
C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 168–183, 2014.
© Springer International Publishing Switzerland 2014

A Robust Multi-objective Approach
for Software Refactoring under Uncertainty

Mohamed Wiem Mkaouer1, Marouane Kessentini1, Slim Bechikh1,
and Mel Ó Cinnéide2

1 University of Michigan, MI, USA
firstname@umich.edu

2 Lero, University College Dublin, Ireland
mel.ocinneide@ucd.ie

Abstract. Refactoring large systems involves several sources of uncertainty re-
lated to the severity levels of code smells to be corrected and the importance of
the classes in which the smells are located. Due to the dynamic nature of soft-
ware development, these values cannot be accurately determined in practice,
leading to refactoring sequences that lack robustness. To address this problem,
we introduced a multi-objective robust model, based on NSGA-II, for the soft-
ware refactoring problem that tries to find the best trade-off between quality
and robustness. We evaluated our approach using six open source systems and
demonstrated that it is significantly better than state-of-the-art refactoring ap-
proaches in terms of robustness in 100% of experiments based on a variety of
real-world scenarios. Our suggested refactoring solutions were found to be
comparable in terms of quality to those suggested by existing approaches and to
carry an acceptable robustness price. Our results also revealed an interesting
feature about the trade-off between quality and robustness that demonstrates the
practical value of taking robustness into account in software refactoring.

1 Introduction

Large-scale software systems exhibit high complexity and become difficult to maintain.
It has been reported that the cost of maintenance and evolution activities comprises
more than 80% of total software costs. In addition, it has been shown that software
maintainers spend around 60% of their time in understanding the code. To facilitate
maintenance tasks, one of the widely used techniques is refactoring which improves
design structure while preserving the overall functionality of the software [12].

There has been much work on different techniques and tools for refactoring [12],
[23], [21], [9]. The vast majority of these techniques identify key symptoms that cha-
racterize the code to refactor using a combination of quantitative, structural, and/or
lexical information and then propose different possible refactoring solutions, for each
identified segment of code. In order to find out which parts of the source code need to
be refactored, most of the existing work relies on the notion of design defects or code
smells. Originally coined by Fowler [12], the generic term code smell refers to struc-
tures in the code that suggest the possibility of refactoring. Once code smells have
been identified, refactorings need to be proposed to resolve them. Several automated

 A Robust Multi-objective Approach for Software Refactoring under Uncertainty 169

refactoring approaches are proposed in the literature and most of them are based on
the use of software metrics to estimate quality improvements of the system after ap-
plying refactorings [23], [21], [9], [17], [20].

The existing literature on software refactoring invariably ignores an important con-
sideration when suggesting refactoring solutions: the highly dynamic nature of soft-
ware development. In this paper, we take into account two dynamic aspects as follows:

• Code Smell Severity: This is the severity level assigned to a code smell type by a
developer. It usually varies from developer to developer, and indeed a developer’s
assessment of smell severity will change over time as well.

• Code Smell Class Importance: This is the importance of a class that contains a
code smell, where importance refers to the number and size of the features that
the class supports. A code smell with large class importance will have a greater
detrimental impact on the software. Again, this property will vary over time as
software requirements change [15] and classes are added/deleted/split.

We believe that the uncertainties related to class importance and code smell severi-
ty need to be taken into consideration when suggesting a refactoring solution. To this
end, we introduce in this paper a novel representation of the code refactoring problem,
based on robust optimization [3], [16] that generates robust refactoring solutions by
taking into account the uncertainties related to code smell severity and the importance
of the class that contains the code smell. Our robustness model is based on the well-
known multi-objective evolutionary algorithm NSGA-II proposed by Deb et al. [8]
and considers possible changes in class importance and code smell severity by gene-
rating different scenarios at each iteration of the algorithm. In each scenario, the de-
tected code smell to be corrected is assigned a severity score and each class in the
system is assigned an importance score. In our model, we assume that these scores
change regularly due to reasons such as developers’ evolving perspectives on the
software or new features and requirements being implemented or any other code
changes that could make some classes/code smells more or less important. Our multi-
objective approach aims to find the best trade-off between maximizing the quality of
the refactoring solution in terms of the number of code smells corrected and maximiz-
ing its robustness in terms of the severity of the code smells corrected and the impor-
tance of the classes that contains the code smells.

The primary contributions of this paper are as follows:
• The paper introduces a novel formulation of the refactoring problem as a multi-

objective problem that takes into account the uncertainties related to code smell
detection and the dynamic environment of software development. To the best of
our knowledge, and based on recent search-based software engineering (SBSE)
surveys [15], this is the first work to use robust optimization for software refac-
toring, and the first in SBSE to treat robustness as a helper objective during the
search.

• The paper reports on the results of an empirical study of our robust NSGA-II
technique as applied to six open source systems. We compared our approach to
random search, multi-objective particle swarm optimization (MOPSO) [18],
search-based refactoring [17], [20] and a refactoring tool [24] not based on heu-
ristic search. The results provide evidence to support the claim that our proposal
enables the generation of robust refactoring solutions without a high loss of
quality using a variety of real-world scenarios.

