
Automated Application of Design Patterns:

A Refactoring Approach

A thesis submitted to the

University of Dublin, Trinity College,

for the degree of

Doctor of Philosophy.

Mel Ó Cinnéide, B.Sc., M.Sc.,

Department of Computer Science,

Trinity College,

Dublin.

October 2000

Declaration

I, the undersigned, declare that this work has not previously been submitted

as an exercise for a degree at this or any other University, and that unless

otherwise stated, it is entirely my own work.

Mel Ó Cinnéide

October 2000

Permission to lend or copy

I, the undersigned, agree that the Trinity College Library may lend or copy

this thesis upon request.

Mel Ó Cinnéide

October 2000

Thesis Summary

Software systems have to be flexible in order to cope with evolving require-

ments. However, since it is impossible to predict with certainty what future

requirements will emerge, it is also impossible to determine exactly what

flexibility to build into a system. Design patterns are often used to build

this flexibility into a program, so this question frequently reduces to whether

or not a particular design pattern should be applied to the program. The

original programmer faces this dilemma, and the maintenance programmer

must work with the consequences of the decision made.

We address this problem by developing a methodology for the construc-

tion of automated transformations that introduce design patterns to an exist-

ing program. This enables a programmer to safely postpone the application

of a design pattern until the flexibility it provides becomes necessary.

Our methodology deals with the issues of reuse of existing transforma-

tions, preservation of program behaviour, and the application of the trans-

formations to existing program code. We apply the methodology to the

Gamma et al pattern catalogue [41], and find that in almost 75% of cases

a satisfactory transformation is developed, and that considerable reuse of

existing transformations is achieved.

Acknowledgements

First and foremost I wish to thank my supervisor, Professor Paddy Nixon,

for his clear advice and encouragement during this project. His enthusiasm

for research is infectious and I left every meeting with him full of ideas and

energy for my work.

I am grateful to the other members of the Distributed Systems Group

in Trinity College Dublin who accommodated my pursuing a research topic

tangential to the main interests of the group, and especially for contriving to

make ECOOP 2000 in Cannes a very memorable conference!

Much of this work was carried out in the Department of Computer Sci-

ence, University College Dublin, and I wish to thank my colleagues there

for creating such a pleasant and stimulating environment for conducting re-

search work. I am especially grateful to the departmental heads during my

time working on this thesis: Dr. Michael Sherwood-Smith and Professor

Mark Keane. Both contributed greatly by subventing my fees, and refactor-

ing my lecture load at crucial times.

Dr. Nick Kushmerick, Dr. Ronan Reilly and Dr. Neil Hurley proofread

various parts of the final thesis and I thank them for valuable feedback.

Thanks to my friends for either cajoling me into action when I needed it,

or just being totally unaware of my tribulations and being fun to be with!

Finally, thanks to my parents, for everything.

Contents

1 Introduction 1

1.1 Evolutionary Approaches to Software Development 2

1.2 Legacy Systems . 4

1.3 Thesis and Contributions . 6

1.4 Thesis Outline . 7

2 Background 9

2.1 Program Restructuring and Refactoring 9

2.1.1 Definitions . 9

2.1.2 A Global View of Refactoring 11

2.1.3 Formal and Informal Approaches to Behaviour Preser-

vation . 13

2.1.4 Existing Work in Automated Refactoring 15

2.1.5 Categorisation of Refactoring Approaches 20

2.2 Design Patterns . 22

2.2.1 Formalisation of Design Patterns 24

2.2.2 Automated Detection of Design Patterns 25

2.2.3 Patterns in Reengineering, Reverse Engineering and

Evolution . 28

2.3 Thesis Context . 30

vi

2.4 Summary . 31

3 Foundations of Refactoring: Behaviour Preservation 32

3.1 Primitive Refactorings and Behaviour Preservation 33

3.1.1 Mathematical Preliminaries 33

3.1.2 Analysis Functions . 34

3.1.3 Helper Functions . 37

3.1.4 Primitive Refactorings 38

3.1.5 Assumptions and Limitations 39

3.2 Composite Refactorings . 40

3.2.1 Computing Pre- and Postconditions for a Chain of

Refactorings . 42

3.2.2 Computing Pre- and postconditions for a Set Iteration 46

3.2.3 A Worked Example . 48

3.2.4 Commentary . 57

3.3 Related Work . 58

3.4 Summary . 61

4 A Methodology for the Development of Design Pattern Trans-

formations 63

4.1 Introduction . 63

4.1.1 Motivation . 64

4.1.2 Outline of the Methodology 65

4.2 Precursors . 67

4.3 Minipatterns and Minitransformations 71

4.3.1 The Abstraction Minitransformation 72

4.3.2 The EncapsulateConstruction Minitransformation 74

4.3.3 The AbstractAccess Minitransformation 75

vii

4.3.4 The PartialAbstraction Minitransformation . . . 79

4.4 The Factory Method Transformation 82

4.4.1 A Categorisation of the Preconditions 84

4.4.2 Assessing the Factory Method Transformation 86

4.5 Related Work . 87

4.6 Summary . 92

5 Applying the Methodology to the Gamma et al Catalogue 93

5.1 Criteria for Selecting a Precursor 95

5.2 Transformation Notation . 96

5.3 Transformations for the Gamma et al Creational Patterns . . 97

5.3.1 The Singleton Transformation 97

5.3.2 The Abstract Factory Transformation 101

5.3.3 The Builder Transformation 104

5.3.4 The Prototype Transformation 109

5.4 Transformation for a Structural Pattern: Bridge 113

5.4.1 Precursor for the Bridge Transformation 113

5.4.2 The Wrapper Minitransformation 114

5.4.3 Specification of the Bridge Transformation 117

5.5 Transformation for a Behavioural Pattern: Strategy 119

5.5.1 Precursor for the Strategy Transformation 119

5.5.2 The Delegation Minitransformation 120

5.5.3 Specification of the Strategy Transformation 122

5.6 Precursors and Transformations for the Gamma et al Patterns

Catalogue . 124

5.6.1 The Gamma et al Creational Patterns 126

5.6.2 The Gamma et al Structural Patterns 129

5.6.3 The Gamma et al Behavioural Patterns 136

viii

5.7 Analysis of Results . 152

5.7.1 Comments on the Development of the Transformations 156

5.7.2 Comments on Precondition Computation 158

5.8 Related Work . 159

5.9 Summary . 159

6 Conclusions 160

6.1 Contributions . 160

6.2 Future Work . 162

6.3 To Conclude . 168

A The Factory Method Pattern 184

B Analysis Functions, Helper Functions and Primitive Refac-

torings 186

B.1 Analysis Functions . 186

B.1.1 Relationships between Analysis Functions 195

B.2 Helper Functions . 197

B.3 Primitive Refactorings . 200

C Listing of Minitransformations 225

D Architecture of the Software Prototype 227

D.1 Tool Architecture . 227

D.2 Sample Operation of DPT . 229

ix

List of Figures

2.1 Graphical Image of Refactorings 11

2.2 A Generic Structure Chart . 12

2.3 A Generic UML Class Diagram 13

3.1 Principal Program Entities and their Relationships 37

3.2 A Composite Refactoring with Pre- and Postconditions 43

4.1 The Design Pattern Methodology 66

4.2 Possible starting points for a Design Pattern Transformation . 69

4.3 Precursor for the Factory Method Transformation 70

4.4 Application of the Abstraction Minitransformation 74

4.5 Application of the EncapsulateConstruction Minitrans-

formation . 76

4.6 Application of the AbstractAccess Minitransformation . . 79

4.7 Application of the PartialAbstraction Minitransformation 82

5.1 The Precursor for the Builder Design Pattern 105

5.2 The Builder Design Pattern 108

5.3 The Precursor for the Bridge Design Pattern 113

5.4 The Bridge Design Pattern . 118

A.1 The Factory Method pattern structure 185

x

D.1 Architecture of the Design Pattern Tool 228

xi

Chapter 1

Introduction

Getting a design right first time is impossible. One of the major advances

in software development thinking in the past decade has been the notion

that the process of building a software system should be an evolutionary one

[10, 81, 48, 3]. Rather than the classical waterfall model where analysis is fully

completed before design, and design fully completed before implementation,

evolutionary approaches are based on building a simple version of what is

required and extending this iteratively to build a more complicated system.

As John Gall put it:

“A complex system that works is invariably found to have evolved

from a simple system that worked.” [40, p.50]

Or in Kent Beck’s inimitable style:

“Start stupid and evolve.” (quoted in [96])

We are interested in developing a particular type of automated transfor-

mation to provide support for software evolution. In section 1.1 we explain

more exactly what type of transformations we will focus on and describe this

in the context of software evolution. In section 1.2 we show how our approach

1

also addresses problems faced in the reengineering of legacy systems. In sec-

tion 1.3 we state both the thesis and principle contributions of our work, and

finally, in section 1.4, we provide a road map of this dissertation.

1.1 Evolutionary Approaches to Software De-

velopment

In an evolutionary approach to software development, a simple working sys-

tem is built which subsequently undergoes many evolutions until the desired

system is reached1. At each stage there is a working system which is to be

extended with a new requirement or set of requirements. It is very unlikely

that the design of the initial system will be flexible enough to elegantly sup-

port the later requirements to be added in. Consequently, it is to be expected

that when the system is to be extended with a new requirement, its design

will also have to be made more flexible in order to accommodate the new

requirement elegantly. Current thinking recommends breaking this process

of extending a system into two stages [5, 35, 45], [38, p.7]:

1. Program Restructuring: This involves changing the design of the pro-

gram so as to make it more amenable to the new requirement, while

not changing the behaviour of the program.

2. Actual Updating: Here the program is changed to fulfill the new re-

quirement. If the restructuring step has been successful, this step will

be considerably simplified.

1As remarked in [92], one can never speak of the “final” system. Useful systems tend

to evolve continually during their lifetime.

2

This thesis will present a novel approach to providing sophisticated auto-

mated support for the restructuring step.

Let us consider now what type of restructurings a designer may want to

perform in order to make a system more flexible and able to accommodate a

new requirement. A designer usually has an architectural view of how they

wish the program to evolve that is at a higher level than, for example, simply

creating a new class or moving an existing method. Probably the most inter-

esting and challenging category of higher-level transformation that a designer

may wish to apply comprises those transformations that introduce a design

pattern2 [41]. Design patterns typically loosen the coupling between program

components, thus enabling certain types of program evolution to occur with

minimal change to the program itself. For example, the instantiation of a

Product class within a Creator class could be replaced by an application of

the Factory Method pattern3. This would enable the Creator class to be

extended to instantiate a subclass of the Product class without significant

reworking of the existing code.

The restructurings we develop in this thesis will be those that automate

the introduction of design patterns to an existing object-oriented program.

The scenario we consider is as follows: An existing program is being extended

with a new requirement. After studying the code and the new requirement,

the designer concludes that the existing program structure makes the desired

extension difficult to achieve, and that the application of some particular

design pattern would introduce the necessary flexibility to the program. It is

at this point that we aim to provide automated tool support. The designer

selects the design pattern to be applied and the program components that

2See section 2.2 for a more detailed description of design patterns.
3See appendix A for a description the Factory Method pattern

3

are to take part in the restructuring, and our tool applies that design pattern

to the given program components in such a way that program behaviour is

maintained.

A key aspect of this approach is that the intellectual decision of what

design pattern to apply, and where to apply it, remains with the designer.

We are not attempting to formalise or automate quality; our aim is to remove

the burden of tedious and error-prone code reorganisation from the designer.

In this thesis we will present and validate a methodology for the development

of automated design pattern transformations.

1.2 Legacy Systems

Brodie and Stonebraker provide a widely-accepted definition of a legacy sys-

tem:

“[A legacy system is one] that significantly resists modification

and evolution to meet new and constantly changing business re-

quirements.” [12, p.xv]

Legacy systems frequently require restructuring in order to make them

more amenable to changes in requirements. This restructuring is performed

either by hand, or through the use of automated tools, for example, [6].

In the latter case, the designer usually specifies certain operations to be

carried out, for example, to extract a method from existing code or to move

a method from one class to another, and the tool handles the mundane details

of performing the transformation itself.

There are clear similarities between a designer restructuring a program

that is still under development as described in the previous section, and the

restructuring of a legacy system. In both cases the following conditions exist:

4

• A new requirement (or requirements) has arisen that the program must

fulfill.

• The structure of the program is not flexible enough to accommodate

the new requirement(s) easily and elegantly.

• The existing program exhibits useful behaviour that must be main-

tained by any reorganisation that takes place.

The similarity between the forward engineering scenario and the restructur-

ing of a legacy system becomes even clearer when the following points are

considered:

• The notion of a legacy system usually evokes an image of an aged

system developed with now-defunct technology. However, in the above

definition there is no mention of age; a week-old program developed

using the latest technology can perfectly fit the definition of a legacy

system.

• An evolutionary-centric development methodology such as Extreme

Programming4 can be viewed as actually encouraging the creation of

a series of legacy systems. Little up-front design is performed, so with

each new requirement that is added, the program is restructured just

enough to elegantly accommodate the new requirement.

The conclusion is that evolutionary software engineering and legacy systems

reengineering are not such different processes. The design pattern transfor-

mations described in this thesis are applicable in both cases.

4Extreme Programming is discussed further on page 60.

5

1.3 Thesis and Contributions

In the last two sections we described how introducing design patterns to a

program is part both of forward software engineering and of reengineering

of a legacy system. The fundamental thesis of this work can be stated as

follows:

Automating the application of design patterns to an existing pro-

gram in a behaviour preserving way is feasible.

The following are the principle contributions of this thesis:

• A methodology for developing design pattern transformations. This is

the essential contribution of this work. The methodology we have de-

veloped has been applied with full rigour to seven common design pat-

terns5, and a prototype software tool has been built that can apply

these seven design patterns to Java programs6. The methodology has

also been applied to the remaining patterns in the Gamma et al pat-

tern catalogue [41], though these pattern transformations have not been

prototyped. The essence of our methodology has been published in

summary form in [74, 72], and more completely in [75].

• A minitransformation library. Design pattern transformations have a

strong degree of commonality and this has been captured in a set of

six minitransformations. These minitransformations have been imple-

mented and demonstrated to be widely applicable in developing design

pattern transformations.

5The seven design patterns to which the methodology has been fully applied are Ab-

stract Factory, Factory Method, Singleton, Builder, Prototype, Bridge and Strategy [41].
6We have used Java as the vehicle language for this work. The possibility of language

independent approaches is discussed on page 165 in section 6.2.

6

• A model for behaviour-preservation proofs. The transformations we

develop must be invariant with respect to program behaviour. In order

to prove this rigorously for the sophisticated program transformations

that we develop, we have extended existing refactoring work by allowing

the transformation definition to contain not only simple sequences, but

also iteration and conditional statements. This model has been applied

in full rigour to several examples, and has been published in [76].

1.4 Thesis Outline

This thesis is structured as follows:

Chapter 1 (this chapter) introduces the topic of automated design pattern

transformations and places it in the context of evolutionary approaches to

software engineering and legacy system reengineering.

Chapter 2 describes in detail the background to this work, namely program

restructuring and design patterns. Note that research that is very directly

related to our work is discussed in the relevant later chapter.

Chapter 3 presents our approach to demonstrating that a program trans-

formation preserves the behaviour of the program and applies it in full rigour

to a realistic example.

Chapter 4 describes our methodology for the development of automated

design pattern transformations by applying it in detail to a single flagship

example.

Chapter 5 applies the methodology to the entire Gamma et al design pat-

tern catalogue [41] and analyses the results.

Chapter 6 contains our overall conclusions and presents future work in the

area of automated design pattern transformations.

7

Appendix A contains a description of the Factory Method design pattern,

which is the subject of chapter 4.

Appendix B contains the complete specification of all analysis functions,

helper functions and primitive refactorings that are used in this work.

Appendix C describes briefly the minitransformations that we developed,

and provides a reference to the more detailed description in the main text.

Appendix D describes the architecture of the software prototype developed

in this work and presents an example of its application.

8

Chapter 2

Background

In this chapter we explore the background to this research, with the aim of

putting our work in context. We survey the two research fields that form

the foundation of this work, namely program restructuring (2.1) and design

patterns (2.2). In section 2.3 we state precisely the gaps our work aims to

fill in the existing literature, and, in section 2.4, the chapter is summarised.

Detailed analyses of very closely related work and comparisons between

our work and others are not covered in this chapter, but appear in later

chapters.

2.1 Program Restructuring and Refactoring

2.1.1 Definitions

In their widely-used taxonomy of reengineering terms, Chikofsky and Cross

define restructuring in this way:

Restructuring is the transformation from one representation form

to another at the same relative abstraction level, while preserv-

9

ing the subject system’s external behaviour (functionality and

semantics).[19]

Program restructuring then is a source-to-source restructuring that preserves

the semantics and external behaviour of the program.

The first use of the term “refactoring” in the literature was in the work

of Opdyke and Johnson [78], though the practice was in use well before

this. Opdyke defines refactorings as “behaviour-preserving program restruc-

turings1,” which is the definition we use in this work. Fowler uses a similar

definition, though emphasizes that we expect the process of refactoring to

improve the design:

Refactoring is the process of changing a software system in such

a way that it does not alter the external behavior of the code, yet

improves its internal structure. [38, p.xvi]

Roberts changes the definition radically by also permitting “refactorings”

that change program behaviour [84]. While it is valuable to allow program

transformations that are not behaviour-preserving, the redefinition of a stan-

dard term seems very unnecessary, especially in a field that is already dogged

by confusing terminology [5].

We have used the term “behaviour preserving” without being specific as

to what is meant. Opdyke defined it in terms of observable behaviour, i.e.,

that the program must produce the same externally observable behaviour for

any legal input before and after the refactoring [77]. Roberts correctly points

out that if timing constraints are taken to be part of program behaviour, it

becomes extremely difficult to argue behaviour preservation. Other non-

functional properties of a program, for example memory usage or patterns

1This is tautological, since restructurings are, by definition, behaviour preserving.

10

Domain of Source Programs Domain of Program Behaviours

Figure 2.1: Graphical Image of Refactorings

of network access, would also be very difficult to maintain in a refactoring2.

For these reasons, we do not consider in this work programs where timing

constraints or other non-functional requirements are part of their specifica-

tion.

2.1.2 A Global View of Refactoring

Figure 2.1 is a graphical depiction of refactoring and what it aims to achieve.

The domain on the left is the set of all source programs (e.g., all legal Java

programs) while the domain on the right depicts the set of all possible pro-

gram behaviours. The shaded subset on the left is a set of programs that all

exhibit the same behaviour, depicted by their all mapping to the same point

in the behaviour domain.

Refactoring research aims to show how, given a program in the shaded

set, it is possible to transform it to other programs in the same set. Of

2In a practical sense, the behaviour of a program that has been optimised to run in a

particular hardware/software environment could be affected by refactoring.

11

control

getInput process output

Figure 2.2: A Generic Structure Chart

course, it is not interesting to do this in a random fashion3; the aim is to

improve the design of the program according to some criteria. Refactoring

research aims then to build the “train tracks” that connect one program

to another program with the same behaviour. In the diagram, applying

a composition of refactorings is equivalent to moving along the track to a

possibly very different program structure, but one that nevertheless exhibits

the same external behaviour.

Refactoring research has really only taken place in the past decade, and

has been focused on the transformation of object-oriented programs. To

understand why it never received much attention in the context of structured

programming, consider the generic structure chart depicted in figure 2.2, and

what sort of refactorings could be applied to it. It is hard to propose much,

other than that data that is passed around the chart a lot could be moved

to a shared data structure. The problem to be solved has been factored into

a number of functions and these have been fixed in a tight control structure

where little movement is possible.

By way of contrast, consider the generic class diagram of figure 2.3. Even

without any knowledge of the actual application, many possible refactorings

3A quirky notion would be to apply refactorings to a program pseudo-randomly, perhaps

using simulated annealing, and use some metrics suite to decide if the design was improved.

