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Abstract. Refactoring large systems involves several sources of uncertainty re-
lated to the severity levels of code smells to be corrected and the importance of 
the classes in which the smells are located. Due to the dynamic nature of soft-
ware development, these values cannot be accurately determined in practice, 
leading to refactoring sequences that lack robustness. To address this problem, 
we introduced a multi-objective robust model, based on NSGA-II, for the soft-
ware refactoring problem that tries to find the best trade-off between quality 
and robustness. We evaluated our approach using six open source systems and 
demonstrated that it is significantly better than state-of-the-art refactoring ap-
proaches in terms of robustness in 100% of experiments based on a variety of 
real-world scenarios. Our suggested refactoring solutions were found to be 
comparable in terms of quality to those suggested by existing approaches and to 
carry an acceptable robustness price. Our results also revealed an interesting 
feature about the trade-off between quality and robustness that demonstrates the 
practical value of taking robustness into account in software refactoring. 

1 Introduction 

Large-scale software systems exhibit high complexity and become difficult to maintain. 
It has been reported that the cost of maintenance and evolution activities comprises 
more than 80% of total software costs. In addition, it has been shown that software 
maintainers spend around 60% of their time in understanding the code. To facilitate 
maintenance tasks, one of the widely used techniques is refactoring which improves 
design structure while preserving the overall functionality of the software [12]. 

There has been much work on different techniques and tools for refactoring [12], 
[23], [21], [9]. The vast majority of these techniques identify key symptoms that cha-
racterize the code to refactor using a combination of quantitative, structural, and/or 
lexical information and then propose different possible refactoring solutions, for each 
identified segment of code. In order to find out which parts of the source code need to 
be refactored, most of the existing work relies on the notion of design defects or code 
smells. Originally coined by Fowler [12], the generic term code smell refers to struc-
tures in the code that suggest the possibility of refactoring. Once code smells have 
been identified, refactorings need to be proposed to resolve them. Several automated 
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refactoring approaches are proposed in the literature and most of them are based on 
the use of software metrics to estimate quality improvements of the system after ap-
plying refactorings [23], [21], [9], [17], [20]. 

The existing literature on software refactoring invariably ignores an important con-
sideration when suggesting refactoring solutions: the highly dynamic nature of soft-
ware development. In this paper, we take into account two dynamic aspects as follows: 

• Code Smell Severity: This is the severity level assigned to a code smell type by a 
developer. It usually varies from developer to developer, and indeed a developer’s 
assessment of smell severity will change over time as well. 

• Code Smell Class Importance: This is the importance of a class that contains a 
code smell, where importance refers to the number and size of the features that 
the class supports. A code smell with large class importance will have a greater 
detrimental impact on the software. Again, this property will vary over time as 
software requirements change [15] and classes are added/deleted/split. 

We believe that the uncertainties related to class importance and code smell severi-
ty need to be taken into consideration when suggesting a refactoring solution. To this 
end, we introduce in this paper a novel representation of the code refactoring problem, 
based on robust optimization [3], [16] that generates robust refactoring solutions by 
taking into account the uncertainties related to code smell severity and the importance 
of the class that contains the code smell. Our robustness model is based on the well-
known multi-objective evolutionary algorithm NSGA-II proposed by Deb et al. [8] 
and considers possible changes in class importance and code smell severity by gene-
rating different scenarios at each iteration of the algorithm. In each scenario, the de-
tected code smell to be corrected is assigned a severity score and each class in the 
system is assigned an importance score. In our model, we assume that these scores 
change regularly due to reasons such as developers’ evolving perspectives on the 
software or new features and requirements being implemented or any other code 
changes that could make some classes/code smells more or less important. Our multi-
objective approach aims to find the best trade-off between maximizing the quality of 
the refactoring solution in terms of the number of code smells corrected and maximiz-
ing its robustness in terms of the severity of the code smells corrected and the impor-
tance of the classes that contains the code smells. 

The primary contributions of this paper are as follows: 
• The paper introduces a novel formulation of the refactoring problem as a multi-

objective problem that takes into account the uncertainties related to code smell 
detection and the dynamic environment of software development. To the best of 
our knowledge, and based on recent search-based software engineering (SBSE) 
surveys [15], this is the first work to use robust optimization for software refac-
toring, and the first in SBSE to treat robustness as a helper objective during the 
search.  