170 M.W. Mkaouer et al.

2 Multi-objective Robust Software Refactoring

2.1 Robust Optimization

In dealing with optimization problems, including software engineering ones, most
researchers assume that the input parameters of the problem are exactly known in
advance. Unfortunately, this is an idealization often not the case in a real-world set-
ting. Additionally, uncertainty can change the effective values of some input parame-
ters with respect to nominal values. For instance, when handling the knapsack prob-
lem (KP), which is one of the most studied combinatorial problems [3], we can face
such a problem. As stated by [3], uncertainty is unavoidable in real problem settings;
therefore it should be taken into account in every optimization approach in order to
obtain robust solutions. Robustness of an optimal solution can usually be discussed
from the following two perspectives: (1) the optimal solution is insensitive to small
perturbations in terms of the decision variables and/or (2) the optimal solution is in-
sensitive to small variations in terms of environmental parameters. Figure 1 illustrates
the robustness concept with respect to a single decision variable named x. Based on
the f (x) landscape, we have two optima: A and B. We remark that solution A is very
sensitive to local perturbation of the variable x. A very slight perturbation of x within
the interval [2, 4] can make the optimum A unacceptable since its performance f(A)
would dramatically degrade. On the other hand, small perturbations of the optimum B,
which has a relatively lower objective function value than A, within the interval [5,7]
hardly affects the performance of solution B (i.e., f(B)) at all. We can say that al-
though solution A has a better quality than solution B, solution B is more robust than
solution A. In an uncertain context, the developer would probably prefer solution B to
solution A. This choice is justified by the performance of B in terms of robustness. It
is clear from this discussion robustness has a price, called robustness price or cost,
since it engenders a loss in optimality. This loss is due to preferring the robust solu-
tion B over the non-robust solution A. According to Figure 1, this loss is equal
to abs(f (B) − f (A)) . Several approaches have been proposed to handle robustness in
the optimization field in general and more specifically in design engineering [16].

Fig. 1. Illustration of the robustness concept under uncertainty related to the decision variable x.
Solution B is more robust than solution A.

 A Robust Multi-objective Approach for Software Refactoring under Uncertainty 171

2.2 Multi-objective Robust Optimization for Software Refactoring

2.2.1 Problem Formulation
The refactoring problem involves searching for the best refactoring solution among the
set of candidate ones, which constitutes a huge search space. A refactoring solution is a
sequence of refactoring operations where the goal of applying the sequence to a soft-
ware system S is typically to minimize the number of code smells in S.

We propose a robust formulation of the refactoring problem that takes class impor-
tance and smell severity into account. Consequently, we have two objective functions
to be maximized in our problem formulation: (1) the quality of the system to refactor,
i.e., minimizing the number of code smells, and (2) the robustness of the refactoring
solutions in relation to uncertainty in the severity level of the code smells and in the
importance of the classes that contain the code smells. Analytically speaking, the
formulation of the robust refactoring problem can be stated as follows:

Maximize

f1(x, S) = NCCS(x, S) NDCS (S)

f2 (x, S) = [SmellSeverity(CCSi, x, S)
i=1

NCCS

� + Importance(CCSi, x, S)]

�

�
�

�
�

subject to x = (x1,..., xn) ∈ X

where X is the set of all legal refactoring sequences starting from S, xi is the i-th refac-
toring in the sequence x, NCCS(x,S) is the Number of Corrected Code Smells after ap-
plying the refactoring solution x on the system S, NDCS is the Number of Detected
Code-Smells prior to the application of solution x to the system S, CCSi is the i-th Cor-
rected Code Smell, SmellSeverity(CCSi, x, S) is the severity level of the i-th corrected
code smell related to the execution of x on S, and Importance(CCSi, x, S) is the impor-
tance of the class containing the i-th code smell corrected by the execution of x on S.

 The smell’s severity level is a numeric quantity, varying between 0 and 1, assigned
by the developer to each code smell type (e.g., blob, spaghetti code, functional de-
composition, etc.). We define the class importance of a code smell as follows:

Importance(CCSi, x, S) = (NC / MaxNC(S))+ (NR / MaxNR(S))+ (NM / MaxNM (S))
3

such that NC/NR/NM correspond respectively to the Number of Comments/
Relationships/Methods related to the CCSi and MaxNC/MaxNR/MaxNM correspond
respectively to the Maximum Number of Comments/Relationships/Methods of any class
in the system S. There are of course many ways in which class importance could be
measured, and one of the advantages of the search-based approach is that this definition
could be easily replaced with a different one. In summary, the basic idea behind this
work is to maximize the resistance of the refactoring solutions to perturbations in the
severity levels and class importance of the code smells while maximizing simultaneously
the number of corrected code smells. These two objectives are in conflict with each other
since the quality of the proposed refactoring solution usually decreases when the envi-
ronmental change (smell severity and/or class importance) increases. Thus, the goal is to
find a good compromise between (1) quality and (2) robustness. This compromise is

172 M.W. Mkaouer et al.

directly related to robustness cost, as discussed above. In fact, once the bi-objective
trade-off front (quality, robustness) is obtained, the developer can navigate through this
front in order to select his/her preferred refactoring solution. This is achieved through
sacrificing some degree of solution quality while gaining in terms of robustness.

