applications may also be installed from non-Market sources, but this requires the device user
to explicitly set the option to allow installation from unknown sources. This allows developers
to install their own applications without any restrictions, and allows for installation from a
source such as the Amazon Appstore for Android. The Amazon Appstore also has a developer
program that requires a yearly fee, and like the iOS App Store, applications must be approved
before they are accepted for distribution.

A large proportion of the Android operating system code is publicly available and may be
updated by any contributor. While some may fear that this might allow for the introduction
of malicious code, in reality it allows for close monitoring by the open source community.
Bugs in the operating system code are found and fixed by community members, and the fixes
are verified by experienced contributors before they are accepted and merged into the public
code.

Neither operating system’s security is perfect as can be seen in the work of Miller [35],

Page 48 of 60

Egele et al [19], and Shabtai et al [47]. This can also be seen in the more regular news
reports of security flaws. Because Apple reviews every application that is distributed via
the App Store, iOS applications are less likely to contain malicious code than Android ones.
iOS applications are very much restricted in what they have access to, however, these same
restrictions prevent developers from leveraging the full functionality of the device in their
applications. Android places the onus on the user to determine what an application should
have access to, by requiring them to explicitly agree the permissions an application has when
it is installed.

Groups such as the iOS jailbreaking community mentioned in the article above, try to pro-
mote openness in iOS application development by using these weaknesses to expose the
system internals, but they also highlight security holes that malicious developers may ex-
ploit.2 Similar communities exist for Android, with a number of rooting solutions available
to users who are not happy with the software solution provided by their hardware vendor.
Application developers who wish to remain part of the approved developer programs and dis-
tribution channels must be careful to steer clear of any security pitfalls. Developers need to
build trust with their users, and aim to deliver secure applications that behave as described.

5.7 Summary

This chapter has covered features that most application developers will encounter in the
course of developing an application for Android or iOS. There are vast differences in the
implementation of all the features covered in this chapter, some with better support on one
platform than on the other. Android offers better support for menus, while both platforms
provide easy access to multithreading solutions. iOS leads the way in storage through the
user of the core data frameworks, and again both platforms provide comparable solutions
for web services and XML. In terms of location based services, Android allows the user more
control over the source of the location information, while iOS leads the way with Google
Maps integration. Finally, due to its strict controls, iOS tends to be more secure, however
this is at the cost of exposing more functionality to third party developers.

Having solved any issues encountered with these through careful design and coding, the
developer should be left with a fully functional application. Thoughts now turn to how best
to distribute the application, and this is covered in the following chapter.

2Jailbreaking or rooting a device refers to gaining superuser or root access to the Linux operating system on

the device in order to give the user or applications additional permissions. Jailbreaking is expressly forbidden

by Apple, but is much more widely acceptable in the Android community with many different solutions

available.

Page 49 of 60

Table 5.1: Summary of Features
Menus

• XML or in code creation • In code creation only

Multithreading • 2 main options
– AysncTask is recommended

• Many options
– GCD is recommended

Storage
• SharedPreferences and Prefer-

enceFragment so no custom
code needed

• SQLite and Cursors

• Data sharing between applica-
tions

• Shared filesystem access

• NSUserDefaults and custom
view and controller needed

• Core Data Framework
– Graphical Editor and gener-

ated code
– Built on top of SQLite

• No exchange of data between
applications

• No shared filesystem access

Web Services &
XML

• REST & JSON libraries in-
cluded

• 3rd party SOAP libraries
• SAX and DOM parser support

• REST & JSON libraries in-
cluded

• 3rd party SOAP libraries
• SAX and DOM parser support

Location Based
Services

• Multiple providers

• Problems with multiple Ma-
pActivities in single applica-
tion

• No annotation views

• Developer signs license with
Google

• Uses whatever providers de-
vice has

• Can have multiple MapViews
in single application

• Annotation views with images
and callouts

• Google Maps licensed by Ap-
ple, developer agrees to terms

Security
• Open source (mostly)
• No application reviews for An-

droid Market
• User agrees to permissions on

installation
• Sandboxing with access to ex-

ternal storage
• Application signed by devel-

oper

• Closed model
• Every application reviewed on

App Store
• iOS only allows access to cer-

tain features
• Sandboxing with access to ap-

plication directories only
• Application signed by Apple

Page 50 of 60

Chapter 6: Distribution

Once the main functionality of the application is complete, the developer should consider
distribution of the application. Both Android and iOS have very different processes and
requirements for submission, and this is discussed in the following sections. There is much
stricter criteria for submission to the App Store than to the Android Market so it is very
important that the developer completes the steps carefully.