12

B

y

foobar()

A

x

foo()

Figure 2.3: A Generic UML Class Diagram

come to mind. An interface could be added to the class B and the class A

updated to access B only via this interface. The method foo could be moved

from the class A to the class B and replaced by a delegating method. Perhaps

foo could be moved to another class entirely and A updated to inherit it from

that class. Similar refactorings could be applied to the method foobar. We

could even contemplate replacing the aggregation relationship from A to B

with an inheritance relationship in the same direction. The fact that so many

potential refactorings spring from a simple class diagram is a consequence of

the much richer set of abstractions available in the object-oriented approach

when compared with the structured approach.

2.1.3 Formal and Informal Approaches to Behaviour

Preservation

It is theoretically impossible for a refactoring technique to relate all programs

that exhibit the same behaviour. In practice, we have to be very modest in

our aims. Few industrial languages have a formal semantics. Even rarer are

those that have a formal semantics and a compiler that verifiably implements

those semantics. Even given a formal semantics for an industrial language,

the complexity of the behaviour preservation proofs for non-trivial transfor-

mations will be intractable. Approaches based on a formal semantics of the

programming language cannot therefore be currently expected to produce a

13

working software tool4.

Existing refactoring work has generally relied on either a semi-formal

demonstration of behaviour preservation [77], or indeed no demonstration of

behaviour preservation at all [38]. The former approach is appealing, in that

it mimics to some degree what a disciplined programmer will do in prac-

tice when refactoring a program. They will certainly not just change it and

hope for the best; they will reason logically that the change they intend to

make is behaviour preserving. This is an interesting middle-ground between

a fully-formal approach to proving behaviour preservation and ignoring the

issue completely. By constructing a semi-formal proof of behaviour preserva-

tion we improve our confidence that the transformations we build are indeed

refactorings. Also, if in testing an error is found in that a supposed refactor-

ing changes the behaviour of the program it has been applied to, the error

can be traced back to the proof and corrected there.

This notion of behaviour preservation admits many simple program refac-

torings. Assuming certain pre-conditions are met by the program being trans-

formed, classes, methods and interfaces may be added or removed; invoca-

tions of a method may be replaced by invocations of another method; access

to a field may be replaced by a method invocation, and so on. We will see

later in this work how such simple refactorings can be combined to produce

complex transformations that have a profound effect on program structure.

4For an interesting example of a formal, correctness-preserving approach to program

restructuring applied to a small-scale software engineering problem, see [42]. This approach

requires significant work in reverse engineering the program, and it is not apparent whether

the transformations used can be automated.

14

2.1.4 Existing Work in Automated Refactoring

So far we have discussed refactoring in general, but the main focus of this

thesis is specifically automated refactoring. Obviously automation is valu-

able: once the programmer decides that a certain refactoring should take

place, much of what remains is tedious and error-prone work. Such work

should, where possible, be automated. At the simplest level, the program-

mer should be able, for example, to rename a class, and have the refactoring

tool check that the new name is not already in use and update all uses of

the old class name to the new class name. At a much more complex level,

the programmer should be able to select a number of program elements and

apply a sophisticated, high-level restructuring to them; this is the direction

this thesis will take.

The work of Opdyke and Roberts forms the basis for the automated

refactoring approach taken in this thesis. Opdyke defined a set of refactorings

that could be applied to a C++ program [77] and in further work showed

how they could be used to construct higher-level refactorings, for example,

to convert an inheritance relationship to an aggregation one, and vice versa

[51]. Roberts [84] extended Opdyke’s work by providing a more formal basis

for composing refactorings, and examined the use of dynamic information in

refactoring. This work will be extensively cited throughout this thesis, so it

is not discussed further here. In the following subsections we consider some

of the other approaches that have been taken to automated refactoring. In

many cases the term refactoring has not actually been used, but the work

nevertheless involves behaviour preserving restructuring of object-oriented

programs.

15

Approaches to Inheritance Hierarchy Reorganisation

One of the significant contributions of the object-oriented approach was that

it made inheritance a firm part of mainstream software development. Design-

ing a class hierarchy is a difficult task however, so many attempts have been

made to provide automated support for this process. Probably the earliest

work that addressed this issue was that of Pun and Winder [80]. When a

designer adds a class to a hierarchy, the design of the hierarchy may cause

the class to inherit unwanted attributes. This indicates that the hierarchy

should be reorganised to separate the attributes that the designer would like

to be inherited from the undesirable ones. Pun and Winder show how this re-

organisation process can be automated and partly formalise their work using

an algebraic manipulation system.

Casais solves the “inheritance of unwanted features” problem in a some-

what different way, specifying both global and incremental algorithms that

reorganise a class hierarchy so as to remove the inheritance of unwanted fea-

tures [16, 17]. This improves on Pun and Winder’s work in that it allows

incremental reorganisation of a class library whenever a class is added to it.

Casais also defines how to automate this restructuring algorithm precisely

and, in [18], presents the results of applying his restructuring algorithms to

the Eiffel libraries. His restructurings are intended to operate in automatic

mode, which has the benefit that they can be applied to very large hierar-

chies, but the disadvantage that they will, in some cases, produce a result

that is either incomprehensible, or of no software engineering impact.

Lieberherr, Bergstein and Silva-Lepe describe an algorithm that learns

a class library from a set of object examples, and minimises the number of

aggregation and inheritance relationships5 in this library, while preserving the

5These are the usual interpretation of the construction and alternation relationships in

16

set of objects defined by the library [59, 7]. This work is based on the accepted

philosophy that abstractions are discovered rather than invented [50], so it

makes sense to allow a designer to define the concrete objects they want to

use, and then to learn the class hierarchy from these examples. More recent

work by Hürsch and Seiter in the same area describes a set of behaviour-

preserving transformations that can be applied to a class library [45]. This

work has never achieved popularity in mainstream software development,

probably due to the fact that it is tightly bound to the seldom-used adaptive

software model, where class structure (the class graph) is modelled separately

from behaviour (propagation patterns). This contrasts strongly with the

work of Opdyke and Roberts, and the work presented in this thesis, that

simply assumes the class library to be specified in a mainstream programming

language6.

Ivan Moore has developed a tool called Guru that can analyse and restruc-

ture an inheritance hierarchy expressed in the Self programming language

[67, 69]. The inheritance hierarchy is optimised in a certain way, whilst pre-

serving program behaviour. Optimal is taken to mean that duplicate methods

are removed, method sharing is maximised, and redefinition of methods is

avoided. Moore found that in general some manual intervention was neces-

sary to produce a good result, and that given an incompetently-developed hi-

erarchy as input, the restructuring could not improve it (“garbage in, garbage

out”). There is also the risk with this sort of automated restructuring that

the essential abstractions that the programmer defined in the hierarchy will

be removed by the restructuring, if they have not yet actually been made

use of. In [68] Moore extends this restructuring algorithm to refactor meth-

the Demeter notation.
6Opdyke’s refactorings transformed C++ programs, Roberts developed the Smalltalk

Refactoring Browser, while this thesis will focus on transforming Java programs.

17

ods by moving common expressions to separate methods and invoking them

there. While this method-level refactoring can reduce the amount of code in

the application and increase reuse, the new methods it introduces will not

necessarily appear cohesive to the programmer.

Snelting and Tip propose reengineering class hierarchies using concept

analysis [91]. When a designer creates a class hierarchy, they are in effect

describing their perception of the key classes and relationships in the domain

they are modelling. A programmer who uses this hierarchy may find that

the classes provided are not quite what are required in their application,

and this will appear as anomalies in their code. For example, a class may

not use all the functionality of its superclass, or the application may create

several objects of the same class, but use different subsets of the class’s

functionality in different contexts. In both these examples, the user of the

hierarchy requires different classes (or concepts) from the ones provided by

the designer of the hierarchy. In this work a concept lattice is constructed

that highlights the concepts that the programmer has actually made use of.

This provides valuable guidance in reengineering the class hierarchy; in the

examples described above, the classes in question probably need to be split.

The type of transformations this analysis produces would have the effect of

making the class hierarchy represent more truly the programmers’ view of

the domain. In the context of this thesis, the reengineering described in this

paper could be undertaken prior to the introduction of a design pattern.

Other Approaches

Ducasse, Rieger and Demeyer describe a technique for detecting duplicated

code based on simple string comparisons to detect identical lines of code,

and the use of a scatter plot to visualise the results of the comparisons [28].

18

For a program with n lines of code, the corresponding scatter plot would be

an n-by-n matrix where a dot is present at location (i, j) only when line i

in the program is identical to line j. This work is used as a basis in [29],

where a preliminary proposal is made for tool support for refactoring to

remove duplicated code. They suggest that full automation is possible only

in simple cases of exact code cloning, and that programmer intervention will

be required in most cases.

Sweeney and Tip developed an automated approach to detecting dead

data members in C++ applications [95]. A data member m is defined to

be dead if there is no object in the program that contains m such that the

value of m can affect the program’s external behaviour. Naturally, detecting

such dead data members paves the way for a simple refactoring that removes

them. This type of refactoring appears unremarkable but the results achieved

were dramatic. On the benchmarks tested, an average of 12.5% of the data

members were found to be dead, and the average occupancy of run-time ob-

ject space by dead data was found to be 4.4%. This suggests that refactoring

research is still in its infancy, and that a lot can still be achieved with quite

simple techniques.

Maruyama and Shima present an approach to method refactoring based

on the usage patterns of a framework [63]. The basis is that a method in a

framework has dependencies on other framework methods that to a greater or

lesser degree match how programmers using the framework will override the

method. If the method is normally overridden in such a way as to preserve

these dependencies, it suggests that the interaction with the other methods

is invariant and can be captured in a template method. Conversely, if the

method is normally overridden in such a way as to destroy these dependen-

cies, it suggests that the method represents a “hot spot” [79] and is better

19

modelled as a hook method. In the first case, the transformation will mean

that a programmer using the framework has less code to write; in the latter

case it will mean that the programmer has less code to read. Experimental

results presented in [63] produced a reduction of up to 22% in the num-

ber of statements a programmer has to write when using the framework to

develop new applications. Because the refactoring process operates in au-

tomatic mode, it exhibits the attendant problem of creating new methods

that may appear meaningless to the programmer. Nevertheless the results of

this approach seem very valuable, probably because using the modification

histories of the methods in the framework is in effect giving the programmer

indirect control over what refactorings take place.

2.1.5 Categorisation of Refactoring Approaches

There are a number of attributes that can be used for categorising approaches

to refactoring. The most significant ones are as follows:

• Method of Application: In a fully-automated approach a software tool

is used that applies a large scale restructuring to the program. A semi-

automated approach also involves a software tool, but involves the user

choosing what refactorings are to be applied. Finally, the user can

simply apply the refactoring by hand.

• Approach to Behaviour Preservation: The simplest approach is where

no proof of behaviour preservation is presented; it is simply taken for

granted or assumed to be obvious. A semi-formal proof means that

some formal model (usually first-order predicate logic) is used to sup-

port the behaviour preservation arguments, but the reasoning used is

not limited to syntactic deduction. In a fully formal approach, a formal

20

model is used that reflects the semantics of the programming language

sufficiently strongly that an entire behaviour preservation proof can be

constructed in the formal domain.

• Method of Composition: A refactoring approach that provides a suite of

refactorings will usually also provide a method for composing them. In

dynamic composition the user is allowed to combine refactorings freely

as they are working on the code, while static composition approaches

provide the user with a set of higher-level (composite) refactorings.

For example, Fowler presents a catalogue of refactorings [38] that are to be

applied by hand, no proof of behaviour preservation is provided, and nothing

is said about composing these refactorings. On the other hand Robert’s

refactorings [84] are applied semi-automatically (the user states where to

apply them), a semi-formal proof of behaviour preservation is provided, and

a dynamic method of refactoring composition is provided.

In general, the fully automatic method of application has the advantage

that it may be left run in batch mode on a large system without requiring

user intervention. It may however perform refactorings that are of little or

no real significance, and the ultimate results may be hard to comprehend.

As discussed earlier, a behaviour preservation argument is desirable, though

the fully-formal approach is not promising.

As regards composition of refactorings, the dynamic approach is the freer

and more expressive one. However the static approach allows powerful refac-

torings to be developed, tested extensively and then presented to the user as

a reliable refactoring option.

The approach we take in this thesis is to statically develop semi-automated,

composite refactorings, and to develop for each one a semi-formal proof of

behaviour preservation.

21

2.2 Design Patterns

Patterns have been one of the most significant developments in software

engineering in the past decade. The aim of this field is to identify and cat-

alogue the knowledge and expertise that has been built up over many years

of software engineering. Patterns can be identified in all parts of the de-

velopment process: architecture, analysis, design, coding, reengineering, as

well as in specific application areas such as real-time programming or user

interface construction. Patterns are in no way invented; they are discovered

or “mined” from existing systems. The motivation is to uncover proven de-

signs that experts have already used and reused, and to distill from these

the essence of the solution with domain-specific detail removed. The result-

ing nugget of design wisdom can then be documented and made generally

available. This pattern can be assimilated by other designers and applied in

other domains.

The notion of a pattern in software was borrowed from the work of the

architect Christopher Alexander, who described the process of architecting

living space (be it the corner of a room or an entire city) in terms of patterns.

He defined the notion of a pattern in the following way:

Each pattern is a three-part rule, which expresses a relation be-

tween a certain context, a problem, and a solution. [1, p.247]

Varying definitions of the term pattern abound, but this “three-part” version

suits our current purposes. Richard Gabriel puts the Alexandrian definition

into a software context in this way:

Each pattern is a three-part rule, which expresses a relation be-

tween a certain context, a certain system of forces which occurs

22

repeatedly in that context, and a certain software configuration

which allows these forces to resolve themselves. [39]

This thesis is concerned with the automated application of design pat-

terns. We choose to work with patterns at the design level for two reasons:

• It is a richer set than the program-language specific patterns found at

the coding level.

• They are more concrete than those found at the analysis level so au-

tomating their application to source code is realistic.

The notions of formalisation and automation are not generally welcomed in

the patterns community. Jim Coplien expressed this distaste clearly:

Patterns aren’t designed to be executed or analyzed by comput-

ers, as one might imagine to be true for rules: patterns are to

be executed by architects with insight, taste, experience, and a

sense of aesthetics. [23]

We concur with this position in terms of the first two parts of the Alexan-

drian definition. Deciding that a context is appropriate for the application

of a pattern and assessing that the forces acting in this context will be re-

solved by the pattern is a matter of “insight, taste, experience, and a sense of

aesthetics.” However, the third part of the pattern definition, that of apply-

ing the software configuration that resolves the forces, is clearly a potential

candidate for automation. In chapter 4 we will present a methodology for

the development of automated design pattern transformations where the de-

signer defines the context to which the pattern is to be applied and the actual

application of the software structure is automated. Other work in the area

of automated pattern application is considered in that chapter as well, so in

23

this chapter we focus on other uses of formalisation and automation in the

context of design patterns.

2.2.1 Formalisation of Design Patterns

Anthony Lauder and Stuart Kent argue that existing pattern descriptions

suffer from being expressed in informal language and being overly-dependent

on a specific example to convey the essence of the pattern [56]. They conse-

quently develop a formal three-part model to describe a pattern, viz:

• Role model. This is the most abstract representation of the pattern.

The actors involved in the pattern are identified as well as their abstract

state and the essential collaborations between them. These definitions

are abstract and imply constraints that any refinement of the pattern

must respect.

• Type model. This is a refinement of the role model where roles are

replaced by domain-specific types that define concrete syntax for oper-

ations and add to the abstract semantics of the role model.

• Class model. This final refinement is the actual deployment of the

pattern in terms of concrete classes.

In each model, system dynamics can be expressed using a variant of the

UML sequence diagram. As each of the three models is formalised in terms

of sets and constraints, it has the potential to be used in the development of

automated tool support for patterns.

Amnon Eden et al have developed a declarative language called LePUS

that is specifically geared towards expressing the object-oriented motifs that

typically recur in design patterns [33, 32]. In LePUS a program is modelled as

24

sets of entities (classes and methods) and various relationships/collaborations

between these entities (inheritance, method invocation, method forwarding

etc.). In [33] LePUS is used to describe a set of the Gamma et al design

patterns [41] and to explore the relationships between patterns.

LePUS has both a graphical format and a textual one that closely resem-

bles Prolog. This latter fact makes it easy to implement a LePUS model as

a Prolog facts database and use it in various pattern activities [31]:

• Validation. Testing if a certain set of classes/methods fit a certain

pattern can be achieved by executing a query with these elements as

arguments to the query.

• Discovery. To discover an instance of a certain pattern in a model,

the query can be executed with variables instead of program elements.

This will attempt to match the pattern across the entire database.

• Application. Rather than searching for the pattern in the database,

the assertions representing the pattern are themselves added to the

database7.

A formal model of patterns certainly has potential to serve as a sound

foundation for automated pattern application. Work in this area is ongoing,

though as yet few working prototypes have been developed. One exception

is the work of Gert Florijn and his group, which is discussed on page 87.

2.2.2 Automated Detection of Design Patterns

Automated detection of design patterns is related to automated design pat-

tern application and has received some attention by researchers. The idea is

7Note that in our opinion this work does not fully address the issues involved in pattern

application, a position we outline in section 4.5

25

very tempting: leave an automated tool roam over a large software reposi-

tory and see what patterns it may find. There is potential to uncover new

patterns, or to find known patterns thus enhancing the comprehension of the

system.

Kyle Brown developed a tool that reverse engineers Smalltalk programs

and can recognise certain design patterns in the code [13]. In the tests he

conducted, it found several of the Gamma et al patterns [41] with good

success. In each case, the pattern structure it detected was later verified to

indeed be an instance of the relevant pattern. His case study was quite small

so it is hard to draw a firm conclusion from this.

Tonella and Antoniol use concept analysis to identify groups of classes

sharing common patterns of relationships, both structural (inheritance and

association) and non-structural (method invocation etc.) [98]. Their claim is

that these groupings are likely to represent design patterns that are present

in the code. In a case study, their approach successfully identified several

instances of the well-known Adapter pattern, and also aided in identifying

a domain-specific pattern related to input/output. Of course applying this

approach to poorly-written code would more likely uncover poor patterns

rather than good patterns.

Jahnke and Zündorf propose a method precisely for the identification

of poor patterns, with the intention of transforming them to good design

patterns8 [49]. They use Generic Fuzzy Reasoning Nets (GFRNs) to describe

the poor pattern structure that is to be transformed. Because it is “fuzzy,”

the description does not define one precise structure, but a more vague set

of structures that indicate that a certain pattern should be applied. The

poor pattern identification tool is intended to be used interactively: the user

8Their novel approach to pattern application is discussed in section 4.5.

26

identifies where they suspect a poor pattern to be and the GFRN uses fuzzy

inference to assess if the user is correct. They give an example of using their

approach to detect a set of global variables to which the Singleton pattern

could be applied, but otherwise this innovative work does not appear to have

been developed further.

Keller et al have developed the SPOOL environment for the reverse-

engineering of C++ code [52]. This is a collection of off-the-shelf tools

(parsers, browsers, layout generators etc.) that are combined to produce

an environment that can provide several abstract views of a software system.

In [52] SPOOL is used to recognise patterns during the process of reverse

engineering. They argue that rather than simply extracting a design from

source code, the rationale behind this design must also be uncovered9. Some

patterns can be recognised in a purely automatic way, while some require

user intervention. In [87] SPOOL is also used for the detection of hot spots

in a framework.

Considering pattern detection in terms of the three-part definition of pat-

tern given above, we see that fully automated approaches can only ever deal

with recognition of pattern structure. Pattern structure is insufficient in ex-

act design pattern recognition as the pattern structure may be present, but

not dynamic relationships or the intent. Also, several patterns have the same

pattern structure, and it is only the non-structural characteristics that differ-

entiate between them. Apart from the first approach above (that of Brown),

all the pattern recognition and detection work operates in a semi-automatic

way, where the user is involved in the process as well. This again brings the

“insight, taste, experience, and a sense of aesthetics” into play and means

9Extracting rationale as well as architecture is also the major theme in the work of

Woods et al [100].