2.2.2 The Solution Approach

Solution Representation. To represent a candidate solution (individual/chromosome), we
use a vector-based representation. Each dimension of the vector represents a refactoring
operation where the order of application of the refactoring operations corresponds to their
positions in the vector. The standard approach of pre- and post-conditions [12], is used to
ensure that the refactoring operation can be applied while preserving program behaviour.
For each refactoring operation, a set of controlling parameters (e.g., actors and roles as
illustrated in Table 1) is randomly picked from the program to be refactored. Assigning
randomly a sequence of refactorings to certain code fragments generates the initial popula-
tion. An example of a solution is given in Figure 2 containing 3 refactorings. To apply a
refactoring operation we need to specify which actors, i.e., code fragments, are in-
volved/impacted by this refactoring and which roles they play to perform the refactoring
operation. An actor can be a package, class, field, method, parameter, statement or vari-
able. Table 1 depicts, for each refactoring, its involved actors and its role.

Table 1. Refactoring types and their involved actors and roles

Refactorings Actors Roles

Move method
class source class, target class
method moved method

Move field
class source class, target class
field moved field

Pull up field class sub classes, super class
field moved field

Pull up method
class sub classes, super class
method moved method

Push down field class super class, sub classes
field moved field

Push down
method

class super class, sub classes
method Method

Inline class class source class, target class

Extract method
class source class, target class
method source method, new method
statement moved statements

Extract class
class source class, new class
field moved fields
method moved methods

Move class package source package, target package
class moved class

Extract interface
class source classes, new interface
field moved fields
method moved methods

Inline_Class (Student, Person)
Pull_Up_Method (salary, Professor, Person)
Move_Method (grade, Registration, Student)

Fig. 2. A sample refactoring solution

 A Robust Multi-objective Approach for Software Refactoring under Uncertainty 173

Solution Variation. For crossover, we use the one-point crossover operator. It starts
by selecting and splitting at random two parent solutions. Then, this operator creates
two child solutions by putting, for the first child, the first part of the first parent with
the second part of the second parent, and vice versa for the second child. This opera-
tor must respect the refactoring sequence length limits by eliminating randomly some
refactoring operations if necessary. For mutation, we use the bit-string mutation op-
erator that picks probabilistically one or more refactoring operations from its or their
associated sequence and replaces them by other ones from a list of possible refactor-
ings. These two variation operators have already demonstrated good performance
when tackling the refactoring problem [23][21].

Solution Evaluation. Each refactoring sequence in the population is executed on
the system S. For each sequence, the solution is evaluated based on the two objec-
tive functions (quality and robustness) defined in the previous section. Since we are
considering a bi-objective formulation, we use the concept of Pareto optimality to
find a set of compromise (Pareto-optimal) refactoring solutions. By definition, a
solution x Pareto-dominates a solution y if and only if x is at least as good as y in all
objectives and strictly better than y in at least one objective. The fitness of a par-
ticular solution in NSGA-II [8] corresponds to a couple (Pareto Rank, Crowding
distance). In fact, NSGA-II classifies the population individuals (of parents and
children) into different layers, called non-dominated fronts. Non-dominated solu-
tions are assigned a rank of 1 and then are discarded temporary from the population.
Non-dominated solutions from the truncated population are assigned a rank of 2 and
then discarded temporarily. This process is repeated until the entire population is
classified with the domination metric. After that, a diversity measure, called crowd-
ing distance, is assigned front-wise to each individual. The crowding distance is the
average side length of the cuboid formed by the nearest neighbors of the considered
solution. Once each solution is assigned its Pareto rank, based on refactoring quality
and robustness to change in terms of class importance and smell severity levels, in
addition to its crowding distance, mating selection and environmental selection are
performed. This is based on the crowded comparison operator that favors solutions
having better Pareto ranks and, in case of equal ranks, it favors the solution having
larger crowding distance. In this way, convergence towards the Pareto optimal bi-
objective front (quality, robustness) and diversity along this front are emphasized
simultaneously. The basic iteration of NSGA-II consists in generating an offspring
population (of size N) from the parent one (of size N too) based on variation opera-
tors (crossover and mutation) where the parent individuals are selected based on the
crowded comparison operator. After that, parents and children are merged into a
single population R of size 2N. The parent population for the next generation is
composed of the best non-dominated fronts. This process continues until the satis-
faction of a stopping criterion. The output of NSGA-II is the last obtained parent
population containing the best of the non-dominated solutions found. When plotted
in the objective space, they form the Pareto front from which the developer will
select his/her preferred refactoring solution.

174 M.W. Mkaouer et al.

3 Design of the Empirical Study

3.1 Research Questions and Systems Studied

RQ1: To validate the problem formulation of our approach, we compared our
NSGA-II formulation with Random Search.