• The paper reports on the results of an empirical study of our robust NSGA-II 
technique as applied to six open source systems. We compared our approach to 
random search, multi-objective particle swarm optimization (MOPSO) [18], 
search-based refactoring [17], [20] and a refactoring tool [24] not based on heu-
ristic search. The results provide evidence to support the claim that our proposal 
enables the generation of robust refactoring solutions without a high loss of 
quality using a variety of real-world scenarios.  
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2 Multi-objective Robust Software Refactoring 

2.1 Robust Optimization 

In dealing with optimization problems, including software engineering ones, most 
researchers assume that the input parameters of the problem are exactly known in 
advance. Unfortunately, this is an idealization often not the case in a real-world set-
ting. Additionally, uncertainty can change the effective values of some input parame-
ters with respect to nominal values. For instance, when handling the knapsack prob-
lem (KP), which is one of the most studied combinatorial problems [3], we can face 
such a problem. As stated by [3], uncertainty is unavoidable in real problem settings; 
therefore it should be taken into account in every optimization approach in order to 
obtain robust solutions. Robustness of an optimal solution can usually be discussed 
from the following two perspectives: (1) the optimal solution is insensitive to small 
perturbations in terms of the decision variables and/or (2) the optimal solution is in-
sensitive to small variations in terms of environmental parameters. Figure 1 illustrates 
the robustness concept with respect to a single decision variable named x. Based on 
the f (x) landscape, we have two optima: A and B. We remark that solution A is very 
sensitive to local perturbation of the variable x. A very slight perturbation of x within 
the interval [2, 4] can make the optimum A unacceptable since its performance f(A) 
would dramatically degrade. On the other hand, small perturbations of the optimum B, 
which has a relatively lower objective function value than A, within the interval [5,7] 
hardly affects the performance of solution B (i.e., f(B)) at all. We can say that al-
though solution A has a better quality than solution B, solution B is more robust than 
solution A. In an uncertain context, the developer would probably prefer solution B to 
solution A. This choice is justified by the performance of B in terms of robustness. It 
is clear from this discussion robustness has a price, called robustness price or cost, 
since it engenders a loss in optimality. This loss is due to preferring the robust solu-
tion B over the non-robust solution A. According to Figure 1, this loss is equal 
to abs( f (B) − f (A)) . Several approaches have been proposed to handle robustness in 
the optimization field in general and more specifically in design engineering [16]. 
 

 

Fig. 1. Illustration of the robustness concept under uncertainty related to the decision variable x. 
Solution B is more robust than solution A. 
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2.2 Multi-objective Robust Optimization for Software Refactoring 

2.2.1 Problem Formulation 
The refactoring problem involves searching for the best refactoring solution among the 
set of candidate ones, which constitutes a huge search space. A refactoring solution is a 
sequence of refactoring operations where the goal of applying the sequence to a soft-
ware system S is typically to minimize the number of code smells in S.  

We propose a robust formulation of the refactoring problem that takes class impor-
tance and smell severity into account. Consequently, we have two objective functions 
to be maximized in our problem formulation: (1) the quality of the system to refactor, 
i.e., minimizing the number of code smells, and (2) the robustness of the refactoring 
solutions in relation to uncertainty in the severity level of the code smells and in the 
importance of the classes that contain the code smells. Analytically speaking, the 
formulation of the robust refactoring problem can be stated as follows:  

 
Maximize

f1(x, S) = NCCS(x, S) NDCS (S)

f2 (x, S) = [SmellSeverity(CCSi, x, S)
i=1

NCCS

� + Importance(CCSi, x, S)]

�

�
�

�
�

subject   to   x = (x1,..., xn ) ∈ X   

where X is the set of all legal refactoring sequences starting from S, xi is the i-th refac-
toring in the sequence x, NCCS(x,S) is the Number of Corrected Code Smells after ap-
plying the refactoring solution x on the system S, NDCS is the Number of Detected 
Code-Smells prior to the application of solution x to the system S, CCSi is the i-th Cor-
rected Code Smell, SmellSeverity(CCSi, x, S) is the severity level of the i-th corrected 
code smell related to the execution of x on S, and Importance(CCSi, x, S) is the impor-
tance of the class containing the i-th code smell corrected by the execution of x on S. 