27

that full pattern recognition is possible.

2.2.3 Patterns in Reengineering, Reverse Engineering

and Evolution

Automated introduction of design patterns has a clear application in reengi-

neering. In making a system more flexible to cope with future developments,

introduction of a design pattern is a likely task to undertake. There can also

be patterns in the actual process of evolution and reengineering itself, and it

is this work that we look at in this section.

Foote and Opdyke propose a nascent pattern language to describe the

process of developing usable software [37]. The topmost pattern, “Develop

Software that Is Usable Today and Reusable Tomorrow,” gives rise to three

patterns on the next layer:

• “Prototype a First-Pass Design.”

• “Expand the Initial Prototype.”

• “Consolidate the Program to Support Evolution and Reuse.”

Their work focuses then on further patterns that form part of the consoli-

dation pattern, ultimately leading to the low-level refactorings proposed by

Opdyke [77]. Although not explicitly mentioned, the pattern “Apply a De-

sign Pattern” would be part of consolidation as well, and this thesis provides

automated support for this process.

Demeyer, Ducasse and Nierstrasz propose a pattern language for reverse

engineering [24]. They subdivide these patterns into four clusters:

• First Contact: what to do when first approaching an unknown software

system.

28

• Initial Understanding: how to obtain a preliminary understanding of

the software system, mainly based on class diagrams.

• Detailed Model Capture: how to obtain a detailed understanding of

(part of) the software system.

• Prepare Reengineering: since reverse engineering is normally a precur-

sor to reengineering, this cluster of patterns shows how to prepare for

subsequent reengineering.

The patterns developed include the self-explanatory “Read all the Code in

One Hour” and “Recover the Refactorings,” which aims to recover what the

original developers learned during the iterative process of development. This

pattern language expresses the reverse engineering expertise developed by

the authors over several years of academic and practical experience, and so

reflects a classic use of the pattern approach. In relation to this thesis, the

focus is on reverse engineering rather than software evolution or reengineer-

ing.

Stevens et al argue that one of the main reasons why software reengineer-

ing research has had little impact on software reengineering practice is the

difficulty in communicating the research results to the practicing community

[92, 26]. They consequently propose system reengineering patterns as an ap-

proach to package and transfer this expertise. For example, the Deprecation

pattern captures the well-established practice of updating an unsatisfactory

interface by defining the new interface but also leaving the existing interface

intact. A “deprecated” flag is added to the old interface, advising users to

move to the new one in preference. In time, the unsatisfactory deprecated

interface can be removed. As argued in section 1.2, this thesis can also be

viewed as providing automated support for the reengineering process.

29

2.3 Thesis Context

This thesis merges the two strands of research described in this chapter.

Program restructuring (section 2.1) is used in order to automate the appli-

cation of design patterns (section 2.2) to an existing program. This merging

is timely, as program restructuring research has suffered from the lack of a

firm basis for deciding what sort of structures it should be targetting. De-

sign patterns are solutions that have proven their worth in practice, and so

provide an excellent domain in which to find such target structures.

The existing work in program restructuring is inadequate for our pur-

poses. It is only that of Roberts [84] that deals with a rigorous approach to

refactoring composition. However he only allows compositions that are sim-

ple sequences of refactorings, and many design pattern transformations are

too complicated to be described this way. Accordingly we have extended his

method in several ways, the principle one being that we allow a set iteration

construct in the definition of a composite refactoring.

It is also clear that existing design pattern work is not sufficient for our

purposes. Building a restructuring that applies a design pattern leads us to

consider questions about the pattern that have not been addressed in existing

work. Firstly, it must be decided what the starting point of the transforma-

tion should be, i.e., what type of program structure the transformation can

be applied to. Secondly, the commonality between design patterns must be

identified and exploited in the development of the transformations, to avoid

the wholesale duplication in the transformation definitions that would occur

otherwise.

30

2.4 Summary

In this chapter we have described the two principle research fields upon which

this thesis is founded: program restructuring and design patterns. The aim

of this is to provide a general background to existing and ongoing research

in these areas. In subsequent chapters we present our own contributions in

more detail, and also present detailed analysis of our approach in comparison

to closely related work.

31

Chapter 3

Foundations of Refactoring:

Behaviour Preservation

In the previous chapter we described the notion of behaviour preservation and

hinted at the approach that will be adopted in this thesis. In this chapter

we present our approach to demonstrating behaviour preservation in detail

and apply it with full rigour to a concrete transformation.

In section 3.1 we describe our approach to defining primitive refactorings,

stating their pre- and postconditions, and arguing behaviour preservation.

In section 3.2 a method for the derivation of the pre- and postconditions of

composite refactorings is presented and applied to a concrete example. In

section 3.3 our approach is compared to other work in the field and finally,

in section 3.4, the results of this chapter are summarised. The approach

presented in this chapter has been published in [76].

32

3.1 Primitive Refactorings and Behaviour Preser-

vation

A primitive refactoring is a refactoring that is not decomposed into simpler

refactorings. Our transformation approach is based upon a layer of primitive

refactorings. Section 3.1.4 describes how we define a primitive refactoring,

while in appendix B.3 a list of the actual primitive refactorings used in this

work is provided.

As stated previously, it is necessary in defining a primitive refactoring to

state what the precondition of the refactoring is. In defining this precon-

dition, assertions are made about the program, for example, that a certain

class exists or a given name is not already in use. We define a set of analy-

sis functions to enable these assertions to be made. Analysis functions are

described further in section 3.1.2.

In developing higher-level refactorings we frequently need to extract cer-

tain information from the program, for example, to build an interface from

a class based on the signatures of its public methods. This type of function

does not affect the program in any way, but performs a more significant task

than what an analysis function does. These functions are referred to as helper

functions and are elaborated further upon in section 3.1.3.

Certain general assumptions are made about the program being trans-

formed and these are described in section 3.1.5. Also, the mathematical

preliminaries for this chapter are described in section 3.1.1.

3.1.1 Mathematical Preliminaries

We use the following notation based on [62], also used in [84]. This will be

used extensively in section 3.2 where it will be necessary to be precise about

33

the effect of a refactoring on a program.

• P : This is the program to be refactored.

• IP : Denotes an interpretation of first-order predicate logic where the

universe of discourse comprises the program elements of P , and the

functions and predicates of the calculus reflect the analysis functions

as applied to the program P .

• |=IP
preR: Denotes the evaluation of the precondition of the refactoring

R on the program interpretation IP .

• postR(IP): Denotes the program interpretation IP , rewritten with the

postcondition of the refactoring R.

• f [x/y]: Denotes an analysis function that is precisely the same as the

analysis function f , except that it maps the element x to y. This syntax

is used in postconditions to describe the effect of the refactoring on the

analysis functions. Note that the name of a new analysis function

produced as the result of applying a refactoring is written with a prime

(′), so stating that an analysis function f is updated with the new

element (x, y) would be written thus: f ′ = f [x/y].

• ⊥: Is used in a postcondition to mean an undefined value. For example,
if a transformation removes a method called m, the updating of the

classOf analysis function to indicate that m no longer belongs to any

class would be written thus: classOf ′ = classOf [m/⊥].

3.1.2 Analysis Functions

Analysis functions serve two related roles in our work. Firstly, they are used

as functions and predicates in the first-order predicate calculus expressions

34

that define the precondition of a refactoring. Secondly, they are implemented

as actual operations that can be applied to a Java program to extract some

information about the program, for example, to test if a method is in a certain

class or to find the signature of a given method. The relationship between

these two roles is that the latter is the implementation of the interpretation

of the former. We will simply speak of “analysis functions” and rely on the

context to make it clear whether we are referring to a function in first-order

predicate logic, or a concrete operation, or both.

The analysis functions used in this work are defined in appendix B.1.

There are also dependencies between the analysis functions and these are

described in appendix B.1.1. For example, if one class inherits from another

class, the type of the former class must also be a subtype of the type of

the latter class. In computing the precondition of a composite refactoring in

section 3.2, it will be necessary to make use of these dependencies.

Some of the analysis functions are obviously easy to evaluate, for example,

the classOf function that tests if a method is a member of a class. Others

are more difficult, and a number of them are generally undecidable. In the

latter case, there are three possible ways the situation can be dealt with:

1. An implementation may not be necessary. Some analysis functions

are only used in a precondition when a previous refactoring has al-

ready established the condition. This type of analysis function will

appear in precondition specifications, and in behaviour preservation

arguments, but the necessity for an implementation will never arise.

An example of this is the createsSameObject analysis function, that

tests if a given method and constructor return identical objects given

the same arguments. It is necessary to implement a refactoring (in fact

makeAbstract, a helper function, see section 3.1.3) that sets up this

35

condition, but this is a straightforward task.

2. A conservative estimation can be made. For some undecidable analysis

functions a useful conservative estimation exists. For example, the

uses(method1, method2) analysis function that determines if method1

may invoke method2 can only be determined precisely by using an

expensive dynamic analysis of the program. However, a conservative

estimation that probably includes some false positives can be easily

made based on the program text.

3. The programmer may be queried. Asking the programmer to assess

if a given precondition holds is not an unreasonable approach. They

would have to make this assessment anyway were they to perform the

refactoring by hand, so their workload is not being increased. Indeed,

this approach encourages them to think about program conditions that

they might otherwise have overlooked.

Program Entities

In describing a refactoring or its precondition, it is necessary to refer to

various program elements: classes, methods, interfaces etc. The principle

elements that we make use of, and their interrelationships, are depicted as

a UML class model in figure 3.1. Other program entities that are used in

defining refactorings and analysis functions are: Interface, Argument, Objec-

tReference, Field, Parameter, Expression, Variable and MethodInvocation.

For any entity X, we also define an entity SetOfX that represents a set

of entities of the type X. Note that for purposes of brevity, a program entity

and its name may be used interchangeably. For example, a refactoring that

operates on a Class may instead be passed a String that represents a class

36

Class ObjectCreationExprn*1 *classCreated

Method

*

1

*

1

contains

Signature
1

*

1

*
sigOf

Constructor

*1 *

contains

1
*

1
*

constructorInvoked

0..10..* 0..10..* createsSameObject

1

*

1

*
sigOf

1

1

Figure 3.1: Principal Program Entities and their Relationships

name. getClass(String) could be used to make this relationship precise, but

this adds unnecessary bulk to the descriptions.

3.1.3 Helper Functions

In describing a refactoring it may be necessary to extract richer content from

the program code than is provided by the analysis functions. For example,

we may wish to build an interface from a class based on the signatures of

its public methods. Helper functions are used to perform this type of task.

Because they are not at the primitive level of the analysis functions, we

provide them with a pre- and postcondition. Helper functions are proper

functions without side-effects on the program, so the postcondition invariably

involves the return value of the helper function itself. The complete list of

helper functions used in this work is presented in appendix B.2.

37

3.1.4 Primitive Refactorings

The aim of this work is to develop composite refactorings that introduce de-

sign patterns, not to develop a complete set of primitive refactorings as such.

For this reason, we have not defined refactorings that we assessed might tran-

spire to be useful; rather we have defined a new refactoring only when the

need for it arose. The complete list of refactorings used in this work is pre-

sented in appendix B.3. Some of them are standard and would be part of any

refactoring suite, for example, addClass. Others are idiosyncratic and quite

peculiar to the present work, for example, replaceObjCreationWithMethInvo-

cation, which replaces a given object creation expression with an invocation

of a given method using the same argument list.

Each primitive refactoring is described in the following way:

• Name, return type, argument types and informal description: The re-
turn and argument types may be boolean or void, or one of the program

entities described in section 3.1.2. Name and informal description are

self-explanatory.

• Precondition: This is an assertion, written in first-order predicate logic,
that must be true in order for the refactoring to be behaviour preserv-

ing. If a precondition fails, and the transformation is nevertheless per-

formed, the resulting program may not be legal Java or may behave

differently from the original program.

• Postcondition: This is a mapping from analysis functions to analysis

functions. It describes the effect of applying the refactoring in terms

of changes to the analysis functions defined in appendix B.1.

• Behaviour preservation argument : Opdyke [77] presents behaviour preser-
vation arguments in terms of seven program properties that he proposes

38

are easily violated during refactoring1. We take a similar approach, but

rather than limiting the properties that are maintained to a fixed few,

we consider what properties can possibly be violated by each individual

refactoring and argue that they are not. The arguments are non-formal

in style and cannot guarantee that no behaviour violations occur, but

they are rigorous and are intended to be stronger than the argument

a programmer would typically make internally were they to perform

the refactoring by hand. A key advantage to our approach is that

the behaviour preservation argument is made only once by the creator

of the primitive refactoring, and need not be repeated by the many

programmers who will apply the transformation in practice.

3.1.5 Assumptions and Limitations

It is assumed that certain constraints hold on the Java programs that are

transformed in this work. The assumptions we make are as follows:

1. The initial program must compile correctly. If this was not the case,

then, for example, the refactoring addMethod could change the pro-

gram behaviour by causing an illegal program to become a legal one.

2. Reflective programs cannot be transformed safely using the approach

in this work. For example, the following code invokes a method called

foo() on object obj:

obj.getClass().getMethod(”foo”,null).invoke(obj);

It is clear that if the program is transformed to rename the method

1Tokuda and Batory use an approach based on Opdyke’s, and point out that at least

three more program properties are necessary to maintain program behaviour [96].

39

foo, this code excerpt will not execute as before, but will throw an

exception.

3. We have assumed that objects are only created using the new operator.

The issues surrounding object cloning have not been dealt with in detail

in this work2.

4. Private classes are not considered. We disallow the creation of a new

class if its name clashes with an existing class, even if the existing class

is private and no real clash exists.

5. Packages are not dealt with in this work, so a class or interface can be

safely identified by just its name.

6. The interface to a method is described by its name, return type, and pa-

rameter types. Exceptions also form part of the interface to a method,

but for simplicity we have ignored them in this work.

The first two constraints are fundamental to our approach, the third involves

an issue that we have not yet addressed, while the last three are simplifica-

tions that would be burdensome to do without, but are not essential to our

approach.

3.2 Composite Refactorings

The ultimate goal of this work is to use the refactorings, helper functions, and

analysis functions described in the last section to define behaviour preserving

2For example in a new expression, the class of the created object is given explicitly.

However, in a clone expression, the class of the created object is not known statically,

but depends on the type of the receiving object. This would be an issue when designing

transformations for creational patterns, as they have an impact on how objects are created.

40

design pattern transformations. As will be presented in the next chapter, the

process of constructing a design pattern transformation is essentially a top-

down one, but there is also an element of bottom-up composition of existing

refactorings. In this section we describe the way in which we compose refac-

torings, and present a technique for computing the pre- and postconditions

of a composite refactoring. The importance of these techniques lies in the

fact that they allow us to implement a design pattern transformation as a

composition of refactorings and then to check the legality of the composition

and calculate its overall precondition.

We could avoid the necessity of calculating the overall precondition of

a composite refactoring by checking the precondition for each component

refactoring just before it is applied. If a precondition fails, we simply rollback

to the starting point and inform the user. This approach is undesirable

whether the composition is legal or illegal:

• If the composite refactoring is legal, testing its precondition will nor-

mally be faster, and never slower, than testing the precondition of each

component refactoring separately.

• If the composite refactoring is illegal, testing its precondition will be

considerably faster than applying several of the component refactorings

and then being obliged to rollback to the starting point. Note that some

refactorings are not undoable, so supporting rollback would involve

checkpointing.

Since we aim to build refactorings statically, the program P is not available

for a “try it and see if it works” approach. No assumptions can be made

about P , other than those described in section 3.1.5.

In our work, we have discovered that there are two ways in which we need

41

to compose refactorings:

1. Chaining.

2. Set iteration.

Chaining is where a sequence of refactorings are applied one after the other.

For example, the following chain adds methods foo and goo to the class c.

addMethod(c,foo)

addMethod(c,goo)

Set iteration is where a refactoring or a refactoring chain is performed on a

set of program elements. For example, the following set iteration copies all

the methods of the class a to the class b.

ForAll m:Method, classOf(m)=a {
addMethod(b,m)

}

Other forms of composition are possible as well of course, the most obvious

one being a selection statement. Although this is straightforward to deal

with, it is omitted here as we have found that in the construction of design

pattern transformations in this work, chaining and set iteration suffice.

3.2.1 Computing Pre- and Postconditions for a Chain

of Refactorings

A chain of refactorings may be of any length, but we can simplify the com-

putation of its pre- and postconditions by observing that we need only solve

the problem for a chain of length 2. This procedure can then be iteratively

applied to the remaining chain until the full pre- and postconditions have

42

been computed. For a chain of length n, n-1 applications of this process will

be required.

The two refactorings to be composed are referred to as R1 and R2. For

a general refactoring Ri, its precondition and postcondition are denoted by

preRi
and postRi

respectively. See figure 3.2.

R
2

R
1

preR1 preR2postR1 postR2

precomposite postcomposite

Figure 3.2: A Composite Refactoring with Pre- and Postconditions

The näıve approach to computing the precondition is simply to logically

AND the preconditions, i.e.,

precomposite = preR1 ∧ preR2 ,

however there are several problems with this. Firstly, postR1 may guaran-

tee preR2 which means that an unnecessarily strong precondition results (or

indeed typically a contradictory precondition), for example,

addClass(c)

addMethod(c,m)

ANDing the preconditions produces, among other clauses, ¬isClass(c) ∧
isClass(c), even though this chain is perfectly correct. The source of this

contradiction lies in the fact that the two preconditions should be valid at

different points in the transformation.

Secondly a composition may be simply illegal, e.g.,

43

deleteClass(c)

addMethod(c,m)

ANDing the preconditions here gives simply isClass(c) even though this

chain is illegal! Although the precondition for addMethod is valid at the

start of the chain, deleteClass breaks it so this composition of refactorings

can never be legal.

The precondition of the chain is computed first3. During this computation

it may emerge that the chain is in fact illegal. If the chain is legal, the

postcondition is then computed. We describe how these computations are

performed in the following two subsections.

Legality test and precondition computation

Assuming the chain is legal, its precondition is obtained by logically ANDing

preR1 with whatever parts of preR2 that are not guaranteed by postR1 . The

parts of preR2 that are not guaranteed by postR1 are obtained by evaluating:

|=postR1
(IP) preR2

If a contradiction arises in this evaluation, the chain is illegal. The post-

condition of the first refactoring sets up a condition that contradicts the

precondition to the second refactoring.

The precondition of the complete chain is obtained by evaluating:

preR1∧ |=postR1
(IP) preR2

A contradiction can arise in this evaluation as well, and this also means

that the chain is illegal. In this case the precondition to the first refactoring

3It is valuable to compute the precondition first, because if the chain requires a stronger

precondition than simply preR1 , it can be useful to use this stronger condition in later

computations.

44

demands a certain condition that contradicts the precondition to the second

refactoring, and the first refactoring does not change this condition.

Postcondition computation

In our approach4 a postcondition is described as a set of updates to analysis

functions in the following form:

f ′ = f [x/y]

g′ = g[p/q]

...

Any analysis function not mentioned in the postcondition is implicitly not

affected by the refactoring.

The postcondition of a refactoring chain is obtained by concatenating

the function updates described in the postconditions. For example, if postR1

contains the mapping:

classOf ′ = classOf [foo/c1]

and postR2 contains the mapping:

classOf ′ = classOf [foo/c2]

then naturally classOf ′ = classOf [foo/c2] becomes part of the postcondi-

tion of the chain. Denoting this concatenation operation as | we state the

postcondition of the chain to be:

postR1 | postR2

Table 3.1 describes how this operator works in general.

A complete example of the application of this algorithm is given in section

3.2.3.
4I am grateful to Dr. John Boyland of the University of Wisconsin for pointing out

problems in my original approach to postcondition computation.