RQ2.1: How does NSGA-II perform compared to another multi-objective algo-
rithm in terms of robustness cost, etc.?

RQ2.2: How do robust, multi-objective algorithms perform compared to mono-
objective Evolutionary Algorithms?

RQ2.3: How does NSGA-II perform compare to existing search-based refactoring
approaches?

RQ2.4: How does NSGA-II perform compared to existing refactoring approaches
not based on the use of metaheuristic search?

RQ3: Insight. Can our robust multi-objective approach be useful for developers in
real-world setting?

In our experiments, we used a set of well-known and well-commented open-source
Java projects. We applied our approach to six large and medium sized open source
Java projects: Xerces-J, JFreeChart, GanttProject, ApacheAnt, JHotDraw, and Rhino .
Table 2 provides some descriptive statistics about these six programs. We selected
these systems for our validation because they range from medium to large-sized open
source projects that have been actively developed over the past 10 years, and include
a large number of code smells. In addition, these systems are well studied in the litera-
ture and their code smells have been detected and analyzed manually [17], [20], [21].

Table 2. Software studied in our experiments

Systems Release #Classes #Smells KLOC

Xerces-J v2.7.0 991 66 240

JFreeChart v1.0.9 521 57 170

GanttProject v1.10.2 245 41 41

ApacheAnt v1.8.2 1191 82 255

JHotDraw v6.1 585 21 21

Rhino v1.7R1 305 61 42

3.2 Evaluation Metrics Used

We use the three following performance indicators [33] when comparing NSGA-II
and MOPSO: Hypervolume (IHV), Inverse Generational Distance (IGD), Contribu-
tion (IC). In addition to these three multi-objective evaluation measures, we used
these other metrics mainly to compare between mono-objective and multi-objective
approaches defined as follows:

−Quality: number of Fixed Code-Smells (FCS) is the number of code smells fixed
after applying the best refactoring solution.

−Severity of fixed Code-Smells (SCS) is defined as the sum of the severity of fixed
code smells:

 A Robust Multi-objective Approach for Software Refactoring under Uncertainty 175

�
=

=
k

i
iditySmellSeverSSCS

1

)()(

where k is the number of fixed code smells and SmellSeverity corresponds to the
severity (value between 0 and 1) assigned by the developer to each code smell type
(blob, spaghetti code, etc.). In our experiments, we use these severity scores 0.8, 0.6,
0.4 and 0.3 respectively for blob, spaghetti code, functional decomposition and data
class.

−Importance of fixed Code-Smells (ICS) is defined using three metrics (number of
comments, number of relationships and number of methods) as follows:

�
=

=
k

i
idSICS

1

)(importance)(

where importance is as defined in the previous section.
−Correctness of the suggested Refactorings (CR) is defined as the number of se-

mantically correct refactorings divided by the total number of manually evaluated
refactorings.

−Computational time (ICT) is a measure of efficiency employed here since robust-
ness inclusion may cause the search to use more time in order to find a set of Pareto-
optimal trade-offs between refactoring quality and solution robustness.

Our experimental study is performed based on 51 independent simulation runs for
each problem instance and the obtained results are statistically analyzed by using the
Wilcoxon rank sum test [2] with a 95% confidence level (� = 5%).

For each multi-objective algorithm and for each system (cf. Table 2), we per-
formed a set of experiments using several population sizes: 50, 100, 200, 500 and
1000. The stopping criterion was set to 250,000 fitness evaluations for all algorithms
in order to ensure fairness of comparison. Each algorithm was executed 51 times with
each configuration and then comparison between the configurations was performed
based on IHV, IGD and IC using the Wilcoxon test. Table 3 reports the best configu-
ration obtained for each couple (algorithm, system).

The MOPSO used in this paper is the Non-dominated Sorting PSO (NSPSO) pro-
posed by Li [18]. The other parameters’ values were fixed by trial and error and are as
follows: (1) crossover probability = 0.8; mutation probability = 0.5 where the proba-
bility of gene modification is 0.3; stopping criterion = 250,000 fitness evaluations. For
MOPSO, the cognitive and social scaling parameters c1 and c2 were both set to 2.0
and the inertia weighting coefficient w decreased gradually from 1.0 to 0.4. Since
refactoring sequences usually have different lengths, we authorized the length n of
number of refactorings to belong to the interval [10, 250].

Table 3. Best population size configurations

System NSGA-II MOPSO Mono-EA
Xerces-J 1000 1000 1000
JFreeChart 500 200 500
GanttProject 100 100 100
ApacheAnt 1000 1000 1000
JHotDraw 200 200 200
Rhino 100 200 200

176 M.W. Mkaouer et al.

3.5 Results

3.5.1 Results for RQ1
Table 4 confirms that NSGA-II and MOPSO are better than random search based on
the three quality indicators IHV, IGD and IC on all six open source systems. The
Wilcoxon rank sum test showed that in 51 runs both NSGA-II and MOPSO results
were significantly better than random search. We conclude that there is empirical
evidence that our multi-objective formulation surpasses the performance of random
search thus our formulation is adequate (this answers RQ1).