Section 6.1 details the steps that must be followed in order for the applications to be accepted
onto the App Store and the Android Market. Section 6.2 looks at the costs involved for
developers of each platform, and this is followed by section 6.3 which details how developers
are paid for their applications. Section 6.4 provides a summary of the information discussed
in this chapter.

6.1 Process

The only authorised way to publicly distribute iOS applications is via the Apple App Store,
and only applications from registered Apple developers are accepted. An iTunes Connect ac-
count must be set up to manage the distribution and allows the developer to set up payment
and taxation information, view sales reports, In-App purchasing, etc. Apart from the appli-
cation binary, other information must be supplied such as the name, description, artwork (in
a variety of resolutions), support information, ratings, keywords and more. The application
binary can be uploaded directly from Xcode using the Application Loader. Once all the
required data has been supplied, applications can be submitted for review. There is a long
list of App Store Review Guidelines which an application must meet in order to be approved
and these range from items such as the application behaving as described, not mentioning
other mobile platforms, having suitable icons and having a good user interface. Applications
must also conform to the iOS Human Interface Guidelines. This includes guidelines on user
experience along with instructions on how each of the standard user interface elements should
be used. Part of the review includes testing the application on devices so applications with
bugs will be rejected. If an application is rejected, the developer will be notified in detail as
to the reason why it has failed the review. The developer then has the opportunity to appeal
this, or to make the necessary changes and resubmit the application. Once the application
has passed review, it is released automatically, based on the availability date. Alternatively
the developer can use iTunes Connect to release the application to the App Store where it
should appear within 24 hours.

There are a number of options for distribution of Android applications, the main one being
the Android Market. This is a much less restrictive process than the App Store as no
approval is needed before an application is made available for distribution. A number of
configuration tasks are required, however, before the application can be submitted. The
application code must be cleaned up to remove any debugging code, to make sure the correct
packages are used, and to tidy up any resources that are to be included. The manifest should
be reviewed to ensure it contains the correct permissions and the correct label, version code,
version name, icon and SDK versions are specified. Once this has been done, the application
should be compiled in release mode. An export wizard is included in Eclipse for this, or

Page 51 of 60

command line tools may be used. Part of this process is to sign and optimise the .apk
file. The developer must obtain a cryptographic key and use this key to sign the .apk file.
This may be a self-signed key created with the keytool utility included in the SDK, if the
developer does not have a certificate issued by certificate authority. The zipalign tool is
then used to optimise the application. Once this is completed the .apk file can be uploaded
to the Android Market Developer Console. A number of screenshots and icons are now
required, along with the application language, title and description. Additional data such as
promotional graphics and videos, and publishing options such as rating, pricing and countries
in which the application can be sold may be provided. Once the required information has
been uploaded, the developer can publish their application and it will appear on the Market
almost immediately.

The process for distributing an Android application requires much less work by the developer
than the corresponding iOS process. Apple requires much more legal information and reviews
every application submitted, while Android merely requires the developer to follow a few steps
to optimise the application and provide some promotional information.

6.2 Cost

The cost of mobile application development varies widely depending on where the application
is to be distributed. For iOS development, there is no charge if the application is never run
on a device and only in the Simulator, but there are 3 main options if the application is to
be distributed. Apple requires developers to enrol in a developer program and the basic one,
the iOS Developer Program, is $99 a year. This allows the developer, or a team of developers
in a single organisation, the ability to run the application on provisioned devices. It also
allows access to all iOS Developer resources, free technical support requests and access to
the App Store. For in-house applications, which are not distributed publicly, there is the iOS
Enterprise Developer Program which costs $299 a year. This again allows access to resources
and technical support from Apple engineers but is restricted to internal distribution only.
An iOS University Developer Program also exists which is free to approved universities to
introduce iOS development to the curriculum. This allows up to 200 students access to
resources and internal distribution and testing on simulators and devices.