45

postR1 postR2 postR1 | postR2

f ′ = f [x/y] g′ = g[p/q] f ′ = f [x/y] g′ = g[p/q]

f ′ = f [x/y] f ′ = f [p/q] f ′ = f [x/y][p/q]

f ′ = f [x/y] f ′ = f [x/z] f ′ = f [x/z]

Table 3.1: Concatenation of Postconditions

3.2.2 Computing Pre- and postconditions for a Set It-

eration

A set iteration has the following format:

ForAll x:Entity, Pred(x,. . .) {
R(x,. . .)

}

where Entity is some type of program entity, Pred is some predicate and

“. . .” denotes the program entities that are arguments to the predicate and/or

arguments to the refactoring. If the set of x of type Entity that satisfies

Pred(x, . . .) is given as {x1, x2, . . . , xn}, and writing Ri as a shorthand for

R(xi, . . .), then this iteration may be viewed as the following chain:

R1, R2, . . . , Rn

However this is a set iteration, so the refactorings could take place in any

order. That is to say, they must be able to commute and this fact enables us

to define when a set iteration is legal and what its pre- and postconditions

should be.

1. Legality test : A set iteration is illegal if the precondition of any compo-

nent refactoring depends on the postcondition of another component

46

refactoring. It is also illegal if the postcondition of any component

refactoring contradicts the precondition of another component refac-

toring5. Both these conditions are captured by requiring that for any

refactoring Ri in the set iteration, the evaluation of the precondition is

not affected by the prior application of any sequence of Rj, j 	= i. We

express this using the notation of section 3.1.1 as:

∀Ri, i ∈ {1..n}, |=IP
preRi

= |=IP ′ preRi

where P ′ = postRjm
(. . . postRj2

(postRj1
(IP))),

jm ∈ {1..n} − {i}, jx = jy ⇒ x = y

Roberts [84] looks at the issue of commutativity of general refactorings

in detail, however we are only concerned with the constrained case

of set iterations. A very conservative approach to take is to demand

that the postcondition of a component refactoring in a set iteration

should not refer to the analysis functions used in its precondition. This

has transpired to be too constraining to be of use, so it will often

prove necessary to examine the semantics of the iteration performed to

ascertain if the above property holds. The legality test performed on

page 50 is an example of this.

2. precondition computation: Any of the Ri could be the first in the chain.

Since the precondition of the first refactoring of a chain must form part

of the precondition for the whole chain, the precondition of the set

iteration must be at least the ANDing of the preconditions of each

of the component refactorings. Nothing stronger is required, so the

5The component postconditions could be allowed to contradict each other. However

the postcondition notation would have to be extended to allow disjunction between the

function updates.

47

precondition for the above chain can be expressed as:

i=n∧

i=1
preRi

or in a more useful form as:

∀x : Entity, P red(x) • preR(x,...)

3. postcondition computation: By a similar argument, the postcondition

for the above chain can be expressed as:

postR1 | postR2 | . . . | postRn

We have described how pre- and postconditions can be computed for refac-

toring sequences and set iterations. In the next section we apply these tech-

niques to a non-trivial example.

3.2.3 A Worked Example

In this section we take a typical composite transformation that involves both

chaining and set iterations and compute its pre- and postconditions. The

calculations are performed in all detail in this example, but in future we will

only summarise the derivation.

The example we use is the algorithm that describes how to apply the

EncapsulateConstruction minitransformation6. The purpose of this

minitransformation is to loosen the binding between one class (creator) and

another class that it instantiates (product). It does this by adding new con-

struction methods to the creator class that perform the creation of product

objects. Each new method is given the name createP, and all expressions that

6Minitransformations are described in detail in section 4.3. For the purposes of the

current chapter, they may be thought of simply as composite refactorings.

48

create product objects in the creator class are updated to use the appropri-

ate construction method. The impact of applying this minitransformation is

that extending the creator class to work with a new type of product class is

simply achievable by subclassing creator and overriding the createP method.

The algorithm for this minitransformation is defined as follows using the

analysis functions, helper functions and refactorings described in earlier sec-

tions:

EncapsulateConstruction(Class creator, Class product, String createP){
ForAll c:Constructor, classOf(c)=product {

Method m = makeAbstract(c, createP);

addMethod(creator, m);

}
ForAll e:ObjectCreationExprn, classCreated(e) = product ∧

containingClass(e) = creator ∧
nameOf(containingMethod(e)) 	= createP {

replaceObjCreationWithMethInvocation(e, createP);

}
}

Computing the pre-and postconditions of this composite refactoring proceeds

in several steps:

1. Compute pre and post for the chain in the first set iteration body

2. Compute pre and post for the first set iteration

3. Compute pre and post for the second set iteration

4. Compute pre and post for the overall chain

49

Computing pre and post for the chain in the first set iteration body

1. Legality test and precondition computation: This involves first rewriting

the precondition of addMethod(creator, m) with the postcondition of

makeAbstract(c, createP):

|=postmakeAbstract(IP) preaddMethod

= isClass(creator)∧¬defines(creator, nameOf [m/createP](m), sigOf(m))

= isClass(creator) ∧ ¬defines(creator, createP, sigOf(m))

and then ANDing this with the precondition for Method m = makeAb-

stract(c). The latter is simply true, so the final precondition for this

chain is:

isClass(creator)∧¬defines(creator, createP, sigOf(m))(3.1)

No contradiction occurred so the chain is legal.

2. postcondition computation: There is no analysis function updated in

both postaddMethod and postmakeAbstract so we can simply concatenate

the postconditions to obtain:

createsSameObject′ = createsSameObject[(c, m)/true]

nameOf ′ = nameOf [m/createP]

classOf ′ = classOf [m/creator]

∀a : Class, a 	= creator • equalInterface(a, creator) ⇒
equalInterface′ = equalInterface[(a, creator)/false] (3.2)

Computing pre and post for the first set iteration

1. Legality test : On first glance the postcondition of the body of this

iteration (3.2 above) appears to have no impact on the precondition

(3.1 above). However from appendix B.1.1 we know that

50

classOf(m) = creator ∧ nameOf(m) = createP

⇒ defines(creator, createP, sigOf(m))

and this may contradict the second conjunct of 3.1. This would only

occur if there were two methods m with the same signature. However,

m is a method whose signature is derived from iterating through the

constructors of the product class. Since no two constructors in the

same class can have the same signature, neither can two methods in

the set iteration have the same signature. This means that the value

for sigOf(m) will vary on each iteration so there is no risk that the

precondition will be violated.

2. precondition computation: On every iteration, the precondition must

be true, i.e.,

isClass(creator) ∧ ¬defines(creator, createP, sigOf(m))

must be valid for every constructor processed. The first conjunct is not

affected by the iteration, so it simply becomes part of the precondition

of the iteration. The second conjunct presents a problem as m is only

calculated in the body of the iteration and so cannot be used in the

precondition. However, sigOf(m) is the same as the signature of the

constructor being processed, so we can write the precondition as:

isClass(creator) ∧ ∀c : Constructor, c ∈ product •
¬defines(creator, createP, sigOf(c)) (3.3)

This precondition ensures that no method called createP already exists

in the creator class with a signature that matches any of the construc-

tors of the product class. If for practical reasons we prefer not to allow

51

a method called createP to exist in the creator class at all, then this

simpler precondition may be used:

isClass(creator) ∧ ¬defines(creator, createP)

3. postcondition computation: The postcondition for the body of this iter-

ation is given in (3.2) above. The iteration creates a new m each time,

so the full postcondition is:

∀c : Constructor, c ∈ product • ∃m : Method such that

createsSameObject′ = createsSameObject[(c, m)/true]

nameOf ′ = nameOf [m/createP]

classOf ′ = classOf [m/creator]

∀a : Class, a 	= creator • equalInterface(a, creator) ⇒
equalInterface′ = equalInterface[(a, creator)/false] (3.4)

Computing pre and post for the second set iteration

1. Legality test : The postcondition of the refactoring

replaceObjCreationWithMethInvocation(e,createP)

is that e is deleted, i.e.,

containingMethod′ = containingMethod[e/⊥].
This can only have an impact on the precondition7

createsSameObject(constructorInvoked(e),createP)∧
containingMethod(e) 	= createP

7Where there is a disjunctive in the precondition as here, it may be clear that only

one of the disjuncts is relevant and we can safely choose that one to work with. In

this case returnsSameObject(constructorInvoked(e), m) ∧ hasSingleInstance(product)

is dropped in favour of createsSameObject(constructorInvoked(e), m). The dropped

disjunct relates to the very rare case where the product class is only instantiated once.

52

if e refers to the same object creation expression. However, the set

iteration processes each product creation expression in the class creator,

so e will refer to a different expression on each iteration. This set

iteration is therefore legal.

2. precondition computation: For each object creation expression processed

in the iteration, there must be a suitable method called createP defined

in the creator class:

∀e : ObjectCreationExprn, classCreated(e) = product ∧
containingClass(e) = creator ∧
nameOf(containingMethod(e)) 	= createP •
∃m : Method, nameOf(m) = createP, defines(creator, m) such that

createsSameObject(constructorInvoked(e), m) (3.5)

Note that the precondition conjunct containingMethod(e) 	= m is

dropped as this is guaranteed by the fact that nameOf(m) = createP

and nameOf(containingMethod(e)) 	= createP .

3. postcondition computation: All the product creation expressions in the

creator class that are not in a method called createP have been re-

moved:

∀e : ObjectCreationExprn, classCreated(e) = product ∧
containingClass(e) = creator ∧
nameOf(containingMethod(e)) 	= createP •
containingMethod′ = containingMethod[e/⊥] (3.6)

53

Computing pre and post for the overall chain

1. Legality test and precondition computation: Precondition 3.5 must be

rewritten with postcondition 3.4 and the remaining conjuncts made

part of the precondition of the whole minitransformation. Before this

can be performed, postcondition 3.4 must be massaged to a suitable

form.

Postcondition 3.4 makes a universally quantified statement about all

the constructors of the class product. For every product creation ex-

pression in the creator class there is a corresponding constructor in

the product class. We can therefore safely replace the quantification

over the constructors of the product class with quantification over the

product creation expression in the creator class. If the product class

has constructors that are not used in the creator class, this change

will weaken the postcondition. Using a weaker postcondition than is

actually guaranteed is fortunately a safe substitution.

Postcondition 3.4 may therefore be rewritten thus8:

∀e : ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator • ∃m : Method such that

createsSameObject′ =

createsSameObject[(constructorInvoked(e), m)/true]

nameOf ′ = nameOf [m/createP]

classOf ′ = classOf [m/creator]

The transformation of the classOf relationship may be replaced by a

similar transformation to the defines relationship (see section B.1.1) to

8The final part of the postcondition has been dropped as it is clear that the effect of

this refactoring on the equalInterface analysis function is irrelevant in this context.

54

give:

∀e : ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator • ∃m : Method such that

createsSameObject′ =

createsSameObject[(constructorInvoked(e), m)/true]

nameOf ′ = nameOf [m/createP]

defines′ = defines[(creator, m)/true] (3.7)

This postcondition is now in a suitable format to rewrite precondition

3.5 as follows:

∀e : ObjectCreationExprn, classCreated(e) = product ∧
containingClass(e) = creator ∧
nameOf [m/createP](containingMethod(e)) 	= createP •
∃m : Method, nameOf [m/createP](m) = createP,

defines[(creator, m)/true](creator, m) such that

createsSameObject[(constructorInvoked(e), m)/true](constructorInvoked(e), m)

Simplifying this out gives:

∀e : ObjectCreationExprn, classCreated(e) = product ∧
containingClass(e) = creator ∧
nameOf(containingMethod(e)) 	= createP •
∃m : Method, true

This simplifies to just true, so in fact the precondition for the second

set iteration is fully guaranteed by the postcondition of the first set

iteration. This means that the precondition of the second set iteration

does not contribute anything to the overall precondition for this mini-

55

transformation, so the overall precondition is simply the precondition

to the first set iteration, namely precondition 3.3.

2. postcondition computation: The postcondition for the first set iteration

(3.7) and the second (3.6) are combined as follows:

∀e : ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator • ∃m : Method such that

createsSameObject′ =

createsSameObject[(constructorInvoked(e), m)/true]

nameOf ′ = nameOf [m/createP]

defines′ = defines[(creator, m)/true]

∀e : ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator,

nameOf(containingMethod(e)) 	= createP •
containingMethod′ = containingMethod[e/⊥] (3.8)

Note that the first set iteration adds a construction method to the

creator class, regardless of whether it used in the product class or not.

Constructors of the product class that are not used in the creator class

could be omitted from the transformation, but this was not done as it

is likely that a future evolution of the program would make it necessary

to include them again.

It is interesting to observe that in the overall precondition the product

class was not required to exist. This is correct, in that the Encapsulate-

Construction transformation reduces in this case to the null transforma-

tion, which is of course behaviour preserving. However, for this transforma-

tion to be useful, the product class must indeed exist. For this reason we will

sometimes add such extra conditions to the precondition of a transformation.

56

3.2.4 Commentary

We have demonstrated that if precondition 3.3 holds in a given program,

then the EncapsulateConstruction transformation can be safely ap-

plied without changing the behaviour of the program. Also, in the final

program state, postcondition 3.8 will be valid.

The argument was non-trivial and required a considerable amount of ef-

fort. However this need only be done once, and then the minitransformation

can be added to a library and reused in any number of future design pattern

transformations. The existence of this argument enhances our confidence

that the transformation is indeed behaviour preserving. If during prototype

evaluation it transpires that the implemented transformation is not behav-

iour preserving, the error can be traced back and, if it is present in the

behaviour preservation argument, it may be corrected there.

Constructing the behaviour preservation argument also caused us to give

consideration to factors that were not immediately apparent from the mini-

transformation description. For example, the fact that the creator class

might already have methods called createP and that this is not a problem

unless the signature of one of them clashes with the signature of a construc-

tor in the product class was made very clear during the computation of the

pre- and postconditions.

Finally, this method of arguing behaviour preservation is not formal9.

First-order predicate logic is used in defining the preconditions and some

of the reasoning performed is formal and based purely on the laws of first-

order logic. However, it was frequently necessary to use our knowledge of

the semantic domain (Java programs) in computing the pre- and postcon-

ditions. For example, the transformation of postcondition 3.4 to the more

9It is for this reason we avoid using the term “proof” in this chapter.

57

useful postcondition 3.7 required this knowledge. Since our purpose is to

provide a method of argument that reflects in some way how a programmer

reasons about a program, this is a valid approach. Were we to attempt to au-

tomate the process of computing the pre- and postconditions for a composite

refactoring, then this approach would of course need to be strengthened.

3.3 Related Work

Donald Roberts [84, 85] describes a similar approach to computing the pre-

and postconditions of a composite refactoring to the one we have presented

here. However he does not demand that a refactoring be behaviour preserv-

ing10 [84, p.19] and so does not argue this for his refactorings. The algorithm

we present differs from his in several ways:

• it tests if the chain is legal rather than assuming it is [84, p.39];

• it allows set iterations over refactorings and chains;

• it makes use of the relationships between analysis functions11;

• it computes the postcondition for a composite refactoring, as we intend

to use the composite refactoring in further compositions.

Tokuda and Batory use a set of Opdyke-style refactorings in order to

build higher-level refactorings [96] and to study the use of refactorings in

the evolution of object-oriented programs. A very interesting feature of this

work is that they present the first ever case study that actually takes an

existing system that has been reengineered, and attempts to perform the

10An unfortunate redefinition of an existing term.
11Roberts neglects this in his work and, for example, does not identify the relationship

between isClass and isGlobal, i.e., that IsClass(class)⇒ IsGlobal(nameOf(class)).

58

reengineering that took place using a refactoring tool. They estimate that

were they to perform the changes involved in the reengineering by hand,

it would take them approximately ten times longer than it took them to

perform the changes using automated refactorings. This improvement is

attributed to the obvious reduction in the amount of manual work required,

and the fact that reliable automated refactorings reduce the amount of testing

required. This result has provided some concrete evidence favouring the use

of automated refactoring approaches.

Schulz [88] proposes arguing behaviour preservation by first transform-

ing a legacy object-oriented program into an adaptive program [61]. This

adaptive program can be reasoned about more easily and the transforma-

tions performed on this program. Finally the transformed adaptive program

is converted back to a non-adaptive program. He does not describe this last

conversion and it is not clear that it is feasible. In other work Schulz [90]

proposes using Opdyke’s approach [77, 51] to prove behaviour preservation

of design pattern transformations.

Elbereth is a tool developed for refactoring Java programs [54] that uses

the notion of a star diagram. A star diagram allows the programmer to

easily view all uses of a construct (method, field etc.) across the entire

program without having to also view unrelated code. Korman describes

how the programmer can be supported in performing a variety of refactoring

tasks, such as adding a new subclass or replacing an existing class with an

enhanced version. While these tasks are intended to be refactorings, he does

not address the issue of arguing that they are behaviour preserving.

Developing the pre- and postcondition for a composite refactoring bears

an obvious resemblance to the weakest precondition calculus of Dijkstra’s

guarded command language [27]. In that approach, if we wish the compo-

59

sition of two transformations T1 and T2 to leave the program in the state

postcomposition, then the weakest precondition necessary is given by:

wp(T1, wp(T2, postcomposition))

where wp(T, post) is the weakest precondition that will ensure that the trans-

formation T will leave the program in a state where post is true. The aim

of this work is that given a postcondition, it should be possible to derive an

algorithm (a composition of transformations) that can reach this postcondi-

tion, and work out what precondition must hold in the initial state.

The problem we faced in demonstrating behaviour preservation is differ-

ent. We use postconditions to describe the result of applying a refactoring

only in sufficient detail that it is possible to determine what subsequent refac-

torings are legal. The refactoring itself has a richer meaning, but that is only

described informally in the refactoring description and not captured in the

formal postcondition. In composing these refactorings, we have a notion of

what is to be achieved, and the purpose of the pre- and postcondition com-

putation is to determine whether the composed refactoring is legal, what

types of program it can be applied to, and what subsequent refactorings

can be legally applied. The possibility of extending this work to the formal

derivation of the complete design pattern transformation will be discussed in

section 6.2.

Refactoring is a key part of Kent Beck’s Extreme Programming method-

ology [3]. Extreme programming requires many rapid iterations through the

development process, each time extending the system functionality a little

further. As little up-front design is performed, it is necessary to refactor

the program whenever a new requirement makes the existing design inade-

quate. Behaviour preservation is not discussed in this approach, but in effect

it is demonstrated through the use of automated corrective regression test-

60

ing [58]. After refactoring, the programmer runs an automated test suite on

the program. If the program produces the same test results as it did before

the refactoring, it is concluded that the behaviour of the program has not

changed. Obviously this approach is dependent on the completeness on the

test suite, and thus can never be fully relied upon.

Test suites are used in a different way to demonstrate behaviour preserva-

tion in the Smalltalk Refactoring Browser [11]. For example, in the renameMethod

refactoring, all methods that call the renamed method must also be updated.

However, in Smalltalk it is impossible to find all the callers of a method sta-

tically, so the authors use dynamic analysis to compute this. The program

code is instrumented, run on a test suite, and it is calculated from the ex-

ecution trace what methods called the given method. As in the previous

case, this approach is only as effective as the test suite used in the dynamic

analysis.

Finally, in a recent text on the topic of refactoring by Martin Fowler [38],

only scant attention is paid to the topic of behaviour preservation, and that

is in two chapters written by Opdyke and Roberts respectively, whose work

has been extensively cited in this chapter. This text does however provide a

detailed listing of low-level refactorings that can be performed by hand, and

gives useful informal advice on where they should be applied and what steps

should be taken to achieve a safe refactoring.

3.4 Summary

In this chapter we presented our approach to defining primitive refactorings

and composing these to create more complicated refactorings. Two methods

of composition were allowed: sequencing (or chaining), and iteration over a

61

set of program elements. A method for computing the pre- and postcondi-

tions of such composite refactorings was also described. This approach to

behaviour preservation is undecidable in general, but for the simple precon-

ditions we work with this will prove not to be an issue.

In the next two chapters we will show how these forms of composition

can be used to build sophisticated design pattern transformations.