3.5.2 Results for RQ2
In this section, we compare our NSGA-II adaptation to the current, state-of-the-art
refactoring approaches. To answer the second research question, RQ2.1, we compared
NSGA-II to another widely used multi-objective algorithm, MOPSO, using the same
adapted fitness function. Table 4 shows the overview of the results of the significance
tests comparison between NSGA-II and MOPSO. NSGA-II outperforms MOPSO in
most of the cases: 13 out of 18 experiments (73%). MOPSO outperforms the NSGA-
II approach only in GanttProject, which is the smallest open source system considered
in our experiments, having the lowest number of legal refactorings available, so it
appears that MOPSO’s search operators make a better task of working with a smaller
search space. In particular, NSGA-II outperforms MOPSO in terms of IC values in 4
out 6 experiments with one ‘no significant difference’ result. Regarding IHV, NSGA-
II outperformed MOPSO in 5 out of 6 experiments, where only one case was not
statistically significant, namely GanttProject. For IGD, the results were the same as
for IC. A more qualitative evaluation is presented in Figure 3 illustrating the box plots
obtained for the multi-objective metrics on the different projects. We see that for
almost all problems the distributions of the metrics values for NSGA-II have smaller
variability than for MOPSO. This fact confirms the effectiveness of NSGA-II over
MOPSO in finding a well-converged and well-diversified set of Pareto-optimal refac-
toring solutions.

Next, we use all four metrics FCS, SCS, ICS and ICT to compare three robust re-
factoring algorithms: our NSGA-II adaptation, MOPSO, and a mono-objective genet-
ic algorithm (Mono-EA) that has a single fitness function aggregating the two objec-
tives. We first note that the mono-EA provides only one refactoring solution, while
NSGA-II and MOPSO generate a set of non-dominated solutions. In order to make
meaningful comparisons, we select the best solution for NSGA-II and MOPSO using
a knee point strategy [53]. The knee point corresponds to the solution with the max-
imal trade-off between quality and robustness, i.e., a small improvement in either
objective induces a large degradation in the other. Hence moving from the knee point
in either direction is usually not interesting for the developer [50]. Thus, for NSGA-II
and MOPSO, we select the knee point from the Pareto approximation having
the median IHV value. We aim by this strategy to ensure fairness when making com-
parisons against the mono-objective EA. For the latter, we use the best solution cor-
responding to the median observation on 51 runs. We use the trade-off “worth” metric
proposed by Rachmawati and Srinivasan [51] to find the knee point. This metric

 A Robust Multi-objective Approach for Software Refactoring under Uncertainty 177

estimates the worthiness of each non-dominated refactoring solution in terms of trade-
off between quality and robustness. After that, the knee point corresponds to the solu-
tion having the maximal trade-off “worthiness” value. The results from 51 runs are
depicted in Table 5(a). It can be seen that both NSGA-II and MOPSO provide a better
trade-off between quality and robustness than a mono-objective EA in all six systems.
For FCS, the number of fixed code smells using NSGA-II is better than MOPSO in all
systems except for GanttProject (84% of cases) and also the FCS score for NSGA-II
is better than mono-EA in 100% of cases. We have the same observation for the SCS
and ICS scores where NSGA-II outperforms MOPSO and Mono-EA in at least 84%
of cases. Even for GanttProject, the number of fixed code smells using NSGA-II is
very close to those fixed by MOPSO. The execution time of NSGA-II is invariably
lower than that of MOPSO with the same number of iterations, however the execution
time required by Mono-EA is lower than both NSGA-II and MOPSO. It is well-known
that a mono-objective algorithm requires lower execution time for convergence since
only one objective is handled. In conclusion, we answer RQ2.2 by concluding that
the results obtained in Table 5(a) confirm that both multi-objective formulations are
adequate and outperform the mono-objective algorithm based on an aggregation of two
objectives (quality and robustness).

Table 5 also shows the results of comparing our robust approach based on NSGA-II
with two mono-objective refactoring approaches [17], [20] and a practical refactoring
technique where developers used a refactoring plug-in in Eclipse to suggest solutions
to fix code smells. Kessentini et al. [17] used genetic algorithms to find the best
sequence of refactoring that minimizes the number of code smells while O’Keeffe and
Ó Cinnéide [20] used different mono-objective algorithms to find the best sequence of
refactorings that optimize a fitness function composed of a set of quality metrics. In
Ouni et al. [21], the authors ask a set of developers to fix manually the code smells in
a number of open source systems including those that we are considering in our expe-
riments. It is apparent from Table 5 that our NSGA-II adaptation outperforms mono-
objective approaches in terms of smell-fixing ability (FCS) in only 11% of cases.
However, our NSGA-II adaptation outperforms all the mono-objective and manual
approaches in 100% of experiments in terms of the two robustness metrics, SCS and
ICS. This is can be explained by the fact that NSGA-II aims to find a compromise
between both quality and robustness however the remaining approaches did not con-
sider robustness but only quality. Thus, NSGA-II sacrifices a small amount of quality
in order to improve robustness. Furthermore, the number of code smells fixed by
NSGA-II (277) is very close to the number fixed by the mono-objective and manual
approaches (the best being Kessentini et al. [17] that fixed a total of 285 code smells),
so the sacrifice in solution quality is quite small. When comparing NSGA-II with the
remaining approaches we considered the best solution selected from the Pareto-
optimal front using the knee point-based strategy described above. To answer RQ2.3
and RQ2.4, the results of Table 5(b) support the claim that our NSGA-II formulation
provides a good trade-off between robustness and quality, and outperforms on aver-
age the state of the art of refactoring approaches, both search-based and manual, with
a low robustness cost.