As well as the yearly fee for the developer program Apple also charges a 30% transaction fee
on the price of every applications sold. This is not applicable to free applications.

In contrast to Apple, Android charges a one time $25 registration fee to join the Android
Developer program. They also charge a 30% transaction fee on the application selling price,
but again this does not apply to free applications.

Another factor to bear in mind when looking into the cost of development of mobile appli-
cation is the cost of the hardware that is required. iOS development can only be done on
an Apple Mac, and the cost of these is generally much higher than the cost of a personal
computer. Android development can be done on a machine running Windows, Mac OS X or
Linux so covers a much wider range of devices. Also because of the huge selection of differ-
ent Android devices on the market, getting access to devices on which to test applications is
much cheaper. For example the new Amazon Kindle Fire tablet device retails at just $199
in comparison to the Apple iPad 2 which starts at $499.

Page 52 of 60

6.3 Payment

In order to distribute an application in the App Store, the developer must request a contract
from Apple in iTunes Connect. There are contracts available for free applications, paid ap-
plications and the iAd Network. Legal entity, banking and tax information must be provided
before the contract comes into effect allowing applications to be sold. It is the responsibility
of the developer to ensure that the correct tax is paid on application sales. Once all docu-
mentation is complete Apple pays developers on a monthly basis, provided that the payment
threshold of $150 dollars has been met. Payments are made to the bank account given in
iTunes Connect and financial reports are available on a monthly basis. Revenue from the
iAd Network and In-App purchases is also an option for the developer. An iAd Network
account can be set up and the developer gets revenue from ads displayed in the application.
In-App purchasing allows the developer to sell to the user from within the application, e.g.
new levels in a game, or subscriptions to media content.

In order for an Android developer to sell and application on the Market, they must register
for a Google Checkout Merchant account. The developer registers their bank account details
and payments are made on a monthly basis with no minimum payment threshold. It is
up to the developer to ensure that the correct tax is paid on application sales. Google
may hold back portion of application income in reserve if there are excessive unauthorised
credit card charge-backs, refunds, disputes, etc. Android developers can also gain revenue
from embedding advertising in their applications, and this requires an AdSense account. In-
App billing also exists as an option for Android developers, although there is currently no
subscription mechanism available.

6.4 Summary

This chapter has examined distribution of mobile applications on both Android and iOS.
There are a range of differences between both platforms, across process, cost and payment.
The control Apple exercises over the App Store may deter developers, but reassures device
owners who feel secure knowing that each application has been reviewed. The Android Mar-
ket is easier to use for developers as there is a simple submission process and applications are
not reviewed, but users may be more wary of downloading applications. Another downside
for developers is the yearly fee charged by Apple for distribution via the App Store. This
is in stark contrast to the one time administration fee charged by Google for distribution
via the Android Market. Differences even exist when it comes to payment as Apple imposes
a minimum sales threshold so developers may face months where no income is received.
Both platforms provide the ability to earn income from embedded advertising and in-app
purchases, however, iOS is the only one which offers a subscription mechanism.

Page 53 of 60

Chapter 7: Conclusion

There are a huge number of factors that a developer needs to be aware of when developing a
mobile application for either iOS or Android, and many have been discussed in the previous
chapters covering the development of the LiveBus applications. The remainder of this chapter
attempts to summarise the overall experience of the developer working with each, and to draw
some conclusions.

Section 7.1 discusses the flexibilities and restrictions encountered when working with the
Android and iOS platforms. This is followed by section 7.2 which looks at reusabilty. Section
7.3 looks at the popularity of the two platforms and the effect this has on developers. Section
7.4 looks at some alternatives to Android and iOS application development. Section 7.5
provides a summary of the information discussed in this report, and is followed by section
7.6 which discusses the personal views of the author.