62

Chapter 4

A Methodology for the

Development of Design Pattern

Transformations

4.1 Introduction

In this chapter we describe in detail the methodology we propose for the

development of design pattern transformations. The motivations for our

approach are presented in section 4.1.1 followed by a brief overview of the

entire methodology in section 4.1.2. The approach we take in describing the

methodology is to describe each part in a general way and then to apply it

to one design pattern. The flagship pattern we use is the Factory Method

pattern (see appendix A), as it is sufficiently complicated to exercise the

methodology and yet yields an elegant result. The details of the methodology

appear in sections 4.2 and 4.3, culminating in the final specification of the

Factory Method design pattern transformation in section 4.4. In section 4.5

we evaluate related work in the area of design pattern application and finally,

63

in section 4.6, a summary of this chapter is presented.

The essence of the approach presented here has been published in sum-

mary form in [74, 72], and in more detail in [75].

4.1.1 Motivation

There are several criteria we wish our methodology to fulfill:

1. The design pattern transformations developed must preserve program

behaviour.

2. The transformations are to be applicable to real programs.

3. Reuse of portions of existing transformations should be feasible and

encouraged.

4. Judging where a pattern should be applied remains the domain of the

programmer.

We expand on these criteria in the following paragraphs.

1. Behaviour Preservation

For any form of automated refactoring to be successful in practice, the pro-

grammer must have a strong degree of confidence that the transformations

being applied do indeed preserve program behaviour [89]. In our approach,

we therefore place a heavy emphasis on demonstrating that the design pat-

tern transformations are behaviour preserving. The foundations of our ap-

proach to behaviour preservation were introduced in chapter 2 and presented

in detail in chapter 3. In this chapter we use these foundations to show how

behaviour preservation can be demonstrated for a complete design pattern

transformation.

64

2. Applicability to real programs

The transformations developed should be applicable to real programs and be

able to cope with the complexities of source code representation of design

structures. This is especially important if they are to be used in practice for

transforming existing legacy systems, where formal design documentation

frequently does not exist. This criterion conflicts to a certain extent with the

previous point, in that formally proving complex behavioural properties of

programs written in industrial-strength languages is currently impractical.

We have resolved this by working with an industrial language, Java, and

taking a semi-formal approach to demonstrating behaviour preservation.

3. Reuse where possible

Design patterns have a lot in common so it is to be expected that design pat-

tern transformations will have a lot in common as well. In our methodology

we seek to decompose the transformations into reusable units and to make

these units available to later developments of design pattern transformations.

4. Programmer controls quality

One of the pitfalls in attempting to automate patterns is to treat them com-

pletely formally and not allow for the fact that their “goodness” is some-

thing essentially informal [26]. In section 2.2 we described the design insight

necessary to assess what pattern to apply and where to apply it. In our

methodology the programmer remains in control of these issues.

4.1.2 Outline of the Methodology

The complete methodology is depicted as a UML activity chart in figure

4.1. Initially a design pattern is chosen that will serve as a target for the

design pattern transformation under development. We then consider what

65

Select Design

Pattern

Decide on Precursor

for this pattern

Decompose into
Minipatterns

Define transformation as composition

of minitransformations

Define

minitransformations

Do minitransformations

exist?
no

yes

Figure 4.1: The Design Pattern Methodology

the starting point for this transformation will be, that is, what sort of design

structures it may be applied to. This starting point is termed a precursor,

which is described in more detail in section 4.2. It has now been determined

where the transformation begins, (the precursor) and where it ends (the de-

sign pattern itself). This transformation is then decomposed into a sequence

of minipatterns. A minipattern is a design motif that occurs frequently; in

this way it is similar to a design pattern but is a lower-level construct.

For every minipattern discovered a corresponding minitransformation

that can apply this minipattern must also be developed. A minitransfor-

66

mation comprises a set of preconditions, an algorithmic description of the

transformation, and a set of postconditions. The algorithm is expressed in

terms of the primitive refactorings and helper functions defined in appendix

B. It is built by hand, using the precursor and the design pattern structure as

a guide1. The pre- and postconditions are computed by applying the method

described in chapter 3 to this algorithm.

Minitransformations are our unit of reuse, so for any minipattern identi-

fied we first check if a minitransformation for it has already been built as part

of the development of a previous design pattern transformation. If so, that

minitransformation can be reused now, otherwise a new minitransformation

must be developed. Section 4.3 examines minipatterns and minitransforma-

tions in more detail, and in particular specifies precisely the minitransforma-

tions that comprise the Factory Method transformation.

The final design pattern transformation can now be defined as a compo-

sition of minitransformations. The pre- and postconditions for this design

pattern transformation are computed in the same way as they are computed

for a minitransformation. In the following sections we describe this entire

process in full detail, finally providing the complete specification of the Fac-

tory Method transformation in section 4.4. In particular, the concepts of

precursor, minipattern and minitransformation are discussed in detail.

4.2 Precursors

Much of the existing work on design pattern transformations [14, 30, 36,

96, 55, 9] assumes as a starting point what can be termed a green field sit-

1By this we simply mean that implementing a minitransformation is similar to the

normal process of informal program development, where the program specification has

been given rigorously, though not formally.

67

uation. By this we mean that when the design pattern transformation is

applied to the program, the components that take part in the transforma-

tion do not already have any existing relationships pertaining to the pattern.

Consequently these approaches do not support the breaking of existing rela-

tionships as part of the transformation process. From a software evolution

perspective this is inadequate because in an existing program the basic in-

tent of the pattern may well exist in the code already, but in a way that

is not amenable to further program evolution. For example, in the case of

the Factory Method pattern, the Creator class may already create and use

instances of a Product class, but not in the flexible manner that allows easy

extension to other Product classes.

At the other extreme there is the antipattern approach [53, 70], which was

investigated in our earlier work [71, 73] and is also used in [25]. In this ap-

proach the assumption is made that the programmer has failed to appreciate

the need for the pattern in the first instance, and has used some inadequate

design structure to deal with the situation. The philosophy behind this ap-

proach is that the code may have been developed by a programmer who was

not aware of patterns. For example, in the case of the Factory Method pat-

tern, the client of the Creator class may have to configure it with a flag to

tell it what type of Product class to create. We discovered several problems

with the antipattern approach:

• For any pattern there are several variants and for each variant there

can be several antipatterns. The volume of antipatterns rises sharply

and each one has to be dealt with individually.

• The design knowledge encapsulated in design patterns has been de-

veloped over many decades of software development. A programmer

who is “not aware of patterns” and chooses an inappropriate solution

68

“green field” precursor antipattern

No element of

pattern present

Basic intent of

pattern present

Corrupt design

Figure 4.2: Possible starting points for a Design Pattern Transformation

to a design problem has really just made a mistake2. The problem of

transforming an antipattern to a design pattern then becomes that of

transforming poor design to good design, which cannot of course be

solved generically.

For these reasons we use a different starting point for our transformations.

For a large class of design patterns, the effect of the pattern may be viewed as

making certain program evolutions easier. This suggests that in the simple

case the design pattern is not needed, but as future changes in requirements

demand greater flexibility from the software, it becomes necessary. For ex-

ample, it is frequently the case that a class A creates an instance of a class

B, but normally this relationship does not require the application of a design

pattern. However a future change in the requirements may well require that

the class A have the flexibility to work with any one of a number of differ-

ent subclasses of B, and so the need for the Factory Method pattern arises.

The programmer of the original system did not make an error of judgement;

software systems will always evolve in ways that the original creators simply

cannot foresee3. Indeed, applying a design pattern where it is not needed is

highly undesirable as it introduces an unnecessary complexity to the system.

2The author’s position is that a programmer who is faced at some point with the

prospect of using an antipattern solution will baulk, and restructure the design in order

to enable a more elegant solution.
3As Lucy Berlin commented, “Prescience is not an exact science” [8].

69

Creator

method1

method2

...

creates
Product

foo

...

Figure 4.3: Precursor for the Factory Method Transformation

This leads us to our description of a precursor: a precursor is a design

structure that expresses the intent of a design pattern in a simple way, but

that would not be regarded as an example of poor design. This is not a formal

definition, but it serves to exclude both the green field situation where there is

no trace of the intent of the pattern in the code, and the antipattern situation

where the programmer has tried to resolve the problem in an inadequate way.

Figure 4.2 illustrates the relationship between these various starting points.

For example, the precursor we use for the Factory Method pattern is

simply this: the Creator class must create an instance of the Product class.

This is specified using an analysis function thus:

creates(creator, product)

Figure 4.3 depicts this precursor in a UML class diagram. This condition

may appear to be trivial, but it is a natural precursor to the Factory Method

pattern. The Creator class creates and uses an instance of the Product class

and while this is adequate for the moment, a new requirement may demand

that the Creator class be able to work with other types of Product class and

this will require the application of the Factory Method pattern.

70

4.3 Minipatterns and Minitransformations

In developing a transformation for a particular design pattern we naturally

wish to reuse our previous efforts as much as possible. To obtain maximum

leverage, this reuse should be at the highest level possible. Examining the

design pattern catalogues [41, 15, 43, 44], it is clear that certain motifs occur

repeatedly across the catalogues. For example, a class may know of another

one only via an interface, or the messages received by an object may be dele-

gated to a component object for detailed processing. These design motifs, or

minipatterns, are combined in various ways to produce different design pat-

terns. In this way a pattern can be viewed as a composition of minipatterns.

By focusing on developing transformations for minipatterns, we are able to

develop a library of useful transformations that can be reused whenever that

minipattern is identified again in a later development. The transformation

that corresponds to a minipattern is naturally called a minitransformation.

In the case of the Factory Method pattern we can identify four component

minipatterns:

1. Abstraction: The Product class must have an interface that reflects

how the Creator class uses the instances of Product that it creates.

2. EncapsulateConstruction: In the Creator class, the construction

of Product objects must be encapsulated inside dedicated, overrideable

methods, which we term construction methods.

3. AbstractAccess: Apart from within the construction methods de-

scribed in (2) the Creator class must have no knowledge of the Product

class except via the interface described in (1).

4. PartialAbstraction: The Creator class must inherit from an ab-

71

stract class where the construction methods are declared abstractly.

This amounts to a declarative description of the structure of the Factory

Method pattern. It is obvious that other patterns use some of these minipat-

terns as well. For example, Abstract Factory uses all of them, while many

design patterns make use of the Abstraction minipattern. In the following

subsections each of the above minipatterns is taken in turn and processed as

follows:

1. A minitransformation for this minipattern is specified in terms of the

primitive refactorings and helper functions defined in appendix B;

2. The pre- and postconditions for this minitransformation are computed

using the method described in chapter 3.

In appendix C a complete list of all the minitransformations developed in

this work is presented, together with a reference to the thesis section where

more detail can be found.

4.3.1 The Abstraction Minitransformation

The Abstraction minitransformation is used to add an interface to a class.

This enables another class to take a more abstract view of this class by

accessing it via this interface. This minitransformation is implemented in

the following way as a chain of refactorings:

Abstraction(Class c, String newName){
Interface inf = abstractClass(c, newName);

addInterface(inf);

addImplementsLink(c, inf);

}

72

An interface is first created that reflects the public methods of this class4.

This interface is then added to the program and an implements link is added

from the class to this interface.

To demonstrate legality of this chain and to compute its pre- and post-

conditions, we apply the method described in section 3.2.1. The computation

is straightforward and produces the following:

precondition:

The class c exists:

isClass(c)

No class or interface with the name newName exists:

¬isClass(newName) ∧ ¬isInterface(newName)
postcondition:

A new interface inf called newName exists:

nameOf′ = nameOf[inf /newName]

isInterface′ = isInterface[inf /true]

The class c and the interface inf have the same public interface:

equalInterface′ = equalInterface[(c,inf)/true]

An implements link exists from the class c to the interface inf :

implementsInterface′ = implementsInterface[(c,inf)/true]

The effect of applying this minitransformation to the Factory Method pre-

cursor (figure 4.3) is depicted in figure 4.4. An interface has been added that

provides an abstract view of the Product class.

4The new interface created here reflects the entire public interface of the class, even

though all that is required are the parts of the public interface that are actually used in

whatever context is going to use this interface. However, if this context happens not to

use an essential part of the class, this transformation would result in the creation of an

unintuitive interface. A consequence of our approach is that the declared type of some

variables will be broader than how they are actually used.

73

creates
Product

foo

...

Creator

method1

method2

...

<<interface>>

ProductInf

foo

...

Figure 4.4: Application of the Abstraction Minitransformation

4.3.2 The EncapsulateConstruction Minitransforma-

tion

This minitransformation is used when one class creates instances of another,

and it is required to weaken the binding between the two classes by packag-

ing the object creation statements into dedicated methods. It was already

considered in great detail in section 3.2.3. The algorithm is given on page

49, so here we simply restate, with some extra supporting text, the pre- and

postconditions.

EncapsulateConstruction(Class creator, Class product, String createProduct)

precondition:

The class creator exists:

isClass(creator)

The creator class defines no methods called createProduct that have the

same signature as a constructor in the class product :

∀ c:Constructor, c ∈ product •

74

¬ defines(creator, createProduct, sigOf(c))

postcondition:

For every product object creation expression in the creator class, a method

called createProduct that creates the same object is added to the creator class:

∀ e:ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator • ∃ m:Method such that

createsSameObject′ =

createsSameObject[(constructorInvoked(e),m)/true]

nameOf′ = nameOf[m/createProduct] ∧
defines′ = defines[(creator,m)/true]

Every product object creation expression in the creator class that is

not contained in a method called createProduct is deleted:

∀ e:ObjectCreationExprn, classCreated(e) = product,

containingClass(e) = creator,

nameOf(containingMethod(e)) 	= createProduct •
containingMethod′ = containingMethod[e/⊥]

Applying this minitransformation to the structure depicted in figure 4.4 re-

sults in the structure depicted in figure 4.5. For each constructor of the

Product class, a method of the same signature has been added to the Cre-

ator class that returns the same object as the corresponding constructor. All

creations of Product objects in the Creator class have been updated to invoke

these methods instead.

4.3.3 The AbstractAccess Minitransformation

The AbstractAccess minitransformation is used when one class (context)

uses, or has knowledge of, another class (concrete) and we want the relation-

75

creates
Product

foo

...

Creator

method1

method2

createProduct()

:Product

Product createProduct(){

return new Product();

}

Replace all

new Product();

with

createProduct();

<<interface>>

ProductInf

foo

...

Figure 4.5: Application of the EncapsulateConstruction Minitransfor-

mation

76

ship between the classes to operate in a more abstract fashion via an interface.

It may well happen that there are methods in the context class that need

to access the concrete class directly, for example, they may instantiate the

concrete class, and these methods should be excluded from the transforma-

tion. This minitransformation is implemented in the following way as a set

iteration:

AbstractAccess(Class context, Class concrete, Interface inf,

SetOfString skipMethods){
ForAll o:ObjectRef, typeOf(o)=concrete, containingClass(o)=context,

nameOf(containingMethod(o)) 	∈ skipMethods {
replaceClassWithInterface(o,inf);

}
}

This minitransformation takes each object reference in the class context that

is of the type concrete, excluding any references that are contained in any

method called skipMethods, and changes their existing type from the class

concrete to the interface inf . Applying the method described in section

3.2.2, the pre- and postconditions are computed to be5:

precondition:

The interface inf and the classes context and concrete exist:

isInterface(inf) ∧ isClass(context) ∧ isClass(concrete)

An implements link exists from the class concrete to the interface inf :

implementsInterface(concrete, inf)

Any static methods in the concrete class are not referenced through

any of the object references to be updated:

5The isClass(context) part of the precondition is added to avoid the transformation

reducing to the null transformation, as described on page 56.

77

∀ m:Method, m ∈ concrete, isStatic(m) •
∀ o:ObjectRef, typeOf(o)=concrete, containingClass(o)=context •

¬ uses(o,m)

Any public fields in the concrete class are not referenced through any

of the object references to be updated:

∀ f:field, f ∈ concrete, isPublic(f) •
∀ o:ObjectRef, typeOf(o)=concrete, containingClass(o)=context •

¬ uses(o,f)

postcondition:

All references to the concrete class in the context class not in skipMethods

have been changed to refer instead to the interface inf :

∀ o:ObjectRef, typeOf(o)=concrete, containingClass(o)=context,

nameOf(containingMethod(o)) 	∈ skipMethods •
typeOf′ = typeOf[o/inf]

The initial conjuncts of the precondition simply ensure that referenced classes

and interface exist and have the proper relationship. The last two conjuncts

ensure that if the concrete class has public fields or static methods, these

are not used by any of the object references to be updated. We present a

complete categorisation of preconditions in section 4.4.1.

Applying this minitransformation to the structure depicted in figure 4.5

results in the structure depicted in figure 4.6. In the Creator class all refer-

ences to the Product class have been replaced by references to the Product

interface.

78

creates
Product

foo

...

Creator

method1

method2

createProduct()

:ProductInf

Replace all references to

the class Product with the

interface ProductInf

<<interface>>

ProductInf

foo

...

Figure 4.6: Application of the AbstractAccess Minitransformation

4.3.4 The PartialAbstraction Minitransformation

The PartialAbstraction minitransformation is used to construct an ab-

stract class from an existing class and to create an extends relationship be-

tween the two classes. It is related to the Abstraction minitransformation

of section 4.3.1, but rather than building a completely abstract interface from

the class, it builds an abstract class where only certain specified methods are

declared abstractly. This minitransformation is implemented in the following

way:

PartialAbstraction(Class concrete, String newName,

SetOfString abstractMethods){
Class abstract = createEmptyClass(newName);

addClass(abstract, superclass(concrete), concrete);

ForAll m:Method, m ∈ concrete, nameOf(m) ∈ abstractMethods{

79

Method absMethod = abstractMethod(m);

addMethod(abstract, absMethod);

}
ForAll m:Method, m ∈ concrete, nameOf(m) 	∈ abstractMethods{

pullUpMethod(m);

}
}

This minitransformation creates an empty class called newName and inserts

it into the inheritance hierarchy just above the class concrete. For each

method in abstractMethods, an abstract method is created and added to

this new class. Any methods not in abstractMethods are moved from the

class concrete to this new class. By inspection we see that although the

preconditions for the addClass refactoring and the second set iteration are

quite complicated, most of the conjuncts are guaranteed by the fact that

the new superclass of concrete is the empty class that has just been added.

Note also that since every method being pulled up into this new class comes

from the same class, there can be no name clashes between these methods.

The same argument applies to the abstract methods that are added to the

superclass. The pre- and postconditions are thus computed to be:

precondition:

No class or interface with the name newName may exist:

¬ isClass(newName) ∧ ¬ isInterface(newName)

The concrete class must exist:

isClass(concrete)

Any fields used by methods that are to be pulled up must not be public:

∀ f:Field, m:Method, f ∈ concrete, m ∈ concrete, m 	∈ abstractMethods •
if uses(m,f) then ¬ isPublic(f)

80

postcondition:

A new class called newName exists:

isClass′ = isClass[newName/true]

An extends link exists from the class concrete to the class called newName,

and from the class called newName to the former superclass of concrete:

superclass′ = superclass[concrete/newName][newName/superclass(concrete)]

The class concrete and its new superclass define precisely the same type:

equalInterface′ = equalInterface[(concrete, superclass′(concrete))/true]

All methods in concrete not in abstractMethods are moved to the superclass:

∀ m:Method, m ∈ concrete, m 	∈ abstractMethods •
classOf′ = classOf[m/superclass′(concrete)]

Any method in abstractMethods will have an abstract method declared

in the class called newName:

∀ m:Method, m ∈ abstractMethods •
declares′ = declares[(superclass(concrete), m, direct)/true]

Any fields used by the moved methods are also moved to the superclass:

∀ m:Method, m ∈ concrete, m 	∈ abstractMethods •
∀ f:Field, f ∈ concrete, uses(m,f) •

classOf′ = classOf[f/superclass(concrete)]

Applying this minitransformation to the structure depicted in figure 4.6 re-

sults finally in the Factory Method structure depicted in figure 4.7. An

abstract Creator class has been added that defers the definition of the con-

struction methods to its subclasses. The original Creator class simply inherits

this class and provides definitions for the construction methods.