 The smell’s severity level is a numeric quantity, varying between 0 and 1, assigned 
by the developer to each code smell type (e.g., blob, spaghetti code, functional de-
composition, etc.). We define the class importance of a code smell as follows:        

Importance(CCSi, x, S) = (NC / MaxNC(S))+ (NR / MaxNR(S))+ (NM / MaxNM (S))
3  

such that NC/NR/NM correspond respectively to the Number of Comments/ 
Relationships/Methods related to the CCSi and MaxNC/MaxNR/MaxNM correspond 
respectively to the Maximum Number of Comments/Relationships/Methods of any class 
in the system S. There are of course many ways in which class importance could be 
measured, and one of the advantages of the search-based approach is that this definition 
could be easily replaced with a different one. In summary, the basic idea behind this 
work is to maximize the resistance of the refactoring solutions to perturbations in the 
severity levels and class importance of the code smells while maximizing simultaneously 
the number of corrected code smells. These two objectives are in conflict with each other 
since the quality of the proposed refactoring solution usually decreases when the envi-
ronmental change (smell severity and/or class importance) increases. Thus, the goal is to 
find a good compromise between (1) quality and (2) robustness. This compromise is 
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directly related to robustness cost, as discussed above. In fact, once the bi-objective 
trade-off front (quality, robustness) is obtained, the developer can navigate through this 
front in order to select his/her preferred refactoring solution. This is achieved through 
sacrificing some degree of solution quality while gaining in terms of robustness.  

2.2.2  The Solution Approach 

Solution Representation. To represent a candidate solution (individual/chromosome), we 
use a vector-based representation. Each dimension of the vector represents a refactoring 
operation where the order of application of the refactoring operations corresponds to their 
positions in the vector. The standard approach of pre- and post-conditions [12], is used to 
ensure that the refactoring operation can be applied while preserving program behaviour. 
For each refactoring operation, a set of controlling parameters (e.g., actors and roles as 
illustrated in Table 1) is randomly picked from the program to be refactored. Assigning 
randomly a sequence of refactorings to certain code fragments generates the initial popula-
tion. An example of a solution is given in Figure 2 containing 3 refactorings. To apply a 
refactoring operation we need to specify which actors, i.e., code fragments, are in-
volved/impacted by this refactoring and which roles they play to perform the refactoring 
operation. An actor can be a package, class, field, method, parameter, statement or vari-
able. Table 1 depicts, for each refactoring, its involved actors and its role. 

Table 1. Refactoring types and their involved actors and roles 

Refactorings Actors Roles 

Move method 
class source class, target class
method moved method

Move field 
class source class, target class
field moved field

Pull up field class sub classes, super class
field moved field

Pull up method 
class sub classes, super class
method moved method

Push down field class super class, sub classes
field moved field

Push down 
method 

class super class, sub classes
method Method

Inline class class source class, target class

Extract method 
class source class, target class
method source method, new method
statement moved statements

Extract class 
class source class, new class
field moved fields
method moved methods

Move class package source package, target package
class moved class

Extract interface 
class source classes, new interface
field moved fields
method moved methods

 
Inline_Class (Student, Person)
Pull_Up_Method (salary, Professor, Person)
Move_Method (grade, Registration, Student)

Fig. 2. A sample refactoring solution 
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Solution Variation. For crossover, we use the one-point crossover operator. It starts 
by selecting and splitting at random two parent solutions. Then, this operator creates 
two child solutions by putting, for the first child, the first part of the first parent with 
the second part of the second parent, and vice versa for the second child. This opera-
tor must respect the refactoring sequence length limits by eliminating randomly some 
refactoring operations if necessary. For mutation, we use the bit-string mutation op-
erator that picks probabilistically one or more refactoring operations from its or their 
associated sequence and replaces them by other ones from a list of possible refactor-
ings. These two variation operators have already demonstrated good performance 
when tackling the refactoring problem [23][21]. 