178 M.W. Mkaouer et al.

3.6.3 Results for RQ3
Figure 4 depicts the different Pareto surfaces obtained on three open source systems
(Apache Ant, JHotDraw and Gantt Project) using NSGA-II to optimize quality and
robustness. Due to space limitations, we show only some examples of the Pareto-
optimal front approximations obtained which differ significantly in terms of size.
Similar fronts were obtained on the remaining systems. The 2-D projection of the
Pareto front helps developers to select the best trade-off solution between the two
objectives of quality and robustness based on their own preferences. Based on the
plots of Figure 4, the developer could degrade quality in favor of robustness while
controlling visually the robustness cost, which corresponds to the ratio of the quality
loss to the achieved robustness gain. In this way, the preferred robust refactoring
solution can be realized.

One striking feature about all the three plots is that starting from the highest quality
solution the trade-off between quality and robustness is in favor of quality, meaning
that the quality degrades slowly with a fast increase in robustness up to the knee
point, marked in each figure. Thereafter, there is a sharp drop in quality with only a
small increase in robustness. It is very interesting to note that this property of the
Pareto-optimal front is apparent in all the problems considered in this study. It is like-
ly that a developer would be drawn to this knee point as the probable best trade-off
between quality and robustness. Without any robustness consideration in the search
process, one would obtain the highest quality solution all the time (which is not robust
at all), but Figure 4 shows how a better robust solution can be obtained by sacrificing
just a little in quality. Figure 5 shows the impact of different levels of perturbation on
the Pareto-optimal front. Our approach takes as input as the maximum level of pertur-
bation applied in the smell severity and class importance at each iteration during the
optimization process. A high level of perturbation generates more robust refactoring
solutions than those generated with lower variations, but the solution quality in this
case will be higher. As described by Figure 4, the developer can choose the level of
perturbation based on his/her preferences to prioritize quality or robustness. Al-
though the Pareto-optimal front changes depending on the perturbation level, there
still exists a knee point, which makes the decision making by a developer easier in
such problems.

Table 4. The significantly best algorithm among random search, NSGA-II and MOPSO (No
sign. diff. means that NSGA-II and MOPSO are significantly better than random, but not
statistically different).

Project IC IHV IGD

Xerces-J NSGA-II NSGA-II NSGA-II

JFreeChart NSGA-II NSGA-II NSGA-II

GanttProject MOPSO No sign. diff. MOPSO

ApacheAnt NSGA-II NSGA-II NSGA-II

JHotDraw NSGA-II NSGA-II NSGA-II

Rhino No sign. diff. NSGA-II No sign. diff.

 A Robust Multi-objective Approach for Software Refactoring under Uncertainty 179

Fig. 3. Boxplots using the quality measures (a) IC, (b) IHV, and (c) IGD applied to NSGAII
and MOPSO

Fig. 4. Pareto fronts for NSGA-II obtained on three open source systems: (a) ApacheAnt
(large), (b) JHotDraw (medium) and (c) GanttProject (small)

Fig. 5. Pareto fronts for NSGA-II obtained on JHotDraw with different perturbation levels
variation (robustness): (a) low, (b) medium and (c) high

Figure 6 describes the manual qualitative evaluation of some suggested refactoring
solutions. It is clear that results are almost similar between our proposal and existing
approach in terms of the semantic coherence of suggested refactorings. We consider
that a semantic precision more than 65% acceptable since most of the solutions should
be executed manually by developers and our tool is a recommendation system. Thus,
developers can evaluate if it is interesting or not to apply some refactorings based on
their preferences and the semantic coherence.

180 M.W. Mkaouer et al.

To answer RQ3 more adequately, we considered two real-world scenarios to justify
the importance of taking into consideration robustness when suggestion refactoring
solutions. In the first scenario, we modified the degree of severity of the four types of
code smells over time and we evaluated the impact of this variation on the robustness
of our refactoring solution in terms of smell severity (SCS). This scenario is moti-
vated by the fact that there is no general consensus about the severity score of de-
tected code smells thus developers can have divergent opinions about the severity of
detected code smells. Figure 7 shows that our NSGA-II approach generates robust
refactoring solutions on the Ant Apache system in comparison to existing state of the
art refactoring approaches. In fact, the more the variation in severity increases over
time the more the refactoring solutions provided by existing approaches become non-
robust. Thus, our multi-objective approach enables the most severe code smells to be
corrected even with slight modifications in the severity scores. The second scenario
involved applying randomly a set of commits, collected from the history of changes
of the open source systems [21], and evaluating the impact of these changes on the
robustness of suggested refactoring proposed by our NSGA-II algorithm and non-
robust approaches [17], [20], [24]. As depicted in Figure 8, the application of new
commits modifies the importance of classes in the system containing code smells and
the refactoring solutions proposed by mono-objective and manual approaches become
ineffective. However, in all the scenarios it is clear that our refactoring solutions are
still robust and fixing code smells in most of important classes in the system even
with high number of new commits (more than 40 commits).