7.1 Flexibility and Restrictions

In terms of flexibility of process, Android wins hands down, as there are very few steps that
must be followed in order to get an application onto the Android Market. It generally takes
about a day to get a completed Android application, along with all its marketing information
onto the Android Market. Apple on the other hand has a rigorous inspection process, and
developers must also supply the relevant legal information before they can sell applications.
It could take a couple of weeks to get an iOS application onto the App Store depending
on how long the review takes, and whether the developer has submitted all necessary legal
documentation.

Android expose much of the internals of their code so developers can get a good understanding
of how it works, and can even contribute to it through the Android Open Source project.
Apple code remains closed to developers, and applications that make use of undocumented
APIs will be rejected. Developers are also restricted for writing applications that perform
the same function as an existing Apple application.

From a user’s point of view Apple are much more strict with what you can do with your
device. As mentioned previously, Apple iPhones and iPads can only install software from
the App Store, and jailbreaking a device voids the warranty. Even when it comes to simple
issues like sharing photographs, Apple enforces restrictions. For example, even though the
iPad has bluetooth it will only connect to other Apple devices or accessories, so there is no
way to share photographs with another phone or another computer using bluetooth. Android
phones can connect to any other device that implements the required Bluetooth protocols,
and can easily share any kind of file. Alternatively, any application that declares the relevant
intent for sharing photographs can be used to share them in many different ways. iPhone and
iPad users have to sync photographs via iTunes, iCloud, or another application like Dropbox,
or can simply email the photographs to themselves.

Page 54 of 60

7.2 Reusability

As mentioned in the previous section, with regards to sharing photographs, the use of Intents
in Android allows applications to work together. This is an extremely useful mechanism
as it allows applications to take advantage of the strengths of other native or third party
applications. For example, when the user chooses to share a photograph, they are given a
number of applications to use such as Dropbox, Facebook, Flickr, Gmail, etc. Apple does
not allow this kind of interaction, except through some approved custom URL schemes as
mentioned in section 5.3. Even with this, data cannot be passed back and forth between
applications as it can with Android. With the introduction of iCloud in iOS 5, Apple now
allows sharing of data between instances of the same application on the user’s different
devices.

In terms of code reuse, both Android and iOS support the use of external libraries or Frame-
works, such as Google Maps integration. One interesting point here was how much better
the Google Maps APIs (MapKit) was on iOS than the corresponding APIs were on Android.
MapKit was much more stable and offered much more in terms of features.

7.3 Popularity

When the Apple iPhone first launched it quickly gained a cult following and soon became
the smartphone to beat. The first Android device launched a year later, but a rapid cycle of
software releases and new device launches followed meant that Android was soon a serious
competitor for Apple’s iOS. As discussed in section 1.1 iOS and Android top the smartphone
market and are quite a distance ahead of the competition. Due to the larger number of
Android manufacturers and their more competitive pricing, there are currently more Android
smartphones in circulation than there are Apple. However, Apple remains the number one
manufacturer beating off competition from Samsung [17], the leading Android manufacturer.

According to Apple’s own website, there are currently over 500,000 applications available for
download on the App Store. Apple reported over 15 billion application downloads in July
2011 [13], but Android is quickly gaining ground having jumped from over 6 billion applica-
tion downloads in July to over 10 billion in December 2011 [25]. There are no official figures
on the number of applications on the Android Market, however source such as AppBrain [5]
estimate it at about 350,000.

7.4 Alternatives

Other smartphone operating systems also exist, but none come close to Android or iOS in
terms of market penetration. Symbian was once the market leader but has since been eclipsed
by Android and iOS, and Windows Phone 7 and Blackberry OS are also lagging behind.

Many commercial organisations are looking for a solution where they can write an application
once and deploy it across all of these platforms. This can be achieved with varying degrees
of success, depending on the functionality required and the target platforms. A number of
free tools exist where developers can write their application using HTML and JavaScript and