Solution Evaluation. Each refactoring sequence in the population is executed on 
the system S. For each sequence, the solution is evaluated based on the two objec-
tive functions (quality and robustness) defined in the previous section. Since we are 
considering a bi-objective formulation, we use the concept of Pareto optimality to 
find a set of compromise (Pareto-optimal) refactoring solutions. By definition, a 
solution x Pareto-dominates a solution y if and only if x is at least as good as y in all 
objectives and strictly better than y in at least one objective. The fitness of a par-
ticular solution in NSGA-II [8] corresponds to a couple (Pareto Rank, Crowding 
distance). In fact, NSGA-II classifies the population individuals (of parents and 
children) into different layers, called non-dominated fronts. Non-dominated solu-
tions are assigned a rank of 1 and then are discarded temporary from the population. 
Non-dominated solutions from the truncated population are assigned a rank of 2 and 
then discarded temporarily. This process is repeated until the entire population is 
classified with the domination metric. After that, a diversity measure, called crowd-
ing distance, is assigned front-wise to each individual. The crowding distance is the 
average side length of the cuboid formed by the nearest neighbors of the considered 
solution. Once each solution is assigned its Pareto rank, based on refactoring quality 
and robustness to change in terms of class importance and smell severity levels, in 
addition to its crowding distance, mating selection and environmental selection are 
performed. This is based on the crowded comparison operator that favors solutions 
having better Pareto ranks and, in case of equal ranks, it favors the solution having 
larger crowding distance. In this way, convergence towards the Pareto optimal bi-
objective front (quality, robustness) and diversity along this front are emphasized 
simultaneously. The basic iteration of NSGA-II consists in generating an offspring 
population (of size N) from the parent one (of size N too) based on variation opera-
tors (crossover and mutation) where the parent individuals are selected based on the 
crowded comparison operator. After that, parents and children are merged into a 
single population R of size 2N. The parent population for the next generation is 
composed of the best non-dominated fronts. This process continues until the satis-
faction of a stopping criterion. The output of NSGA-II is the last obtained parent 
population containing the best of the non-dominated solutions found. When plotted 
in the objective space, they form the Pareto front from which the developer will 
select his/her preferred refactoring solution. 
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3 Design of the Empirical Study 

3.1 Research Questions and Systems Studied 

RQ1: To validate the problem formulation of our approach, we compared our 
NSGA-II formulation with Random Search. 

RQ2.1: How does NSGA-II perform compared to another multi-objective algo-
rithm in terms of robustness cost, etc.?  

RQ2.2: How do robust, multi-objective algorithms perform compared to mono-
objective Evolutionary Algorithms?   

RQ2.3: How does NSGA-II perform compare to existing search-based refactoring 
approaches?  

RQ2.4: How does NSGA-II perform compared to existing refactoring approaches 
not based on the use of metaheuristic search?  

RQ3: Insight. Can our robust multi-objective approach be useful for developers in 
real-world setting?  

In our experiments, we used a set of well-known and well-commented open-source 
Java projects. We applied our approach to six large and medium sized open source 
Java projects: Xerces-J, JFreeChart, GanttProject, ApacheAnt, JHotDraw, and Rhino . 
Table 2 provides some descriptive statistics about these six programs. We selected 
these systems for our validation because they range from medium to large-sized open 
source projects that have been actively developed over the past 10 years, and include 
a large number of code smells. In addition, these systems are well studied in the litera-
ture and their code smells have been detected and analyzed manually [17], [20], [21].  

Table 2. Software studied in our experiments 

Systems Release #Classes #Smells KLOC 

Xerces-J v2.7.0 991 66 240 

JFreeChart  v1.0.9 521 57 170 

GanttProject v1.10.2 245 41 41 

ApacheAnt  v1.8.2 1191 82 255 

JHotDraw  v6.1 585 21 21 

Rhino v1.7R1 305 61 42 

3.2 Evaluation Metrics Used 

We use the three following performance indicators [33] when comparing NSGA-II 
and MOPSO: Hypervolume (IHV), Inverse Generational Distance (IGD), Contribu-
tion (IC). In addition to these three multi-objective evaluation measures, we used 
these other metrics mainly to compare between mono-objective and multi-objective 
approaches defined as follows: 

−Quality: number of Fixed Code-Smells (FCS) is the number of code smells fixed 
after applying the best refactoring solution. 

−Severity of fixed Code-Smells (SCS) is defined as the sum of the severity of fixed 
code smells: 
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where k is the number of fixed code smells and SmellSeverity corresponds to the 
severity (value between 0 and 1) assigned by the developer to each code smell type 
(blob, spaghetti code, etc.). In our experiments, we use these severity scores 0.8, 0.6, 
0.4 and 0.3 respectively for blob, spaghetti code, functional decomposition and data 
class.  

−Importance of fixed Code-Smells (ICS) is defined using three metrics (number of 
comments, number of relationships and number of methods) as follows: 
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where importance is as defined in the previous section.  
−Correctness of the suggested Refactorings (CR) is defined as the number of se-

mantically correct refactorings divided by the total number of manually evaluated 
refactorings.   

−Computational time (ICT) is a measure of efficiency employed here since robust-
ness inclusion may cause the search to use more time in order to find a set of Pareto-
optimal trade-offs between refactoring quality and solution robustness. 

Our experimental study is performed based on 51 independent simulation runs for 
each problem instance and the obtained results are statistically analyzed by using the 
Wilcoxon rank sum test [2] with a 95% confidence level (� = 5%).  