Table 5. FCS, SCS and ICS median values of 51 independent runs: (a) Robust Algorithms, and
(b) Non-Robust algorithms

Systems NSGA-II MOPSO Mono-EA

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT

Xerces-J 52/66 31.7 29.3 1h38 48/66 28.4 26.7 1h44 41/66 24.9 24.1 1h21

JFreeChart 49/57 29.3 27.1 1h35 44/57 24.8 21.6 1h42 34/57 21.2 19.3 1h16

GanttProject 36/41 21.6 18.4 1h28 38/41 22.9 19.3 1h26 29/41 19.2 17.5 1h03

ApacheAnt 74/82 39.8 38.1 1h45 72/82 36.2 37.3 1h53 59/82 29.1 34.2 1h27

JHotDraw 17/21 11.3 10.3 1h33 15/21 9.8 8.2 1h47 13/21 8.3 8.2 1h14

Rhino 49/61 28.6 21.3 1h31 46/61 26.1 19.3 1h43 38/61 21.3 17.1 1h05

Systems Kessentini et al.’11 O’Keeffe et al.’08 Manual

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT

Xerces-J 53/66 28.6 27.8 1h24 53/66 26.3 25.3 1h16 54/66 28.4 25.3 N/A

JFreeChart 49/57 25.8 22.3 1h13 48/57 23.6 21.9 1h04 50/57 23.9 21.2 N/A

GanttProject 37/41 19.2 17.1 1h08 37/41 20.2 17.8 1h06 37/41 19.3 16.9 N/A

ApacheAnt 76/82 32.4 33.4 1h25 75/82 33.5 34.1 1h23 71/82 31.2 32.4 N/A

JHotDraw 18/21 9.3 9.1 1h10 17/21 9.1 9.6 1h17 19/21 9.8 8.9 N/A

Rhino 52/61 24.9 16.4 1h01 51/61 23.2 17.6 1h04 51/61 24.2 16.2 N/A

 A Robust Multi-objective Approach for Software Refactoring under Uncertainty 181

Fig. 6. The qualitative evaluation (CR) of some refactorings proposed by NSGA-II, [17] and [20]

Fig. 7. The impact of code smells severity variations on the robustness of refactoring solutions
for ApacheAnt proposed by NSGA-II, [17], [20] and [24]

Fig. 8. The impact of class importance variation on the robustness of refactoring solutions for
Apache Ant proposed by NSGA-II, [17], [20] and [24]

4 Related Work

The majority of existing work combines several metrics in a single fitness function to
find the best sequence of refactorings. Seng et al. [23] propose a single-objective
optimization based-approach using genetic algorithm to suggest a list of refactorings
to improve software quality. The search process uses a single fitness function to
maximize a weighted sum of several quality metrics. Closely related work is that of
O’Keeffe and Ó Cinnéide [20] where different local search-based techniques such as
hill climbing and simulated annealing are used to implement automated refactoring
guided by the QMOOD metrics suite [1]. In a more recent extension of their work, the
refactoring process is guided not just by software metrics, but also by the design that
the developer wishes the program to have [19]. In recent work, Kessentini et al. [17]
propose single-objective combinatorial optimization using a genetic algorithm to find

182 M.W. Mkaouer et al.

the best sequence of refactoring operations that improve the quality of the code by
minimizing as much as possible the number of design defects detected on the source
code. They use genetic programming and the QMOOD software metric suite [1] to
identify the most suitable set of refactorings to apply to a software design. Harman et
al. [14] propose a search-based approach using Pareto optimality that combines two
quality metrics, CBO (coupling between objects) and SDMPC (standard deviation of
methods per class), in two separate fitness functions. The authors start from the as-
sumption that good design quality results from good distribution of features (methods)
among classes. Ó Cinnéide et al. [19] use multi-objective search-based refactoring to
conduct an empirical investigation to assess structural cohesion metrics and to explore
the relationships between them.

According to a recent SBSE survey [15], robustness has been taken into account
only in two software engineering problems: the next release problem (NRP) and the
software management/planning problem. Paixao and de Souza propose a robust for-
mulation of NRP where each requirement’s importance is uncertain since the custom-
ers can change it at any time [10]. In work by Antoniol et al., the authors propose a
robust model to find the best schedule of developers’ tasks where different objectives
should be satisfied [1], [13]. Robustness is considered as one of the objectives to
satisfy. In this paper, for the first time, we have considered robustness as a separate
objective in its own right.