We have considered four minitransformations and shown how they can be

applied in sequence to produce the Factory Method design pattern structure.

We examine this complete design pattern transformation in more detail in

81

creates Product

foo

...

<<abstract>>

AbsCreator

method1

method2

createProduct()

:ProductInf

Creator

createProduct()

:Product

<<interface>>

ProductInf

foo

...

Figure 4.7: Application of the PartialAbstraction Minitransformation

the next section.

4.4 The Factory Method Transformation

The transformation that introduces the Factory Method pattern is defined

simply as the sequential application of the minitransformations defined in

the preceding sections:

applyFactoryMethod(Class creator, Class product, String productInf,

String absCreator, String createProduct){
Abstraction(product, productInf);

encapsulateConstruction(creator, product, createProduct);

abstractAccess(creator, product, productInf, createProduct);

partialAbstraction(creator, absCreator, createProduct);

82

}

Applying the method described in section 3.2.1, we compute the precon-

dition of this transformation to be:

precondition:

1. The classes creator and product exist:

isClass(creator) ∧ isClass(product)

2. No class or interface called absCreator or productInf exists:

¬isClass(absCreator) ∧ ¬isInterface(absCreator) ∧
¬isClass(productInf) ∧ ¬isInterface(productInf)

3. In the creator class there are no methods called createProduct that

have the same signature as a constructor in the class product :

∀ c:Constructor, c ∈ product •
¬ defines(creator, createProduct, sigOf(c))

4. The creator class can create instances of the product class:

creates(creator, product)

5. Public fields in the product class are not referenced through

any of the product object references in the creator class:

∀ f:field, f ∈ product • ∀ o:ObjectRef, typeOf(o)=product,

containingClass(o)=creator • ¬ uses(o,f)

6. Any fields in the product class used by methods in that class must

not be public:

∀ f:Field, m:Method, f ∈ concrete, m ∈ concrete, uses(m,f) •
¬ isPublic(f)

7. Any static methods in the product class are not referenced through

any of the product object references in the creator class:

∀ m:Method, m ∈ product, isStatic(m) •
∀ o:ObjectRef, typeOf(o)=product, containingClass(o)=creator •

83

¬ uses(o,m)

Note that we do not compute the postcondition for a design pattern trans-

formation itself. This may appear to be a useful task, as the result could help

to capture the essence of the pattern in a formal way. However, recall that we

are using pre- and postconditions only as an aid to demonstrating behaviour

preservation. While the postcondition for a design pattern transformation

would provide a notion of what is true after a pattern is applied, it would

not be strong enough to provide real insight into the essential nature of the

pattern itself. It would however be very useful as part of a tool that main-

tains facts and constraints about the program, and this is discussed further

in section 6.2.

In appendix D, we present an example of the Factory Method transfor-

mation being applied to a sample Java program.

4.4.1 A Categorisation of the Preconditions

The preconditions for the Factory Method transformation can be divided

into four categories. The first three preconditions simply ensure that the

classes referred to in the parameters to this transformation exist and that the

names for the new program entities to be introduced by this transformation

do not clash with any existing names. These preconditions are trivial but

are necessary to ensure that the transformation operates correctly. If one of

them fails the programmer need only be requested to choose a different name

to replace the offending choice.

The fourth precondition is the key precursor precondition. This describes

the essence of the starting point for the transformation, as depicted in figure

4.3. It implies that there is a tight binding between the Creator class and the

84

Product class and this is what the application this pattern is to ameliorate. In

general, if a precursor precondition fails, it is of questionable value to continue

with the transformation. In the Factory Method example, the transformation

can continue, but it is effectively a green field beginning then, and some of

the transformations performed will be needless. Note that this precursor

precondition was added by hand rather than being the result of computing

the precondition of the chain of minitransformations.

The fifth and sixth preconditions are examples of refactoring precondi-

tions. Failure of one of these indicates that there are minor problems that

prevent the transformation from being applied. The Product class has public

data fields, which are a well-established example of poor class design [82].

This prevents the transformation from being performed as public fields can-

not be accessed through an interface. If the programmer agrees, this class

can be refactored automatically6 to make this data private or protected and

instead to provide access to the offending fields via public accessor and mu-

tator methods. This then removes this obstacle to the application of the

transformation. See section 6.2 for further consideration of the possibility of

such pre-transformation refactorings.

The final precondition is termed a contraindication and failure here indi-

cates that there is a more serious problem in applying the Factory Method

pattern. The Product class has a static method that is used by the Creator

class. This implies that the Creator class depends on the actual class of the

Product it uses and this cannot be replaced by access via an abstract inter-

face. This is an inherent problem in the design of the program that prevents

the application of the pattern transformation. In this case the design must

6The refactoring used here would be an automated version of the EncapsulateField

refactoring described in [38, p.206].

85

be revisited by the programmer to determine if it is possible to resolve this

issue.

4.4.2 Assessing the Factory Method Transformation

We already stated that we regard the transformation for the Factory Method

pattern as valuable. In this section we highlight why it is good, that is, what

criteria we used in making this assessment:

1. The precursor is plausible. By this we mean that it is likely to occur

in practice. It is not a bizarre structure, but is one that a programmer

would typically use in developing an initial prototype, when their focus

is more on correct operation than reuse.

2. The precursor is strong in that it captures the essence of where this

transformation should be applied. The transformation also made good

use of the precursor in terms of providing a behaviour-preserving trans-

formation. The precursor states that one class instantiates another and

the transformation made the nature of the instantiation more flexible

while not affecting its behaviour.

3. There was significant reuse of minitransformations. This transforma-

tion simply used four minitransformations and required no other inter-

vening refactorings. We will see in chapter 5 that this is an unusually

simple result. In the general case we can expect to have to add some

“glue” refactorings between the minitransformations, in order to ensure

that the preconditions for each minitransformation are valid.

4. The transformation is elegant and compelling. This is a matter of

judgement of course, but the transformation is certainly straightfor-

86

ward and it is not difficult to see that its effect is indeed to apply the

Factory Method pattern.

4.5 Related Work

In the previous chapter related work in the area of behaviour preservation

was evaluated. In this section we consider other work specifically in the area

of the automated application of design patterns.

Florijn, Meijers and van Winsen have developed a patterns tool that

provides a broad range of support for a programmer working with patterns

[36, 64]. Their focus is on the representation of design patterns within the

tool itself, and the maintenance of the constraints associated with a design

pattern, i.e., checking that changes to the program do not violate any of

the design patterns present in the code. Their work also deals with pat-

tern application, but the starting point of their transformations is the green

field situation, so the issues of behaviour preservation and reorganisation of

existing relationships as part of the transformation process do not arise.

Recent work by Tokuda and Batory has shown how design patterns can

be automatically applied to a C++ program [96, 97]. They use a set of refac-

torings similar to Opdyke’s set and show how they can be used to construct

design pattern transformations. Whereas we build static composite refactor-

ings and compute the full precondition for the composition, their approach

assumes that the programmer is inspecting the code and applying each refac-

toring in turn. Minitransformations are not used in their work and a green

field starting point is assumed. As in the previous work cited, this latter

point means that behaviour preservation is not a significant issue in their

work, and their transformations have quite a different flavour from ours.

87

Yehudai, Gil and Eden [30] have developed a prototype tool called the

patterns wizard that can apply a given design pattern to an Eiffel program.

This work is related to ours in that it takes a metaprogramming approach

and organises the transformations into four levels: design pattern, micro-

pattern (similar our minipatterns), idioms (our refactorings) and abstract

syntax tree. The starting point they use is the green field situation, rather

than attempting to deal with a precursor as we do. This makes the patterns

wizard unsuitable for reengineering certain types of program that our ap-

proach can handle. If the programmer has already partially introduced the

intent of the pattern to the code, using the patterns wizard to apply this

pattern will leave an amount of manual work for the programmer to do in or-

der to bring the program to a consistent state. As a consequence of taking a

green field approach, behaviour preservation is not so important and is more

or less ignored in their work. The micropatterns developed in their work are

used in the specification of several design pattern transformations. However,

they are at a lower-level that the ones we have identified; for example, of

the four minipatterns we used to define the Factory Method transformation,

only one, Abstraction, appears in Eden’s catalogue [34]. This is partly a

consequence of our taking a precursor as the starting point for our transfor-

mations: certain minipatterns are necessary in our approach that would not

be needed otherwise.

Yehudai, Gil and Eden have also developed a declarative language called

LePUS for formally specifying the structural and behavioural aspects of de-

sign patterns [33]. They propose that this can be developed into a tool that

applies a design pattern by adding the required LePUS pattern definition to

the program specification. This is true in the abstract LePUS domain, but

there are many issues to be resolved in transforming this abstract specifica-

88

tion into executable code. At the time of writing practical results in this area

are not evident in their published work.

Automatically applying design patterns to a UML model has been ex-

plored by Sunyé, Le Guennec and Jézéquel [94]. The approach described

here takes a metaprogramming approach as we do, and also argues that it

is the programmer that should decide on the application of a pattern while

a software tool is best used to help in performing the actual transformation.

This work naturally focuses on the design level, so issues of code transfor-

mation do not occur and behaviour preservation is not emphasized. The

paper mentions the notion of a composite refactoring, but describes neither

how composition can take place, nor a method for computing the pre- and

postconditions for a composite refactoring.

The work of Schultz and Zimmer is also related to what we have presented

here [89, 101]. They merge Opdyke’s refactoring work with so-called design

pattern operators to produce behaviour-preserving transformations that in-

troduce design patterns. Their published work to date presents only their

initial ideas.

Jahnke and Zündorf describe an approach to detecting poor design pat-

terns and transforming them to good design patterns [49]. The detection

aspect of their work is discussed in chapter 2, so here we focus on the pat-

tern application part. They also use a notion similar to our precursor (a

“näıve solution” they term it) as a starting point, based on the suggested

näıve solutions in the Gamma et al catalogue [41]. They only present one

example, the Singleton pattern, and choose the same starting point as we

do on page 128, namely a collection of global variables7. In their work the

7We also present a Singleton transformation that uses a different precursor in section

5.3.1

89

design pattern structure is stored at a conceptual level, together with a pro-

totypical implementation of the pattern, a scheme that is similar to that

used by Florijn [36]. This scheme is more flexible than ours, in that the

transformation tool can be easily configured with a new pattern. However

our approach, by developing a collection of minitransformations, effectively

builds a high-level language for describing design pattern transformations.

This allows a pattern transformation to be described abstractly, without

having to explicitly store its structure. Pattern application in their approach

is achieved using a rewriting scheme, where, for example, there is a rule that

shows how a näıve Singleton structure should be replaced with the Singleton

pattern structure. Each rule can have subrules that deal with various aspects

of the transformation. The essential difference between this work and ours is

the use of a rule-based approach versus a metaprogramming approach. One

can regard a minitransformation as a rule, and view the precondition as the

predicate that fires this rule. The difference then is that in their work the

rule is automatically fired when part of the program matches the predicate,

whereas in ours the programmer defines the program components to which

the rule is to be applied. The notion of a rule containing subrules is similar

to how a design pattern transformation uses other minitransformations and

refactorings in its transformation logic. One can certainly imagine a com-

plicated design pattern transformation that could be more easily described

as a set of rules than as a complex algorithm with many conditionals and

iterations. We conclude that this approach is certainly of interest, though it

does not appear to have been taken further than this original paper

The FAMOOS project (Framework-based Approach for Mastering Object-

Oriented Software Evolution) also made a contribution in this area, though

their single publication that deals explicitly with design pattern transforma-

90

tions only presents their initial ideas [25]. They contrast the notion of a

generic model of the program being transformed with a specific model of the

program. A generic model is one that can be abstracted directly from the

code, while a specific model requires that the user add some domain-specific

information to the model. They argue strongly that while a specific model

is of course harder to build, the extra information it provides is essential in

performing interesting program transformations. Although we use a generic

model of the program (see appendix D) in our work, it is left up to the user to

decide what design pattern to apply and what program components are to be

transformed, and this in effect brings domain-specific knowledge to bear upon

the transformation. In this way we achieve the benefits of both methods: an

automatically-extracted model and rich transformation possibilities.

In the paper under discussion [25], the starting point used for the trans-

formations is an antipattern. The Abstract Factory pattern is given as an

example, and the starting point is where case analysis has been used to de-

termine what type of widget to create. In section 4.2 we have presented our

arguments against allowing for antipatterns in general, though in this case

the problem seems to be such a common one that it is worth providing an

automated solution.

Lauder and Kent describe a pattern-based approach to legacy system

reengineering that also deals with antipatterns [57]. Their work focuses on

the concrete antipatterns that occur in legacy systems and the positive pat-

terns that can be applied to replace them. Six antipatterns and their positive

resolving patterns are described. The patterns they consider are at an ar-

chitectural level rather than a design level and so are too abstract to be

considered as candidates for the automated approach we have described.

There is a stronger argument in favour of transforming architectural an-

91

tipatterns than design-level antipatterns. Antipatterns at an architectural

level can occur, for example, when many new features are added to a system

without the system being given an architectural overhaul. While this is not

desirable, it can easily occur on a project given the deadline-driven nature of

the software industry. It is considerably less acceptable that a programmer,

working on their own, should introduce an antipattern at the design level.

Note that we did not argue that an antipattern starting point is a bad idea,

rather that the precursor starting point is more logical and valuable in the

context of program evolution.

Budinsky et al describe a tool built in IBM that can generate code au-

tomatically for a given design pattern [14]. The focus of this work is quite

different from ours in that it ignores the problem of integrating the pattern

with components already existing in the program. The starting point for

them is therefore the green field situation so, as elaborated in section 4.2,

their transformations can be much simpler and behaviour preservation is not

an issue. A similar comment applies to existing industrial software tools that

claim to provide support for design patterns, for example [9].

4.6 Summary

In this chapter we presented our approach to developing design pattern trans-

formations by taking one pattern, the Factory Method pattern, decomposing

into its constituent minipatterns, developing a minitransformation for each

minipattern, and finally specifying the complete transformation as a sequen-

tial composition of these minitransformations. In the next chapter we apply

this methodology to several other patterns and assess its applicability to the

entire Gamma et al pattern catalogue.

92

Chapter 5

Applying the Methodology to

the Gamma et al Catalogue

To fully apply and evaluate this methodology would involve designing trans-

formations for a large number of design patterns, building a tool that imple-

ments these transformations, and evaluating the tool in a practical context.

Such a route however would move this project from proof of concept valida-

tion to serious industrial software development. We apply the methodology

in a more limited way therefore, but one that nonetheless demonstrates the

validity of our approach and the range of its application1.

In section 5.1 we discuss the criteria we use in choosing a precursor for

a design pattern. This is an important process, as a transformation will not

be useful if its starting point does not occur in practice. Section 5.2 contains

some more detail on the notation we use to describe the transformations. In

section 5.3 transformations are developed for a collection of creational pat-

1Our approach to validation is in keeping with other approaches in this area. Lauder

and Kent, for example, in validating their work on pattern formalisation, satisfied them-

selves by applying their technique to three sample design patterns [56].

93

terns from the Gamma et al catalogue [41]. This illustrates the applicability

of the methodology, and shows that the minitransformations identified in

the development of one design pattern transformation are indeed reusable in

other transformation developments. The leaves in question the applicability

of this approach to structural patterns, and especially to behavioural patterns

where the structure of the pattern is less important than its dynamic aspects.

This question is addressed in sections 5.4 and 5.5 where transformations for

a structural pattern and a behavioural pattern are developed.

In section 5.6 we take the remaining patterns in the Gamma et al cata-

logue and assess the applicability of our approach to each design pattern. We

attempt to find a compelling precursor for each pattern and sketch a trans-

formation for that design pattern. The results of this work are analysed in

section 5.7. In section 5.8 we point to where related work on the topic of de-

sign pattern application is considered, and finally, in section 5.9, a summary

of this chapter is presented.

All the pattern transformations listed in sections 5.3, 5.4 and 5.5 have

been fully prototyped so we are very confident of the value of the results

presented there. For details of the prototype tool we have developed, see

appendix D. The precursors and transformations proposed in section 5.6

have not been prototyped, but are based on a study of the pattern itself cou-

pled with the experience we have gained from prototyping the other pattern

transformations.

The reader is advised that the material of this chapter is very detailed

in places, and assumes a working knowledge of the design patterns in the

Gamma et al catalogue [41].

94

5.1 Criteria for Selecting a Precursor

The notion of precursor described in the last chapter is supported by the

work of Foote and Opdyke [37]. They break the software lifecycle into three

phases: prototyping, expansionary and consolidatory. At the end of the pro-

totyping phase a working system has been built that matches the initial set

of requirements. As new requirements appear, the system will have to be

expanded. However, it will inevitably transpire that the existing design is

not flexible enough to support the new requirements that appear. In this

case a consolidation must take place, where the software is reorganised and

refactored to enhance its flexibility in preparation for accommodating the

new requirements.

Our work clearly aims to help in the consolidation phase. Thus the pre-

cursors we use as starting points for the design pattern transformations are

structures that are likely to be built during the prototyping phase. We ex-

pect them to be simple structures that are adequate for the purposes of

building a working system rapidly, but inadequate in terms of supporting

future evolution and reuse.

We arrive at a precursor for a design pattern by studying the description

of the design pattern and attempting to find the structure that a program-

mer would be likely to have used during the prototyping phase, when the

flexibility and power of the pattern were not yet required. This is naturally

a matter of judgement. In some cases we are able to find a very likely and

compelling precursor, in other cases it less clear how useful the precursor will

be. In section 5.6 we provide an assessment of the value of each precursor

and the transformation it gives rise to, and in section 5.7 these results are

summarised and analysed.

95

5.2 Transformation Notation

We have already used our simple notation for describing composite refactor-

ings in chapters 3 and 4. In this chapter the same notation is used, but some

shortcuts are taken which we describe here:

• In some cases we do not give the full parameter list for a transformation

as it may simply be too long. For example, the Builder transformation

creates more than a dozen new program entities (classes, variables etc.)

and it would be confusing to parameterise the transformation to this

extent. Rather, we simply choose suitable names for the newly-created

program elements within the transformation algorithm itself.

• In some transformations (for example, Abstract Factory) a set iteration

creates a number of program elements that must be referred to later on,

so we make some assumptions about names: for a class named Widget,

WidgetInterface is a new interface created from this class, absWidget

is a new abstract class created from this class, and createWidget is a

new method that creates and returns an instance of this class. Where

need be, these names are referred to as interfaceName(c), abstractClass-

Name(c) and constructionMethodName(c) respectively2.

• allClasses is used to denote all the classes of the program.

2Being precise about these issues is not a technical challenge, but the verbosity it

would add to the transformations would only serve to obfuscate the important issues in

the transformation.

96

5.3 Transformations for the Gamma et al Cre-

ational Patterns

In the previous chapter the transformation for the Factory Method pattern

was presented in detail. In the following subsections transformations are

developed for the remaining Gamma et al creational patterns, namely Sin-

gleton, Abstract Factory, Builder and Prototype.

5.3.1 The Singleton Transformation

The intent of the Singleton pattern [41, p.127] is to constrain a class to having

only a single instance, and to provide a global point of access to this instance.

The Singleton pattern prevents multiple instaniations of a class by making

the constructor of the class protected, and making the class itself responsible

for its own instantiation. Access to this instance is then provided using a

static method, the getInstance method, that creates the instance only when

required to do so.

As explained in [41], the constructor is made protected rather than pri-

vate, in order to allow the class to be subclassed. There are, however, prob-

lems with this approach that are not resolved in that text. The singleton

class must be able to instantiate any of its subclasses, and this requires the

constructors of the subclasses to be public3. This means however that a

client is not prevented from creating multiple instances, so the principle aim

of the pattern is not enforced. There are several possible ways of resolving

this issue:

1. The singleton subclass is made an inner class of the singleton class

3Overridding the getInstance method in the subclass to create and return an instance

of the subclass is not possible as static methods cannot be overridden in Java.