For each multi-objective algorithm and for each system (cf. Table 2), we per-
formed a set of experiments using several population sizes: 50, 100, 200, 500 and 
1000. The stopping criterion was set to 250,000 fitness evaluations for all algorithms 
in order to ensure fairness of comparison. Each algorithm was executed 51 times with 
each configuration and then comparison between the configurations was performed 
based on IHV, IGD and IC using the Wilcoxon test. Table 3 reports the best configu-
ration obtained for each couple (algorithm, system).  

The MOPSO used in this paper is the Non-dominated Sorting PSO (NSPSO) pro-
posed by Li [18]. The other parameters’ values were fixed by trial and error and are as 
follows: (1) crossover probability = 0.8; mutation probability = 0.5 where the proba-
bility of gene modification is 0.3; stopping criterion = 250,000 fitness evaluations. For 
MOPSO, the cognitive and social scaling parameters c1 and c2 were both set to 2.0 
and the inertia weighting coefficient w decreased gradually from 1.0 to 0.4. Since 
refactoring sequences usually have different lengths, we authorized the length n of 
number of refactorings to belong to the interval [10, 250]. 

Table 3. Best population size configurations 

System NSGA-II MOPSO Mono-EA
Xerces-J 1000 1000 1000
JFreeChart  500 200 500
GanttProject 100 100 100
ApacheAnt  1000 1000 1000
JHotDraw  200 200 200
Rhino 100 200 200
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3.5 Results 
 
3.5.1 Results for RQ1 
Table 4 confirms that NSGA-II and MOPSO are better than random search based on 
the three quality indicators IHV, IGD and IC on all six open source systems. The 
Wilcoxon rank sum test showed that in 51 runs both NSGA-II and MOPSO results 
were significantly better than random search. We conclude that there is empirical 
evidence that our multi-objective formulation surpasses the performance of random 
search thus our formulation is adequate (this answers RQ1).  

3.5.2 Results for RQ2 
In this section, we compare our NSGA-II adaptation to the current, state-of-the-art 
refactoring approaches. To answer the second research question, RQ2.1, we compared 
NSGA-II to another widely used multi-objective algorithm, MOPSO, using the same 
adapted fitness function. Table 4 shows the overview of the results of the significance 
tests comparison between NSGA-II and MOPSO. NSGA-II outperforms MOPSO in 
most of the cases: 13 out of 18 experiments (73%). MOPSO outperforms the NSGA-
II approach only in GanttProject, which is the smallest open source system considered 
in our experiments, having the lowest number of legal refactorings available, so it 
appears that MOPSO’s search operators make a better task of working with a smaller 
search space. In particular, NSGA-II outperforms MOPSO in terms of IC values in 4 
out 6 experiments with one ‘no significant difference’ result. Regarding IHV, NSGA-
II outperformed MOPSO in 5 out of 6 experiments, where only one case was not 
statistically significant, namely GanttProject. For IGD, the results were the same as 
for IC. A more qualitative evaluation is presented in Figure 3 illustrating the box plots 
obtained for the multi-objective metrics on the different projects. We see that for 
almost all problems the distributions of the metrics values for NSGA-II have smaller 
variability than for MOPSO. This fact confirms the effectiveness of NSGA-II over 
MOPSO in finding a well-converged and well-diversified set of Pareto-optimal refac-
toring solutions.     