Page 55 of 60

this is generated into native applications for the required operating systems. PhoneGap [42]
is one example of this and supports applications for 7 platforms including Android, iOS,
Symbian, Web OS, and Windows Phone. It is an open source framework which provides
APIs for access to native features. Another such tool is MoSync [37], however, this is licensed
under GPL2 so any code written using it must be made publicly available or a commercial
subscription must be paid. Commercial tools also exist, such as Adobe AIR [1], Corona [4]
and Monkey [36]. Applications on Adobe AIR can be written in HTML and JavaScript, or
Flex and ActionScript. Not all native functionality is supported, however, so the developer
will need to write native extensions if this is required. For development with Corona or
Monkey, the developer must learn a new language. Lua is used for development with Corona,
and Monkey code is used for development with Monkey. Corona can only be used to develop
Android and iOS applications and not all features are supported across both platforms.
Monkey can be used to develop applications for Android, iOS, HTML5, along with Windows
and Mac. Such tools sound great, but may not offer all the functionality that comes with
writing a native application. In addition to this, the developer will still need to have an
understanding of the underlying platform, as the generated code may need to be tweaked;
for example it may not be efficient, it may not work on every device, or it may fail the iOS
review process.

Another option for the developer is to write web applications for each platform. Here the
main functionality is written in HTML5 and JavaScript, and minimal native code is required
to launch the application, or it can be run exclusively in a web browser. HTML5 web
applications can be written to function offline and can also make use of databases on the
device so network functionality is not required in order to run them. The main advantage of
writing web applications, is that the same HTML5 code can be reused across the platforms.
One drawback of HTML5 is that it is still quite a young technology and may not provide all
the functionality the developer requires.

7.5 Summary

Both platforms may seem daunting on first look, but developers soon find there is a multitude
of resources available. Both allow developers with a good knowledge of object oriented
programming to develop relatively complex applications, in a relatively short time frame.
Both platforms offer developers the opportunity to sell their work to a large user base. Both
platforms have their weak and strong points, with neither one a clear winner or loser. Neither
platform faces any real competition from the other alternatives at this stage.

Others such as Goadrich [24] and Grundström [26] have made similar comparisons between
the two platforms. Goadrich looks at both from the perspective of a college lecturer trying to
decide which one to teach, and reaches the conclusion that a course in either iOS or Android
would be both interesting and valuable to the student. Grundström comes out in favour of
Android because of its technological focus and the restrictions of Apple. However, Wong’s
article in Electronic Design takes another approach, that there is no clear winner between
Android and iOS, so essentially the only winner is the end user [53].

From a financial point of view Android makes more sense for the hobbyist, or independent
developer. There are fewer applications on the Android Market, therefore greater opportunity
to get your application sold. The costs are less with no yearly fee. Also Android Market
downloads have more than doubled in the past year alone so this is a rapidly growing market.
For developers looking to make a living out of developing applications, iOS currently seems
to generate more income than Android. Recent reports from analytics company Flurry

Page 56 of 60

point to a much higher percentage of new iOS versus Android applications being developed,
with 73% of new projects using iOS and just 27% choosing Android [21]. The same report
also points to a much higher return from paid iOS applications than from paid Android
applications; estimating that for every $1 earned for an iOS application, the corresponding
Android application returns just $0.24. It is unclear if this trend will continue, due to
the massive growth in both sales of Android smartphones and the number of application
downloads.

One major difference between the two platforms is that Android is mostly open source, while
iOS uses a closed model, both in terms of software and device manufacture. The open source
nature of Android means that code is extensively reviewed by the open source community,
who may make their own contributions. The variety of manufacturers means that users have
a wider choice of devices and pricing is more competitive. However, this leads to more work
for the developer to ensure their application runs on as many devices as possible. The relaxed
control of the Android Market is good as it allows developers to get their applications on sale
in a short time frame, however, it leaves end users vulnerable as they have no guarantees that
applications are genuine and will not cause malicious damage. iOS code is strictly controlled
by Apple, and developers only have access to approved APIs which limits what an application
can do. As Apple is the only manufacturer of iOS devices, application development is much
easier due to the homogeneity of target devices. Developers know how their software will
perform on any Apple device and how their user interfaces will look. Apple imposes a much
stricter process in order to make an application available for distribution, but end users like
this as they are confident that any application downloaded has been reviewed and will not
do any harm. Android promotes interoperability between devices through open standards,
whereas Apple goes against this and tries to lock the user in to the Apple ecosystem. The
Apple business model is a successful one, with developers making more money from iOS
applications than Android, however the recent growth in numbers of Android devices and
downloads may change this.