97

itself4. External instantiation is thus not possible, and the singleton

constructor can in fact be made private. However the singleton class has

explicit knowledge of its subclasses, and switching to a new singleton

subclass dynamically is not possible.

2. Each subclass is given a static register method that instantiates the

class itself and registers this instance with the singleton superclass. The

singleton superclass has no knowledge of its subclasses, and a client can

install a new singleton dynamically by invoking the register method on

the required class.

The second solution is more flexible and therefore preferable. In our work

however we have used the original, imperfect solution presented in [41, p.133],

where the constructor of each subclass is required to be public.

Precursor for the Singleton Transformation

There are two compelling starting points to use for this transformation:

1. A class exists that is only instantiated once, or is instantiated many

times but each instance is identical and does not subsequently change

state. Applying the Singleton pattern here has the benefit of enforcing

the implicit “single instance” constraint, and of improving the clarity

of the program.

2. A collection of global variables is used in the program. By collecting

these into a singleton class, access to these variables is granted in a
4An inner class is known only to its enclosing class, but has access to this class and its

superclasses. They are commonly used when one object needs to send another object a

chunk of code that can access the first object’s methods and fields. The manner in which

they are used here, where the inner class is also a subclass of its enclosing class, can be

conceptually confusing [46].

98

disciplined way through method invocation, rather than ad hoc variable

accesses spread across the program.

Both of these possibilities are useful. The second one has a very clear applica-

tion in tidying up code that was written without full attention being paid to

quality guidelines. We work with the first one here, because, as will become

apparent in section 5.3.2, it is also used in applying the Abstract Factory

pattern. Later in this chapter (page 128) we develop a transformation that

deals with the second case.

Specification of the Singleton Transformation

The transformation that introduces the Singleton pattern is defined as fol-

lows:

applySingleton(Class concreteSingleton, String newAbstractSingleton){
partialAbstraction(concreteSingleton, newAbstractSingleton);

addSingletonMethod(newAbstractSingleton, concreteSingleton);

ForAll e:ObjCreationExprn, classCreated(e)=concreteSingleton,

e 	∈ newAbstractSingleton {
replaceObjCreationWithMethInvocation(e,

newAbstractSingleton.getInstance());

}
makeConstructorProtected(newAbstractSingleton);

}

Initially partialAbstraction is applied to make a new abstract class that

provides the same interface as the class to be singletonised. The singleton

method and field are then added to this abstract class. The object returned

by the singleton method getInstance is an instance of the concrete singleton

99

class. All object creation expressions that create an instance of this class

are then updated to invoke the singleton method instead. At this point, the

constructors of the abstract singleton class are made protected. As explained

earlier, the constructors of the concrete singleton class must remain public.

Applying the algorithms of section 3.2, we compute the precondition of

this transformation to be:

precondition:

1. No class or interface may have the name newAbstractSingleton:

¬ isClass(newAbstractSingleton) ∧
¬ isInterface(newAbstractSingleton)

2. The concreteSingleton class must exist:

isClass(concreteSingleton)

3. concreteSingleton cannot define a method called “getInstance”:

¬defines(concreteSingleton, “getInstance”)
4. concreteSingleton cannot contain a field called “instance”:

∀ f:Field, f∈concreteSingleton • nameOf(f) 	= “instance”

5. A non-private field called “instance” cannot be defined in any

superclass of concreteSingleton:

if f:Field ∈ cls, cls ∈ superclasses(concreteSingleton),

nameOf(f)=“instance” then isPrivate(f)

6. concreteSingleton must have only one constructor and it must

require no parameters:

∀ c:Constructor ∈ concreteSingleton • noOfParameters(c)=0

7. Only a single instance of concreteSingleton is ever created:

hasSingleInstance(concreteSingleton)

The first two preconditions are trivial, simply ensuring that the concreteSin-

gleton class exists, and that the name newAbstractSingleton does not clash

100

with any existing name.

The next three preconditions are refactoring preconditions. For simplicity,

we have reserved the names “getInstance” and “instance” for use in the

Singleton pattern. If they are already in use in the class to be singletonised,

a renaming refactoring should be applied. A field named “instance” may be

defined in a superclass of the concrete singleton class, but it must be private,

otherwise it could be accessed by a subclass of the concrete singleton class

and this link would be broken by the addition of a field of the same name to

the concrete singleton class.

Precondition 6 is a contraindication. If a class has more than one con-

structor, we can expect that it is instantiated in different places to different

initial states, and this makes it unsuitable for the application of the Single-

ton pattern. Also, its constructor should be the no-arg constructor, since

the class instantiates itself only once and later invocations of the getInstance

method merely return this instance, but do not recreate it.

The final precondition is both a contraindication and the precursor. If the

singleton class has multiple instances, applying this pattern will surely have

a disastrous effect on program behaviour, and this is an inherent property

of the program. The notion of a single-instance class also represents the

precursor we have used for the Singleton pattern.

5.3.2 The Abstract Factory Transformation

The intent of Abstract Factory pattern [41, p.87] is to allow a program that

works with a family of classes (e.g., an interface toolkit) to be easily ex-

tended to work with a different, but related, family of classes. It is clearly

closely related to the Factory Method pattern, even though the implementa-

tion structures of these two patterns are quite different [41]. It is therefore

101

very satisfying that the transformations we develop for these two patterns

transpire to be quite similar. Interestingly, Amnon Eden et al reported a sim-

ilar result in their formalisation of these two patterns using the declarative

language LePUS [33].

In the following sections the precursor for this transformation is described

followed by the specification of the transformation and its preconditions.

Precursor for the Abstract Factory Transformation

We can extend the precursor for the Factory Method pattern to produce

a related precursor for the Abstract Factory transformation. We assume

that the program being transformed creates and uses concrete instances of a

family of Product classes. Again, this is not a poor structure of itself, but

if a requirement arises for the program to work with a different family of

Product classes, this structure will prove to be too inflexible. Applying the

Abstract Factory pattern in this case results in a system where a new family

of classes can be plugged in with a minimum of difficulty.

Specification of the Abstract Factory Transformation

The transformation that introduces the Abstract Factory pattern is defined

as follows:

applyAbstractFactory(SetOfClass products, String newFactoryName,

String newAbsFactoryName){
addClass(createEmptyClass(newFactoryName));

ForAll c:Class, c ∈ products {
Abstraction(nameOf(c));5

AbstractAccess(allClasses, nameOf(c));

EncapsulateConstruction(newFactoryName, nameOf(c));

102

}
applySingleton(newFactoryName, newAbsFactoryName);

ForAll e:ObjCreationExprn, classCreated(e) ∈ products {
replaceObjCreationWithMethInvocation(e,newAbsFactoryName+

“getInstance().create”+classCreated(e));

}
}

First the empty concrete factory class is added to the program. Then the

product classes are processed by adding an interface to each one, redirecting

all accesses to the product classes to go via the corresponding interface, and

adding construction methods for each product class to the concrete factory

class.

The Singleton pattern is applied at this stage to produce the abstract

factory class, and to impose the single-instance constraint on the concrete

factory class. Finally, the existing object creation expressions that create

instances of the product classes are updated to use the corresponding con-

struction method in the abstract factory class.

We apply the algorithms of section 3.2 to compute the following precon-

ditions for this transformation:

precondition:

1. All the classes in products must exist, and for each class its

interface name must not be in use:

∀ c ∈ products • isClass(c) ∧
¬isClass(interfaceName(c)) ∧ ¬isInterface(interfaceName(c))

2. No class or interface may have the name newFactoryName or

5For simplicity, the full argument lists for the minitransformations in the body of this

loop are not given. See section 5.2 for an explanation of this.

103

newAbsFactoryName:

¬ isClass(newFactoryName) ∧ ¬ isInterface(newFactoryName) ∧
¬ isClass(newAbsFactoryName) ∧ ¬ isInterface(newAbsFactoryName)

3. The classes in products have no public fields:

∀ f:field, ∀ c:Class, f ∈ c, c ∈ products • ¬ isPublic(f)

4. The classes in products have no static methods:

∀ m:Method, ∀ c:Class, m ∈ c, c ∈ products • ¬ isStatic(m)

Given that this is a more complex transformation than the related Factory

Method transformation, it is at first sight curious that the preconditions

transpire to be considerably simpler. This is because we create completely

new abstract and concrete factory classes, rather than adding methods to

existing classes. For example, using applySingleton would normally add

a number of new preconditions to a refactoring chain, but in this case it is

applied to a class that just been created, and from this we were able to show

that all the Singleton transformation preconditions were satisfied.

The categorisation of these preconditions is similar to Factory Method.

The first two are trivial, the third is a refactoring precondition and the last

one is a contraindication. Note that there is no precursor precondition for this

pattern: it may be applied to any set of classes in the program. However, if

the set of product classes chosen does not form a logical family, the resulting

program will naturally be more complicated than the original program, for

absolutely no benefit.

5.3.3 The Builder Transformation

The intent of the Builder pattern [41, p.97] is to separate the construction of a

complex object from its representation, so that the same construction process

104

director

getProduct() : Product

construct()

product

construct1()

construct2()

client
creates

Figure 5.1: The Precursor for the Builder Design Pattern

can create different representations. This pattern is therefore useful when a

product object has a complex, step-by-step construction process and it is

desirable that the object that directs the construction be able to construct

other, related product objects as well. By adding a builder object between

the director and the product, it becomes easy to configure the director with

another type of builder that will construct the desired product object.

Precursor for the Builder Transformation

The precursor for the Builder transformation is depicted as a UML diagram in

figure 5.1. The director class instantiates the product class and then invokes

a series of methods on this product object (construct1 and construct2 in the

figure) to bring it to its fully-constructed state. The client can then obtain

the product object by invoking getProduct on the director. An example of

this structure is where a parser object (director) creates an empty parse tree

object (product) and then invokes a series of addNode operations on the parse

tree to bring it to a state where it represents the input being parsed. When

parsing is complete, a client of the parser object may request it to return the

parse tree that has just been constructed.

This structure, where the director class communicates with the product

class directly, will prove inadequate if the director class has to be extended

to construct another type of product object, one that has a different con-

105

struction process. The addition of a level of indirection through a builder

class makes this type of extension easy. We assume for now that the interface

to the new builder class is the same as that of the current product class, so

all the builder class does is to delegate directly to the product class. In the

general case the builder receives construction requests from the director class

and translates them into the appropriate requests to the product class. Our

transformation assumes this translation to be simply the identity translation,

as this produces the desired behaviour-preserving result. The programmer

may of course later update this translation to perform something more so-

phisticated.

Specification of the Builder Transformation

In considering this transformation it is clear that there is a theme involved

that has not been encountered thus far, namely that of delegation. A new

builder class is to be added between the existing director class and the prod-

uct class, and the duty of the builder is to delegate the requests it receives

from the director to the product object. It is tempting to develop a mini-

transformation that takes an existing class and delegates its responsibilities

to another class. However, arguing behaviour preservation for such a mini-

transformation is clumsy, so we choose another perspective where we wrap an

existing class with a delegation/wrapper class. This wrapper class delegates

its responsibilities to the wrapped class, so program behaviour is preserved.

This minipattern is called Wrapper and is described in full detail in section

5.4.2 in the context of the Bridge pattern.

The transformation that introduces the Builder pattern can now be de-

fined as follows:

applyBuilder(Class director, Class product, String builderName){

106

Abstraction(product, productInterface);

Wrapper(director, productInterface, builderName);

AbstractAccess(allClasses, product, productInterface);

ForAll c:Constructor, c ∈ builderName{
absorbParameter(c, 1);

}
parameteriseField(director, builderName);

}

First Abstraction is used to add to the program an interface to the given

product class. This enables the Wrapper minitransformation (see section

5.4.2) to be used to create the builder class and to set it up to delegate to

the product class the construction requests it receives from the director class.

AbstractAccess is now used to dissolve the dependency of the program

on the concrete product class6. At this point the essential structure of the

Builder pattern has been introduced, but there is still some work to be done.

The builder class currently takes the product it is to construct as a para-

meter, so the absorbParameter refactoring is used to push the creation of the

product object into the builder class where it belongs. The opposite problem

exists between director and builder, in that the director object creates the

builder it is to use and this does not fit the normal pattern solution. The pa-

rameteriseField refactoring is thus applied to enable the clients of the director

class to pass it the builder object that it is to use. This completes the ap-

plication of the Builder pattern7. The effect of applying this transformation

6Gamma et al suggest that this is normally not useful as the products produced by

concrete builders tend to differ considerably [41, p.101]. We choose to follow the solution

described by Grand [43, p.111], and provide an interface for the product class.
7Further refactorings could be applied now, so that clients would get the constructed

product object from the builder object, rather than from the director object.

107

director

getProduct() : absProduct

<<constructor>> Director(: Builder)

builder

getProduct() : absProduct

construct1()

construct2()

product

construct1()
construct2()

productInterface

construct1()

construct2()

<<Interface>>

client

creates

creates

Figure 5.2: The Builder Design Pattern

to the Builder precursor (figure 5.1) is depicted as a UML diagram in figure

5.2.

Applying the algorithms of section 3.2, the preconditions of this transfor-

mation are computed as follows:

precondition:

1. The director and product classes must exist and the name

builderName must not be in use:

isClass(director) ∧ isClass(product) ∧
¬isClass(builderName) ∧ ¬isInterface(builderName)

2. The product class must not have static methods:

∀ m:Method, m ∈ product • ¬isStatic(m)
3. The product class must not have public fields:

∀ f:field, f ∈ product • ¬isPublic(f)
4. The product class must have only one constructor and this

constructor must require no parameters:

∀ c:Constructor, c ∈ product • noOfParameters(c)=0

108

The transformation for the Builder pattern is one of the most complex of

all the transformations developed in this work, though much of the com-

plexity is hidden inside its constituent minitransformations and refactorings.

The preconditions for the transformation are quite simple, again because

most of the preconditions of its constituent minitransformations and refac-

torings are guaranteed by earlier parts of the transformation. For example,

the Wrapper minitransformation can only be applied if the director class

only uses methods of the product class that are declared in the interface

productInterface. This condition does not appear in the precondition to the

transformation above, since it has already been set up by the application of

the Abstraction minipattern.

The first precondition is trivial. The second is a contraindication, though

as pointed out in the footnote on page 107, the AbstractAccess mini-

transformation that gave rise to this precondition could be omitted from

the transformation. The third condition is a straightforward refactoring pre-

condition, while the final condition is also a refactoring precondition but is

of more interest. In absorbParameter the construction of product objects is

moved from the director class to the builder class. Each such object cre-

ation expression must be the same and not be dependent on its context. The

only likely way for this to happen is if the product class only admits no-arg

construction. Bearing in mind that this pattern is applicable where product

objects are constructed in a step-by-step fashion, it is not unreasonable to

require that the constructor for the product class itself takes no parameters.

5.3.4 The Prototype Transformation

The intent of the Prototype pattern [41, p.117] is to specify the kind of

objects to create by using a prototypical instance, and to create new objects

109

by cloning this instance. The applicability section for this pattern proposes

three situations where it may be applied:

1. to achieve dynamic loading of classes, or

2. to avoid building a hierarchy of factory classes, one for each product

class, or

3. when instances of a class can have an initial state that is one of only a

few possible combinations.

Although these criteria are stated to be disjunct, in fact the Prototype pat-

tern could not be applied if only the second were true and not the third.

If objects of the product class can be constructed in a wide range of initial

states, applying the Prototype pattern is not possible. Note that a precursor

for the first criterion is very likely to be an antipattern, so we do not look

further at this possibility.

Precursor for the Prototype Transformation

The precursor we consider is therefore where the programmer has explicitly

instantiated the product class at several points in the client class before

realising that all these instances are identical8. The updating of the object

creation statements to use a cloned prototype object is possible only if the

arguments to the object creation statements have the same values in every

case. This is highly unlikely to occur unless the client class only instantiates

the product class using its no-arg constructor. For this practical reason we

limit the precursor for this pattern by enforcing this precondition.

8A more general solution is also possible, where the initial state of the objects created

fits into one of several categories.

110

Specification of the Prototype Transformation

The transformation that introduces the Prototype pattern is defined as fol-

lows:

applyPrototype(Class client, Class product, String productInterface){
createExclusiveComponent(client, product, “prototype”);

Abstraction(product, productInterface);

AbstractAccess(client, product, productInterface);

ForAll e:ObjCreationExprn, classCreated(e)=product, e ∈ client {
replaceObjCreationWithMethInvocation(e,“prototype.clone()”);

}
}

Using createExclusiveComponent a field called “prototype” is added to the

client class to store the prototypical object of the product class. Abstrac-

tion is now applied to the product class and AbstractAccess to abstract

the client class from the product class. Finally replaceObjCreationWithMe-

thInvocation is applied to change all creations of product objects to invoke

the clone method on the prototypical product object instead. The invocation

of the clone method on the product class assumes that this class is indeed

clonable; see the definition of isClonable on page 191 for more detail.

A minimalist approach was taken in building this transformation. A more

sophisticated approach was also possible, by building a prototype manager

that would handle prototypes for a collection of classes and allow the collec-

tion to grow and contract dynamically.

We apply the algorithms of section 3.2 to compute the following precon-

ditions for the above transformation:

precondition:

111

1. The given classes must exist:

isClass(client) ∧ isClass(product)

2. No class or interface with the name productInterface exists:

¬isClass(productInterface) ∧ ¬isInterface(productInterface)
3. The client class cannot contain a field called “prototype”:

∀ f:Field, f∈client • nameOf(f) 	= “prototype”

4. A non-private field called “prototype” cannot be defined in any

superclass of client :

if f:Field ∈ cls, cls ∈ superclasses(client),

nameOf(f)=“prototype” then isPrivate(f)

5. The product class must not have public fields:

∀ f:field, f ∈ product • ¬isPublic(f)
6. The product class must not have static methods:

∀ m:Method, m ∈ product • ¬isStatic(m)
7. The product class must be clonable:

isClonable(product)

8. The client class creates product objects only using the no-arg

constructor:

∀ e:ObjectCreationExprn, e ∈ client, classCreated(e)=product •
noOfArguments(e)=0

The categorisation of these preconditions is as follows. The first two are

trivial, the third, fourth and fifth are refactoring preconditions, the sixth and

seventh are contraindications, while the final one is a precursor precondition

that we assumed in order to ease the specification of the transformation.

This completes the application of our methodology to the Gamma et al

creational patterns. We postpone analysing the results until section 5.7 after

112

implementation1

iface

<<Interface>>
client

implementation2

Figure 5.3: The Precursor for the Bridge Design Pattern

the entire catalogue has been considered. In the following sections 5.4 and

5.5, we demonstrate the broader application of this methodology by applying

it to a structural pattern and a behavioural pattern.

5.4 Transformation for a Structural Pattern:

Bridge

The intent of the Bridge pattern [41, p.151] is to decouple an abstraction

from its implementation so that the two can vary independently. It is useful

when an abstraction needs to be implemented in several ways, and also needs

to be open to extension using inheritance.

5.4.1 Precursor for the Bridge Transformation

The precursor for this pattern follows naturally from the description of the

pattern given in [41]. It is depicted graphically as a UML diagram in figure

5.3. We see that there is a client class that makes use of an interface that has

been implemented in several different implementation classes. The weakness

113

of this structure becomes apparent if the programmer later wants to extend

the interface in some way: for each existing implementation class, a new class

will have to be added. For example, a client class might use a queue interface

that is implemented in one subclass as a static array and in another as a

dynamic linked-list structure. If we need to extend the client to work with

a dequeue9 as well, it is natural to add this as a subinterface of the queue

interface. However, now the dequeue interface must itself be provided with

two subclasses to provide a static and a dynamic implementation. The appli-

cation of the Bridge pattern to this situation will enable the queue interface

to be extended separately from its implementation.

In considering this transformation it is clear that the theme of delegation

is involved again. A new bridging class is to be added between the existing

client classes and the implementation classes. The duty of this class is to

delegate all the requests it receives from the client to the appropriate imple-

mentation object. In the following section we describe this minipattern in

detail, and in section 5.4.3 the Bridge transformation itself is dealt with.