Next, we use all four metrics FCS, SCS, ICS and ICT to compare three robust re-
factoring algorithms: our NSGA-II adaptation, MOPSO, and a mono-objective genet-
ic algorithm (Mono-EA) that has a single fitness function aggregating the two objec-
tives. We first note that the mono-EA provides only one refactoring solution, while 
NSGA-II and MOPSO generate a set of non-dominated solutions. In order to make 
meaningful comparisons, we select the best solution for NSGA-II and MOPSO using 
a knee point strategy [53]. The knee point corresponds to the solution with the max-
imal trade-off between quality and robustness, i.e., a small improvement in either 
objective induces a large degradation in the other. Hence moving from the knee point 
in either direction is usually not interesting for the developer [50]. Thus, for NSGA-II 
and MOPSO, we select the knee point from the Pareto approximation having  
the median IHV value. We aim by this strategy to ensure fairness when making com-
parisons against the mono-objective EA. For the latter, we use the best solution cor-
responding to the median observation on 51 runs. We use the trade-off “worth” metric 
proposed by Rachmawati and Srinivasan [51] to find the knee point. This metric  
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estimates the worthiness of each non-dominated refactoring solution in terms of trade-
off between quality and robustness. After that, the knee point corresponds to the solu-
tion having the maximal trade-off “worthiness” value. The results from 51 runs are 
depicted in Table 5(a). It can be seen that both NSGA-II and MOPSO provide a better 
trade-off between quality and robustness than a mono-objective EA in all six systems. 
For FCS, the number of fixed code smells using NSGA-II is better than MOPSO in all 
systems except for GanttProject (84% of cases) and also the FCS score for NSGA-II 
is better than mono-EA in 100% of cases. We have the same observation for the SCS 
and ICS scores where NSGA-II outperforms MOPSO and Mono-EA in at least 84% 
of cases. Even for GanttProject, the number of fixed code smells using NSGA-II is 
very close to those fixed by MOPSO. The execution time of NSGA-II is invariably 
lower than that of MOPSO with the same number of iterations, however the execution 
time required by Mono-EA is lower than both NSGA-II and MOPSO. It is well-known 
that a mono-objective algorithm requires lower execution time for convergence since 
only one objective is handled. In conclusion, we answer RQ2.2 by concluding that  
the results obtained in Table 5(a) confirm that both multi-objective formulations are 
adequate and outperform the mono-objective algorithm based on an aggregation of two 
objectives (quality and robustness).  

Table 5 also shows the results of comparing our robust approach based on NSGA-II 
with two mono-objective refactoring approaches [17], [20] and a practical refactoring 
technique where developers used a refactoring plug-in in Eclipse to suggest solutions 
to fix code smells. Kessentini et al. [17] used genetic algorithms to find the best  
sequence of refactoring that minimizes the number of code smells while O’Keeffe and 
Ó Cinnéide [20] used different mono-objective algorithms to find the best sequence of 
refactorings that optimize a fitness function composed of a set of quality metrics. In 
Ouni et al. [21], the authors ask a set of developers to fix manually the code smells in 
a number of open source systems including those that we are considering in our expe-
riments. It is apparent from Table 5 that our NSGA-II adaptation outperforms mono-
objective approaches in terms of smell-fixing ability (FCS) in only 11% of cases. 
However, our NSGA-II adaptation outperforms all the mono-objective and manual 
approaches in 100% of experiments in terms of the two robustness metrics, SCS and 
ICS. This is can be explained by the fact that NSGA-II aims to find a compromise 
between both quality and robustness however the remaining approaches did not con-
sider robustness but only quality. Thus, NSGA-II sacrifices a small amount of quality 
in order to improve robustness. Furthermore, the number of code smells fixed by 
NSGA-II (277) is very close to the number fixed by the mono-objective and manual 
approaches (the best being Kessentini et al. [17] that fixed a total of 285 code smells), 
so the sacrifice in solution quality is quite small. When comparing NSGA-II with the 
remaining approaches we considered the best solution selected from the Pareto-
optimal front using the knee point-based strategy described above. To answer RQ2.3 
and RQ2.4, the results of Table 5(b) support the claim that our NSGA-II formulation 
provides a good trade-off between robustness and quality, and outperforms on aver-
age the state of the art of refactoring approaches, both search-based and manual, with 
a low robustness cost.  
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3.6.3 Results for RQ3 
Figure 4 depicts the different Pareto surfaces obtained on three open source systems 
(Apache Ant, JHotDraw and Gantt Project) using NSGA-II to optimize quality and 
robustness. Due to space limitations, we show only some examples of the Pareto-
optimal front approximations obtained which differ significantly in terms of size. 
Similar fronts were obtained on the remaining systems. The 2-D projection of the 
Pareto front helps developers to select the best trade-off solution between the two 
objectives of quality and robustness based on their own preferences. Based on the 
plots of Figure 4, the developer could degrade quality in favor of robustness while 
controlling visually the robustness cost, which corresponds to the ratio of the quality 
loss to the achieved robustness gain. In this way, the preferred robust refactoring 
solution can be realized.  