7.6 Personal Reflections

From a developer’s point of view, I cannot say definitively that Android is better than
iOS or vice versa. With one relatively small application complete, there is still much to
learn about both platforms. A developer will no doubt be influenced in this by a number
of factors, one of which is their own personal experience, both as a programmer and as a
smartphone owner. If a developer is more familiar with Java than Objective-C then they
are likely to prefer programming in the language they know best. If the developer owns
and likes a smartphone with one particular mobile operating system, they are more likely
to try developing applications for that platform before another. I enjoyed developing both
applications, and learnt a lot throughout the whole process. I am predominantly a java
developer and own an Android smartphone, so found this application much easier to develop.
Part of this was due to the steeper learning curve required to develop the iOS application,
and part due to the flexibility and lack of restrictions on the Android platform. However, I
successfully developed an application with the same basic functionality for both platforms in
a comparable amount of time. I prefer the open model used by Android, but in reality there
is not a huge difference between both platforms. I feel that knowledge of both Android and
iOS will ultimately prove useful to me. With the recent release of iOS 5 and Android 4, even
more functionality is available to the application developer, and it will be interesting to see
where the future of mobile application development leads.

Page 57 of 60

Bibliography

[1] Adobe. Adobe AIR. http://www.adobe.com/products/air.html, December 2011.

[2] Android Developers. http://developer.android.com/index.html, November 2011.

[3] Android Licenses. http://source.android.com/source/licenses.html, November
2011.

[4] Ansca. Corona SDK. http://www.anscamobile.com/corona/, December 2011.

[5] AppBrain. Number of available Android applications.
http://www.appbrain.com/stats/number-of-android-apps, December 2011.

[6] JetBrains AppCode Objective-C IDE. http://www.jetbrains.com/objc/, November
2011.

[7] Apple Announces iPhone 2.0 Software Beta. http://www.apple.com/pr/library/
2008/03/06Apple-Announces-iPhone-2-0-Software-Beta.html, November 2011.

[8] Apple Presents iPod.
http://www.apple.com/pr/library/2001/10/23Apple-Presents-iPod.html,
November 2011.

[9] Apple Press Info: iPod + iTunes Timeline.
http://www.apple.com/pr/products/ipodhistory/, November 2011.

[10] Apple Sells One Million iPhone 3Gs in First Weekend.
http://www.apple.com/pr/library/2008/07/

14Apple-Sells-One-Million-iPhone-3Gs-in-First-Weekend.html, November
2011.

[11] Apple Sells One Millionth iPhone. http://www.apple.com/pr/library/2007/09/
10Apple-Sells-One-Millionth-iPhone.html, November 2011.

[12] Apple’s App Store Downloads Top 15 Billion. http://www.apple.com/pr/library/
2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html, November 2011.

[13] Apple. Apples App Store downloads top 15 billion. http://www.apple.com/pr/
library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html, July
2011.

[14] iOS Developer Program. http://developer.apple.com/programs/ios/, November
2011.

[15] iPhone 4S First Weekend Sales Top Four Million. http://www.apple.com/pr/
library/2011/10/17iPhone-4S-First-Weekend-Sales-Top-Four-Million.html,
November 2011.

[16] Apple Q&A on Location Data. http:
//www.apple.com/pr/library/2011/04/27Apple-Q-A-on-Location-Data.html,
April 2011.

[17] International Data Corporation. Apple Rises to the Top as Worldwide Smartphone
Market Grows 65.4% in the Second Quarter of 2011.
http://www.businesswire.com/news/home/20110804006519/en/

Apple-Rises-Top-Worldwide-Smartphone-Market-Grows, August 2011.