5 Conclusion and Future Work

In this paper, we have introduced a novel formulation of the refactoring problem that
takes into account the uncertainties related to code smell correction in the dynamic
environment of software development where code smell severity and class importance
cannot be regarded as fixed. Code smell severity will vary from developer to developer
and the importance of the class that contains the smell will vary as the code base itself
evolves. We have reported the results of an empirical study of our robust technique
compared to different existing approaches [17], [20], [24]. Future work involves ex-
tending our approach to handle additional code smell types in order to test further the
general applicability of our methodology. In this paper, we focused on the use of a
structural metric to estimate class importance, but this can be extended to consider also
the pattern of repository submits to achieve another perspective on class importance.

References

[1] Antoniol, G., Di Penta, M., Harman, M.: A Robust Search-Based Approach to Project
Management in the Presence of Abandonment, Rework, Error and Uncertainty. In: ME-
TRICS 2004, pp. 172–183 (2004)

[2] Arcuri, A., Briand, L.C.: A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In: ICSE 2011, pp. 1–10 (2011)

[3] Beyer, H.-G., Sendhoff, B.: Robust optimization – A comprehensive survey. Computer
Methods in Applied Mechanics and Engineering 196(33-34), 3190–3218 (2007)

 A Robust Multi-objective Approach for Software Refactoring under Uncertainty 183

[4] Chatzigeorgiou, A., Manakos, A.: Investigating the evolution of code smells in object-
oriented systems, Innovations in Systems and Software Engineering. NASA Journal
(2013)

[5] Das, I.: Robustness optimization for constrained nonlinear programming problem. Engi-
neering Optimization 32(5), 585–618 (2000)

[6] Deb, K., Gupta, H.: Introducing robustness in multi-objective optimization. Evolutionary
Computation Journal 14(4), 463–494 (2006)

[7] Deb, K., Gupta, S.: Understanding knee points in bi-criteria problems and their implica-
tions as preferred solution principles. Engineering Optimization 43(11), 1175–1204 (2011)

[8] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

[9] Du Bois, B., Demeyer, S., Verelst, J.: Refactoring—Improving Coupling and Cohesion
of Existing Code. In: WCRE 2004, pp. 144–151 (2004)

[10] Esteves Paixao, M.-H., De Souza, J.-T.: A scenario-based robust model for the next re-
lease problem. In: GECCO 2013 (2013)

[11] Ferrucci, F., Harman, M., Ren, J., Sarro, F.: Not going to take this anymore: Multi-
objective overtime planning for software engineering projects. In: ICSE 2013, pp. 462–
471. IEEE Press, Piscataway (2013)

[12] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring – Improving the
Design of Existing Code, 1st edn. Addison-Wesley (1999)

[13] Gueorguiev, S., Harman, M., Antoniol, G.: Software project planning for robustness and
completion time in the presence of uncertainty using multi objective search based soft-
ware engineering. In: GECCO 2009, pp. 1673–1680 (2009)

[14] Harman, M., Tratt, L.: Pareto optimal search based refactoring at the design level. In:
GECCO 2007, pp. 1106–1113 (2007)

[15] Harman, M., Mansouri, A., Zhang, Y.: Search-based software engineering: Trends, tech-
niques and applications. ACM Comput. Surv. (2012)

[16] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – A survey.
IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

[17] Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., Ouni, A.: Design Defects
Detection and Correction by Example. In: Proceedings of ICPC 2011, pp. 81–90 (2011)

[18] Li, X.: A non-dominated sorting particle swarm optimizer for multiobjective optimiza-
tion. In: GECCO 2003, pp. 37–48 (2003)

[19] Ó Cinnéide, M., Tratt, L., Harman, M., Counsell, S., Moghadam, I. H.: Experimental As-
sessment of Software Metrics Using Automated Refactoring. In: Proceedings of the
ESEM 2012, pp. 49–58 (2012)

[20] O’Keeffe, M., Ó Cinnéide, M.: Search-based Refactoring for Software Maintenance.
Journal of Systems and Software, 502–516 (2008)

[21] Ouni, A., Kessentini, M., Sahraoui, H., Boukadoum, M.: Maintainability Defects Detec-
tion and Correction: A Multi-Objective Approach. Journal of Automated Software Engi-
neering, 47–79 (2012)

[22] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshyvanyk, D.: De-
tecting Bad Smells in Source Code Using Change History Information. In: Proceedings
of ASE 2013 (2013)

[23] Seng, O., Stammel, J., Burkhart, D.: Search-based determination of refactorings for im-
proving the class structure of object-oriented systems. In: Proceedings of GECCO 2006,
pp. 1909–1916 (2006)

[24] http://www.jdeodorant.com/

	A Robust Multi-objective Approach for Software Refactoring under Uncertainty
	1 Introduction
	2 Multi-objective Robust Software Refactoring
	2.1 Robust Optimization
	2.2 Multi-objective Robust Optimization for Software Refactoring

	3 Design of the Empirical Study
	3.1 Research Questions and Systems Studied
	3.2 Evaluation Metrics Used
	3.5 Results

	4 Related Work
	5 Conclusion and Future Work
	References