One striking feature about all the three plots is that starting from the highest quality 
solution the trade-off between quality and robustness is in favor of quality, meaning 
that the quality degrades slowly with a fast increase in robustness up to the knee 
point, marked in each figure. Thereafter, there is a sharp drop in quality with only a 
small increase in robustness. It is very interesting to note that this property of the 
Pareto-optimal front is apparent in all the problems considered in this study. It is like-
ly that a developer would be drawn to this knee point as the probable best trade-off 
between quality and robustness.  Without any robustness consideration in the search 
process, one would obtain the highest quality solution all the time (which is not robust 
at all), but Figure 4 shows how a better robust solution can be obtained by sacrificing 
just a little in quality. Figure 5 shows the impact of different levels of perturbation on 
the Pareto-optimal front. Our approach takes as input as the maximum level of pertur-
bation applied in the smell severity and class importance at each iteration during the 
optimization process. A high level of perturbation generates more robust refactoring 
solutions than those generated with lower variations, but the solution quality in this 
case will be higher. As described by Figure 4, the developer can choose the level of 
perturbation based on his/her preferences to prioritize quality or robustness.  Al-
though the Pareto-optimal front changes depending on the perturbation level, there 
still exists a knee point, which makes the decision making by a developer easier in 
such problems. 

Table 4. The significantly best algorithm among random search, NSGA-II and MOPSO (No 
sign. diff. means that NSGA-II and MOPSO are significantly better than random, but not 
statistically different). 

Project IC IHV IGD 

Xerces-J NSGA-II NSGA-II NSGA-II 

JFreeChart  NSGA-II NSGA-II NSGA-II 

GanttProject MOPSO No sign. diff. MOPSO 

ApacheAnt  NSGA-II NSGA-II NSGA-II 

JHotDraw  NSGA-II NSGA-II NSGA-II 

Rhino No sign. diff. NSGA-II No sign. diff. 
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Fig. 3. Boxplots using the quality measures (a) IC, (b) IHV, and (c) IGD applied to NSGAII 
and MOPSO 

 

Fig. 4. Pareto fronts for NSGA-II obtained on three open source systems: (a) ApacheAnt 
(large), (b) JHotDraw (medium) and (c) GanttProject (small) 

 

 

Fig. 5. Pareto fronts for NSGA-II obtained on JHotDraw with different perturbation levels 
variation (robustness): (a) low, (b) medium and (c) high 

Figure 6 describes the manual qualitative evaluation of some suggested refactoring 
solutions. It is clear that results are almost similar between our proposal and existing 
approach in terms of the semantic coherence of suggested refactorings. We consider 
that a semantic precision more than 65% acceptable since most of the solutions should 
be executed manually by developers and our tool is a recommendation system. Thus, 
developers can evaluate if it is interesting or not to apply some refactorings based on 
their preferences and the semantic coherence.  



180 M.W. Mkaouer et al. 

To answer RQ3 more adequately, we considered two real-world scenarios to justify 
the importance of taking into consideration robustness when suggestion refactoring 
solutions. In the first scenario, we modified the degree of severity of the four types of 
code smells over time and we evaluated the impact of this variation on the robustness 
of our refactoring solution in terms of smell severity (SCS). This scenario is moti-
vated by the fact that there is no general consensus about the severity score of de-
tected code smells thus developers can have divergent opinions about the severity of 
detected code smells. Figure 7 shows that our NSGA-II approach generates robust 
refactoring solutions on the Ant Apache system in comparison to existing state of the 
art refactoring approaches. In fact, the more the variation in severity increases over 
time the more the refactoring solutions provided by existing approaches become non-
robust. Thus, our multi-objective approach enables the most severe code smells to be 
corrected even with slight modifications in the severity scores. The second scenario 
involved applying randomly a set of commits, collected from the history of changes 
of the open source systems [21], and evaluating the impact of these changes on the 
robustness of suggested refactoring proposed by our NSGA-II algorithm and non-
robust approaches [17], [20], [24]. As depicted in Figure 8, the application of new 
commits modifies the importance of classes in the system containing code smells and 
the refactoring solutions proposed by mono-objective and manual approaches become 
ineffective. However, in all the scenarios it is clear that our refactoring solutions are 
still robust and fixing code smells in most of important classes in the system even 
with high number of new commits (more than 40 commits).  

Table 5. FCS, SCS and ICS median values of 51 independent runs: (a) Robust Algorithms, and 
(b) Non-Robust algorithms 