Page 58 of 60

http://www.adobe.com/products/air.html
http://developer.android.com/index.html
http://source.android.com/source/licenses.html
http://www.anscamobile.com/corona/
http://www.appbrain.com/stats/number-of-android-apps
http://www.jetbrains.com/objc/
http://www.apple.com/pr/library/2008/03/06Apple-Announces-iPhone-2-0-Software-Beta.html
http://www.apple.com/pr/library/2008/03/06Apple-Announces-iPhone-2-0-Software-Beta.html
http://www.apple.com/pr/library/2001/10/23Apple-Presents-iPod.html
http://www.apple.com/pr/products/ipodhistory/
http://www.apple.com/pr/library/2008/07/14Apple-Sells-One-Million-iPhone-3Gs-in-First-Weekend.html
http://www.apple.com/pr/library/2008/07/14Apple-Sells-One-Million-iPhone-3Gs-in-First-Weekend.html
http://www.apple.com/pr/library/2007/09/10Apple-Sells-One-Millionth-iPhone.html
http://www.apple.com/pr/library/2007/09/10Apple-Sells-One-Millionth-iPhone.html
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://developer.apple.com/programs/ios/
http://www.apple.com/pr/library/2011/10/17iPhone-4S-First-Weekend-Sales-Top-Four-Million.html
http://www.apple.com/pr/library/2011/10/17iPhone-4S-First-Weekend-Sales-Top-Four-Million.html
http://www.apple.com/pr/library/2011/04/27Apple-Q-A-on-Location-Data.html
http://www.apple.com/pr/library/2011/04/27Apple-Q-A-on-Location-Data.html
http://www.businesswire.com/news/home/20110804006519/en/Apple-Rises-Top-Worldwide-Smartphone-Market-Grows
http://www.businesswire.com/news/home/20110804006519/en/Apple-Rises-Top-Worldwide-Smartphone-Market-Grows

[18] Document Object Model (DOM). http://www.w3.org/DOM/, December 2011.

[19] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting privacy leaks in iOS
applications. In Proceedings of the Network and Distributed System Security
Symposium, 2011.

[20] EGit Eclipse plugin. http://eclipse.org/egit/, November 2011.

[21] Flurry. App Developers Bet on iOS over Android this Holiday Season.
http://blog.flurry.com/bid/79061/

App-Developers-Bet-on-iOS-over-Android-this-Holiday-Season, December
2011.

[22] E. Gamma. Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[23] Gartner. Market Share: Mobile Communication Devices by Region and Country,
2Q11. http://www.gartner.com/resId=1764117, August 2011.

[24] M.H. Goadrich and M.P. Rogers. Smart Smartphone Development: iOS versus
Android. In Proceedings of the 42nd ACM technical symposium on Computer science
education, pages 607–612. ACM, 2011.

[25] Google. 10 Billion Android Market downloads and counting. http://googleblog.
blogspot.com/2011/12/10-billion-android-market-downloads-and.html,
December 2011.

[26] P. Grundström. Mobile Development for iPhone and Android, 2010.

[27] Paul Hegarty. CS193P iPhone Application Development, Stanford University.
http://www.stanford.edu/class/cs193p/cgi-bin/drupal/, November 2011.

[28] JetBrains IntelliJ IDEA. http://www.jetbrains.com/idea/, November 2011.

[29] Java SE at a Glance.
http://www.oracle.com/technetwork/java/javase/overview/index.html,
November 2011.

[30] Don Kellogg. In U.S. Market, New Smartphone Buyers Increasingly Embracing
Android. http://blog.nielsen.com/nielsenwire/online_mobile/
in-u-s-market-new-smartphone-buyers-increasingly-embracing-android/,
September 2011.

[31] Khronos. Khronos OpenGL ES API Registry.
http://www.khronos.org/registry/gles/, November 2011.

[32] ksoap2-android. http://code.google.com/p/ksoap2-android//, November 2011.

[33] H. Lieberman. Using prototypical objects to implement shared behavior in
object-oriented systems. In ACM Sigplan Notices, volume 21, pages 214–223. ACM,
1986.

[34] R. Meier. Professional Android 2 Application Development. John Wiley & Sons, 2010.

[35] C. Miller. Mobile attacks and defense. Security & Privacy, IEEE, 9(4):68–70, 2011.

[36] Monkey. Corona SDK. http://www.monkeycoder.co.nz/, December 2011.

[37] MoSync. MoSync. http://www.mosync.com/, December 2011.

[38] M. Murphy. Beginning Android 3. Apress Series. Apress, 2011.

Page 59 of 60

http://www.w3.org/DOM/
http://eclipse.org/egit/
http://blog.flurry.com/bid/79061/App-Developers-Bet-on-iOS-over-Android-this-Holiday-Season
http://blog.flurry.com/bid/79061/App-Developers-Bet-on-iOS-over-Android-this-Holiday-Season
http://www.gartner.com/resId=1764117
http://googleblog.blogspot.com/2011/12/10-billion-android-market-downloads-and.html
http://googleblog.blogspot.com/2011/12/10-billion-android-market-downloads-and.html
http://www.stanford.edu/class/cs193p/cgi-bin/drupal/
http://www.jetbrains.com/idea/
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://blog.nielsen.com/nielsenwire/online_mobile/in-u-s-market-new-smartphone-buyers-increasingly-embracing-android/
http://blog.nielsen.com/nielsenwire/online_mobile/in-u-s-market-new-smartphone-buyers-increasingly-embracing-android/
http://www.khronos.org/registry/gles/
http://code.google.com/p/ksoap2-android//
http://www.monkeycoder.co.nz/
http://www.mosync.com/

[39] V. Nahavandipoor. IOS 4 Programming Cookbook: Solutions & Examples for IPhone,
IPad, and IPod Touch Apps. O’Reilly Media, 2011.

[40] The Objective-C Programming Language.
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/

ObjectiveC/Introduction/introObjectiveC.html, November 2011.

[41] Open Handset Alliance. http://www.openhandsetalliance.com/index.html,
November 2011.

[42] PhoneGap. PhoneGap. http://phonegap.com/, December 2011.

[43] D. Pilone and T. Pilone. Head First IPhone and IPad Development: A Learner’s
Guide to Creating Objective-C Applications for the IPhone and IPad. Head First
Series. O’Reilly Media, 2011.

[44] B. Rao and L. Minakakis. Evolution of mobile location-based services.
Communications of the ACM, 46(12):61–65, 2003.

[45] T. Reenskaug. Thing-model-view-editor-an example from a planningsystem. Xerox
PARC technical note, 12, 1979.

[46] T.M.H. Reenskaug. Models-views-controllers. technical note, xerox parc, 1979.

[47] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer. Google
Android: A comprehensive security assessment. Security & Privacy, IEEE, 8(2):35–44,
2010.

[48] Simple API for XML (SAX). http://www.saxproject.org, December 2011.

[49] SQlite Database Engine. http://www.sqlite.org/, November 2011.

[50] Stack Overflow: Android tag.
http://stackoverflow.com/questions/tagged/android, November 2011.

[51] Subversive Eclipse plugin. http://www.eclipse.org/subversive/, November 2011.

[52] Text Me My Bus by Wexford Bus. http://www.textmemybus.com/, November 2011.

[53] B. Wong. Google’s Android vs. Apple’s iOS and the winner is? Electronic Design,
58(15), 2010.

[54] wsdl2objc. http://code.google.com/p/wsdl2objc/, November 2011.

Page 60 of 60

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://www.openhandsetalliance.com/index.html
http://phonegap.com/
http://www.saxproject.org
http://www.sqlite.org/
http://stackoverflow.com/questions/tagged/android
http://www.eclipse.org/subversive/
http://www.textmemybus.com/
http://code.google.com/p/wsdl2objc/

	Table of Contents
	Abstract
	Introduction
	Background and Cultural Influences
	Resources
	LiveBus Mobile Application
	Report Layout

	Getting Started with Development
	Platforms
	Integrated Development Environments
	Tools
	Source Code Management Integration
	Debugging
	Profiling and Analysis
	Emulation/Simulation
	User interface design

	Devices
	Summary

	Languages
	Object Creation
	Message Passing
	Properties
	Memory Management
	Categories
	Blocks
	Summary

	Design
	Platform Architecture and Frameworks
	Patterns
	Application Structure
	Application Lifecycle
	Summary

	Features of Mobile Applications
	Menus
	Multi-threading and Concurrency
	Storage
	Web Services and XML
	Location Based Services
	Security
	Summary

	Distribution
	Process
	Cost
	Payment
	Summary

	Conclusion
	Flexibility and Restrictions
	Reusability
	Popularity
	Alternatives
	Summary
	Personal Reflections