Systems  NSGA-II MOPSO Mono-EA 

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT 

Xerces-J 52/66 31.7 29.3 1h38 48/66 28.4 26.7 1h44 41/66 24.9 24.1 1h21 

JFreeChart  49/57 29.3 27.1 1h35 44/57 24.8 21.6 1h42 34/57 21.2 19.3 1h16 

GanttProject 36/41 21.6 18.4 1h28 38/41 22.9 19.3 1h26 29/41 19.2 17.5 1h03 

ApacheAnt  74/82 39.8 38.1 1h45 72/82 36.2 37.3 1h53 59/82 29.1 34.2 1h27 

JHotDraw  17/21 11.3 10.3 1h33 15/21 9.8 8.2 1h47 13/21 8.3 8.2 1h14 

Rhino 49/61 28.6 21.3 1h31 46/61 26.1 19.3 1h43 38/61 21.3 17.1 1h05 

 
Systems  Kessentini et al.’11 O’Keeffe et al.’08 Manual 

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT 

Xerces-J 53/66 28.6 27.8 1h24 53/66 26.3 25.3 1h16 54/66 28.4 25.3 N/A 

JFreeChart  49/57 25.8 22.3 1h13 48/57 23.6 21.9 1h04 50/57 23.9 21.2 N/A 

GanttProject 37/41 19.2 17.1 1h08 37/41 20.2 17.8 1h06 37/41 19.3 16.9 N/A 

ApacheAnt  76/82 32.4 33.4 1h25 75/82 33.5 34.1 1h23 71/82 31.2 32.4 N/A 

JHotDraw  18/21 9.3 9.1 1h10 17/21 9.1 9.6 1h17 19/21 9.8 8.9 N/A 

Rhino 52/61 24.9 16.4 1h01 51/61 23.2 17.6 1h04 51/61 24.2 16.2 N/A 
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Fig. 6. The qualitative evaluation (CR) of some refactorings  proposed by NSGA-II, [17]  and [20] 

 

Fig. 7. The impact of code smells severity variations on the robustness of refactoring solutions 
for ApacheAnt proposed by NSGA-II, [17], [20] and [24] 

 

Fig. 8. The impact of class importance variation on the robustness of refactoring solutions for 
Apache Ant proposed by NSGA-II, [17], [20] and [24] 

4 Related Work 

The majority of existing work combines several metrics in a single fitness function to 
find the best sequence of refactorings. Seng et al. [23] propose a single-objective 
optimization based-approach using genetic algorithm to suggest a list of refactorings 
to improve software quality. The search process uses a single fitness function to 
maximize a weighted sum of several quality metrics. Closely related work is that of 
O’Keeffe and Ó Cinnéide [20] where different local search-based techniques such as 
hill climbing and simulated annealing are used to implement automated refactoring 
guided by the QMOOD metrics suite [1]. In a more recent extension of their work, the 
refactoring process is guided not just by software metrics, but also by the design that 
the developer wishes the program to have [19]. In recent work, Kessentini et al. [17] 
propose single-objective combinatorial optimization using a genetic algorithm to find 
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the best sequence of refactoring operations that improve the quality of the code by 
minimizing as much as possible the number of design defects detected on the source 
code. They use genetic programming and the QMOOD software metric suite [1] to 
identify the most suitable set of refactorings to apply to a software design. Harman et 
al. [14] propose a search-based approach using Pareto optimality that combines two 
quality metrics, CBO (coupling between objects) and SDMPC (standard deviation of 
methods per class), in two separate fitness functions. The authors start from the as-
sumption that good design quality results from good distribution of features (methods) 
among classes. Ó Cinnéide et al. [19] use multi-objective search-based refactoring to 
conduct an empirical investigation to assess structural cohesion metrics and to explore 
the relationships between them.  

According to a recent SBSE survey [15], robustness has been taken into account 
only in two software engineering problems: the next release problem (NRP) and the 
software management/planning problem. Paixao and de Souza propose a robust for-
mulation of NRP where each requirement’s importance is uncertain since the custom-
ers can change it at any time [10]. In work by Antoniol et al., the authors propose a 
robust model to find the best schedule of developers’ tasks where different objectives 
should be satisfied [1], [13]. Robustness is considered as one of the objectives to 
satisfy. In this paper, for the first time, we have considered robustness as a separate 
objective in its own right.  

5 Conclusion and Future Work 

In this paper, we have introduced a novel formulation of the refactoring problem that 
takes into account the uncertainties related to code smell correction in the dynamic 
environment of software development where code smell severity and class importance 
cannot be regarded as fixed. Code smell severity will vary from developer to developer 
and the importance of the class that contains the smell will vary as the code base itself 
evolves. We have reported the results of an empirical study of our robust technique 
compared to different existing approaches [17], [20], [24]. Future work involves ex-
tending our approach to handle additional code smell types in order to test further the 
general applicability of our methodology. In this paper, we focused on the use of a 
structural metric to estimate class importance, but this can be extended to consider also 
the pattern of repository submits to achieve another perspective on class importance. 
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