5.4.2 The Wrapper Minitransformation

The Wrapper minitransformation is used to “wrap” an existing receiver

class with another class, in such a way that all requests to an object of the

wrapper class are passed to the receiver object it wraps, and similarly any

results of such requests are passed back by the wrapper object. This re-

quires that all existing instantiations of the receiver class be also wrapped

with an instantiation of the wrapper class itself. The overall effect of this

minitransformation is to add a certain flexibility to the relationship between

a client object and the receiver object it uses. All communication now goes

9A double-ended queue.

114

via the wrapper object, which means that run-time replacement of the re-

ceiver object becomes possible without the client object being aware of the

change. In a certain regard, this minipattern is the dynamic equivalent of

the AbstractAccess minitransformation.

An issue that must be dealt with is where one or more of the client classes

provide a “getter” method that returns an instance of a receiver object. If

the receiver classes are to be wrapped from all other classes in the program,

it makes sense to return the wrapped receiver object. However, it is only

the client classes that should see the wrapped receiver class; other classes in

the program should deal directly with the receiver classes as before. There-

fore, to allow for a client that provides direct access to its receiver object,

createWrapperClass adds a getter method to the wrapper class to return this

object, while useWrapperClass updates the getter method in the client class

to delegate to the getter method to the wrapper class10.

We have assumed in the description of this minitransformation that there

is a single receiver class to be wrapped. In the more general case there will

be a set of receiver classes to be wrapped. In this case, the set of receiver

classes is given by an interface that reflects how the receivers are used in the

client classes. For our current purposes of building a transformation for the

Bridge pattern, it is the latter version that is of interest, so it is the one we

specify here.

This minitransformation is implemented in terms of refactorings in the

following way:

10This issue resulted in a lot of complexity in the detailed design and implementation of

this minitransformation. It is interesting therefore to note that this could be avoided were

the assumption to be made that the initial program complies with the Law of Demeter

[60]. In a program that observes this law, an object would not extract a subobject from

another object, and send a message to it.

115

Wrapper(SetOfClass clients, Interface iface, String wrapperName){
Class wrapper = createWrapperClass(iface, wrapperName,“receiver”);

addClass(wrapper);

ForAll c:Class, implementsInterface(c, iface) {
useWrapperClass(clients, wrapper, c, “getReceiver”);

}
}

Initially the wrapper class is created and added to the program. Then it

is used to wrap each of the receiver classes and, correspondingly, any clients

that use these receiver classes are updated to wrap each construction of a

receiver class with an instance of the wrapper class.

To demonstrate legality of this chain and to compute its pre- and post-

conditions, we apply the algorithms of section 3.2. The computation is

straightforward, especially since most of the preconditions for useWrapper-

Class are provided by createWrapperClass. The following pre- and postcondi-

tions are produced:

precondition:

The given interface must exist:

isInterface(iface)

The name for the new wrapper class is not in use:

¬ isClass(wrapperName) ∧ ¬ isInterface(wrapperName)

The client classes only use methods of the receiver classes that are

declared in the interface iface:

∀ o:ObjectRef, containingClass(o) ∈ clients,
implementsInterface(typeOf(o), iface) •

∀ m:Method, uses(o,m) • declares(iface, m)

postcondition:

116

The wrapper class has been added to the program:

isClass′ = isClass[wrapper/true]

(Further properties of the wrapper class are given on page 198.)

All object references to receiver classes in clients have been changed

to wrapper :

∀ o:ObjectRef, containingClass(o) ∈ clients,
implementsInterface(typeOf(o), iface) •

typeOf′=typeOf[o/wrapper]

All creations of receiver objects in the clients have been updated:

∀ e:ObjectCreationExprn, implementsInterface(classCreated(e),

iface), containingClass(e) ∈ clients •
classCreated′=classCreated[e/wrapper]

Any receiver object will exhibit the same behaviour as an instance of

the class called wrapperName that has been given this object as its

construction argument:

∀ c:Class, implementsInterface(c,iface) •
∀ e:ObjectCreationExprn, classCreated(e)=c •

exhibitSameBehaviour′ =

exhibitSameBehaviour[(e, new wrapperName(e))/true]

5.4.3 Specification of the Bridge Transformation

The transformation that introduces the Bridge pattern can now be defined

very simply as follows:

applyBridge(SetOfClass clients, Interface iface, String bridgeName){
Wrapper(clients, iface, bridgeName);

}

117

implementation1

client

implementation2

bridge
iface

<<Interface>>

Figure 5.4: The Bridge Design Pattern

The Wrapper minitransformation does all of the work here, setting up

the bridge class and ensuring that it delegates requests from the client classes

to the classes that implement the given interface. The effect of applying this

transformation to the Bridge precursor (figure 5.3) is depicted as a UML

diagram in figure 5.4.

Once the structure of the Bridge pattern has been reified in the program

code, the programmer can exploit this. The bridge class can be subclassed

and new methods added. If need be, the implementation of methods in

the bridge class can be changed to do more than simply delegate to the

implementation classes. These changes are facilitated by the introduction of

the Bridge pattern, but cannot be made part of the transformation itself, as

they are dependent of the intention of the programmer and are not in general

behaviour-preserving.

The precondition for this transformation is naturally just the precondition

for the Wrapper minitransformation given in section 5.4.2 above, so it is

not restated here.

118

5.5 Transformation for a Behavioural Pattern:

Strategy

Behavioural patterns have the possibility of challenging our approach very

strongly. Since we transform one type of program structure (a precursor)

into another one (the desired design pattern structure), it is unclear how a

pattern that has little structure will be handled. In this section we address

this question by applying the proposed methodology to a behavioural pattern

and assessing the result.

The intent of the Strategy pattern [41, p.315] is to enable several related

algorithms to be encapsulated into their own respective classes, so that a

client can be dynamically configured with an object of one of these classes.

For example, a tree class might incorporate a traversal algorithm that returns

the nodes of the tree in some order. Rather than hardcoding one particular

traversal algorithm into the tree class itself, the Strategy pattern encapsulates

the traversal algorithm into its own class and allows a tree object to be

configured with different traversal algorithms. This makes it easy to achieve

in-, pre- and post-order traversals of the same tree object.

5.5.1 Precursor for the Strategy Transformation

The natural precursor for this pattern is where a class incorporates a number

of methods and fields that are all related to some particular algorithm. While

this cannot be regarded as a bad structure, its inadequacies become apparent

if a requirement arises that the class be configurable to use a one of a number

of related algorithms.

As with the Bridge and Builder patterns, there is a form of delegation

taking place here as well. The strategy methods will be moved to their own

119

class and the original class will delegate to them. The Wrapperminipattern

that was used earlier is not so suitable here: nothing is being “wrapped,”

rather part of the original class is being split off into a new class and behaviour

is being preserved by the original class delegating to the new one. In the

following section we describe this minipattern in detail, and in section 5.5.3

the Strategy transformation itself is dealt with.

5.5.2 The Delegation Minitransformation

The Delegation minitransformation is used to move part of an existing

class to a component class, and to set up a delegation relationship from the

existing class to its component.

This minitransformation is defined as follows11:

Delegation(Class context, SetOfMethod moveMethods,

String delegationName){
addClass(createEmptyClass(delegationName));

createExclusiveComponent(context, delegationName, “delegation”);

ForAll m:Method, m ∈ moveMethods {
abstractMethodFromClass(m);

moveMethod(context, “delegation”, m);

}
}

The empty delegation class is first added to the program and an exclusive

11Roberts deals with this transformation as well [84, p.40]. Since he does not use a

precursor, he can ignore the problem of initialising the component object that is being

delegated to. Also, he does not abstract the method to be moved from its class, so he

only permits the moving of a method that does not access any fields or methods in its own

class or any of its superclasses.

120

component of this class is added to the context class. Now each of the

methods to be moved can be processed. A method to be moved must first be

“abstracted” from its class, that is, everything it refers to in the class must

be made public. At this point, the moveMethod refactoring may be invoked

to move the method to the delegation class.

Using the algorithms of section 3.2, the pre- and postconditions for this

minitransformation are computed as follows:

precondition:

The given context class must exist:

isClass(context)

The name for the delegation class must not be use:

¬isClass(delegationName) ∧ ¬isInterface(delegationName)
The methods to be moved must belong to the context class:

∀ m ∈ moveMethods • m ∈ context
The context class cannot contain a field called “delegation”:

∀ f:Field, f∈context • nameOf(f) 	= “delegation”

A non-private field called “delegation” cannot be defined in any

superclass of context :

if f:Field ∈ cls, cls ∈ superclasses(context),

nameOf(f)=“delegation” then isPrivate(f)

postcondition:

A new class called delegationName has been added to the program:

isClass′ = isClass[delegationName/true]

The class context has a field called “delegation” of type delegationName:

∃ f:Field, f ∈ context such that

typeOf′=typeOf[f/delegationName]

nameOf′=nameOf[f/“delegation”]

121

“delegation” refers to an exclusive component of context :

isExclusiveComponent′=isExclusiveComponent[(context, “delegation”)/true]

All methods/fields defined directly or indirectly in context that are

used by a method in moveMethods are now public:

∀ m:Method ∈ moveMethods •
∀ x:Field/Method, defines(context, x), uses(m,x) •

isPublic′=isPublic[x/true]

The given methods have been moved to the delegation class:

∀ m:Method ∈ moveMethods •
classOf′=classOf[m/delegationName]

The class context delegates invocations of moved methods to methods

that exhibit the same behaviour in the delegation class:

∀ m:Method ∈ moveMethods • ∃ n:Method, classOf′(n)=context,

nameOf′(n)=nameOf(m), sigOf′(n)=sigOf(m) such that

uses′=uses[(n,m)/true]

exhibitSameBehaviour′=exhibitSameBehaviour[n/m]

5.5.3 Specification of the Strategy Transformation

The transformation that introduces the Strategy pattern can now be defined

very simply as follows:

applyStrategy(Class context, SetOfMethod strategyMethods,

String strategyName){
delegation(context, strategyMethods, strategyName)

Abstraction(strategyName, strategyInterface);

AbstractAccess(context, strategyName, strategyInterface);

}

122

At the completion of this transformation, the strategy methods have all

been moved to the strategy class. Each one takes its context object as an

argument, and refers back to this context for any fields it needs access to.

If the programmer has chosen a cohesive set of strategy methods, it is to

be expected that most of these fields can be moved to the strategy class as

well, and then some or all of the strategy methods will not need the context

argument anymore. This part of the transformation can be automated quite

straightforwardly, but for clarity we have omitted it.

Applying the algorithms of section 3.2, the preconditions for this trans-

formation are computed as follows:

precondition:

1. The given context class must exist:

isClass(context)

2. The name for the strategy class must not be use:

¬isClass(strategyName) ∧ ¬isInterface(strategyName)
3. The name for the strategy interface must not be use:

¬isClass(strategyInterface) ∧ ¬isInterface(strategyInterface)
4. The strategy methods must belong to the context class:

∀ m ∈ strategyMethods • m ∈ context
5. The context class cannot contain a field called “delegation”:

∀ f:Field, f∈context • nameOf(f) 	= “delegation”

6. A non-private field called “delegation” cannot be defined in any

superclass of context :

if f:Field ∈ cls, cls ∈ superclasses(context),

nameOf(f)=“delegation” then isPrivate(f)

7. No strategy method may be static:

∀ m ∈ strategyMethods • ¬isStatic(m)

123

The first four preconditions are trivial, the next two are refactoring precondi-

tions while the last one is a contraindication. The contraindication is derived

from the use of the AbstractAccess minipattern, since moving a static

method to the strategy class would make it subsequently inaccessible when

the strategy interface is added.

In spite of initial concerns that our approach would have problems dealing

with a behavioural pattern, a compelling precursor was found for the Strategy

pattern and the transformation to apply this pattern did not prove to be

particularly difficult to work out. In section 5.7 we provide an explanation

for this phenomenon.

5.6 Precursors and Transformations for the

Gamma et al Patterns Catalogue

In this section the remaining patterns of the Gamma et al catalogue [41] are

analysed with a view to finding a suitable precursor, assessing if the transfor-

mation is workable, and determining the minitransformations that are likely

to be used. Please note that the transformations offered in this section have

not been prototyped and worked out in as much detail as those in previous

examples. Our aim here is to make a global assessment of the applicability of

the methodology, without applying the full rigour of the approach to every

example. In each case we assess the result we achieve and place it in one of

the following categories:

1. Excellent : The methodology worked very well. A plausible precursor

was found and a compelling transformation was built, making use of

some of the minitransformations already identified.

124

2. Partial : There is some problem with the result (see list below) that

means a usable transformation can be developed, but it is not complete.

3. Impractical : There is a serious problem with the result (see list below)

that makes it impossible to build a transformation, or produces one

that is so constrained that it is of no practical value.

There are a number of ways in which a design pattern can be found to

be less suitable for the application of our methodology. We describe them

below.

• A convincing and useful precursor cannot be found. Sometimes there

is no compelling way a programmer might have partially implemented

the intent of the pattern without either using a poor design (an an-

tipattern), or going the whole way and implementing the full pattern

structure. We may in this case be able to work with a weak precursor

that is very close to the green field starting point. This is a workable

solution, but not very satisfactory, as there is little need for behaviour-

preservation proofs in this case. Examples: Decorator and Observer.

• There is a compelling precursor, but it is not a structure that can easily

be pointed to and identified in code, even by a programmer who knows

the code well. It may, for example, contain behavioural elements that

are dispersed around the code. The problem here is that this type

of precursor is too inexact to be used to drive a behaviour-preserving

transformation, and so is useless as a starting point for an automated

approach. In some cases dynamic analysis or sophisticated pattern

recognition might provide a solution, but this is beyond the scope of

this work. Examples: Facade, Mediator, Interpreter and Flyweight.

125

• Even if a compelling and easily identifiable precursor can be found, it

may be that the resulting transformation still leaves a certain amount

of work for the programmer to do in order to complete the application

of the pattern. Note that if the amount of work to be done is small,

we may still categorise the result as excellent. Examples: Adapter,

Builder, Bridge, Chain of Responsibility, Proxy and State.

A word on the precision of the specification of the precursor is useful here.

If we were searching for the precursor in the code, its specification would

have to be completely precise. However, in our approach, the programmer

identifies exactly where the design pattern is to be applied. This means that

the automated tool need only identify the aspects of the existing structure

that need to be restructured, and this is the purpose of the precursor. For

example, in the case of the Factory Method pattern, the tool only has to

identify the places in the class where a product object is created. The“extra”

part of the precursor, the fact that this is a good spot to apply the Factory

Method pattern, has been provided by the programmer.

In general the applicability section of a design pattern description suggests

the precursor [41]. If there are several distinct applicability clauses (i.e., if

they are disjunctives) this may give rise to several precursors. In the case of

the Prototype pattern, for example, there are three applicability clauses, but

we find that one of them is natural to choose as the basis for the precursor.

5.6.1 The Gamma et al Creational Patterns

In this section we consider the application of our methodology to each of

the creational patterns of the Gamma et al catalogue [41]. Since we have

dealt with these patterns already, we simply place the precursor and resulting

transformation into one of the three categories listed on page 124.

126

Abstract Factory

This pattern has been fully dealt with in section 5.3.2. The precursor is a

structure that is likely to occur during the evolution of a software system

and the transformation is compelling.

Overall Assessment : Excellent.

Builder

This pattern has been fully dealt with in section 5.3.3. The precursor and

transformation are compelling, though they lack the simplicity and elegance

of, for example, the Factory Method transformation. We explained on page

106 that a small amount of work is left to the programmer at the end of the

transformation, but it is nevertheless a very valuable result.

Overall Assessment : Excellent.

Factory Method

Due to the elegance of its solution, this pattern was chosen as our flagship

example and was presented in detail in chapter 4.

Overall Assessment : Excellent.

Prototype

This pattern has been fully dealt with in section 5.3.4. This solution has

weaknesses in that the precursor is somewhat more constrained than that

for the other creational patterns, and the construction of the clone method

is not automatable in every case. However, the transformation is generally

straightforward, and constructing the clone method could be a problem even

for a programmer applying this pattern by hand.

Overall Assessment : Excellent.

127

Singleton

This pattern has been fully dealt with in section 5.3.1. The precursor used

there (a single-instance class) is not a very compelling one and cannot be

verified automatically. However, we chose this precursor because it made it

possible to reuse the entire transformation in developing the Abstract Factory

transformation. As already stated, a more generally applicable precursor is

where there is a set of global variables to be packaged into a singleton class12.

This gives rise to the following transformation:

1. Add an empty class to the program and use applySingleton from

section 5.3.1 to make it a singleton class.

2. For each global variable to be encapsulated, add a field of this type to

the singleton class, along with “getter” and “setter” methods for this

field.

3. Replace every reading of a global variable with an invocation of the

corresponding “getter” method, and every writing of a global variable

with an invocation of the corresponding “setter” method.

4. Delete all the (now unused) global variables.

This is both a practical precursor and a straightforward transformation.

Overall Assessment : Excellent.

12This was also the precursor used by Jahnke and Zündorf [49], the only other approach

to design pattern transformations that uses a similar notion to that of a precursor. See

page 89 for a more detailed description of this work.

128

5.6.2 The Gamma et al Structural Patterns

In this section we consider the application of our methodology to each of the

structural patterns of the Gamma et al catalogue [41]. If the pattern has been

dealt with before, we simply place the precursor and resulting transformation

into one of the three categories listed on page 124.

Adapter

The intent of the Adapter pattern [41, p.139] is to convert the interface of an

existing class in order to make it compatible with the interface that its clients

expect. This allows classes to work together that could not otherwise do so,

due to minor incompatabilities in the interface provided and the interface

expected. Fully automating the application of this pattern poses a problem in

that the mapping from the new adapter interface to the existing adaptee class

should be specified by the programmer. Developing a language to specify this

mapping is non-trivial and beyond the scope of this work.

We take a simple approach and assume this mapping to be the identity

mapping. This allows the construction of a transformation that applies the

Adapter structure in a behaviour-preserving fashion, but leaves an amount

of work for the programmer to do. The precursor is simply where a client

class uses a supplier (adaptee) class and a requirement is introduced that the

client be able to work with any one of a family of supplier classes, each one

providing essentially the same functionality as the existing one, but with a

different interface.

The transformation then becomes:

1. Apply Wrapper to the supplier class to produce the concrete adapter

class.

129

2. Apply Abstraction to the concrete adapter class and AbstractAc-

cess to abstract the client class from the concrete adapter class.

This application of three minitransformations produces the Adapter struc-

ture, where the adapter class simply delegates each request to the existing

supplier class. The programmer may now update the adapter class to per-

form a more sophisticated adaptation, and add new supplier classes.

Overall Assessment : Excellent.

Bridge

This pattern has been fully dealt with in section 5.4.3. As explained on page

118, a small amount of work may be left to the programmer at the end of the

transformation, but overall the precursor and transformation are compelling.

Overall Assessment : Excellent.

Composite

The intent of the Composite pattern [41, p.163] is to enable a client class to

treat a single component object and a composition of component objects in a

uniform fashion. The most natural precursor here is where the programmer

has identified a 1:1 relationship between a client class and a component class,

and has implemented this by giving the client class a field of type component.

If it later transpires that the cardinality of this relationship must be extended

to 1:N, it may be natural to apply the Composite pattern. This will involve

replacing the component field with a field of a type that represents both

the interface to the component class itself, and the “composite” interface

(addComponent, removeComponent etc.).

One issue is the actual composite data structure that is to be used. This

could be any type of generic container structure, but is more usually a type of

130

list. Let us parameterise the transformation with the container class that is

to be used for the composite implementation, and demand that this container

class contains an iteration interface. The resulting transformation is:

1. Apply Abstraction to the component class to produce the compo-

nent interface.

2. Extend the component interface with the supplied composite interface.

3. Provide implementations for the composite operations in the compo-

nent class13.

4. Add the composite class and provide it with an implements link to the

component interface. It will contain a private field of type container.

The composite methods will be implemented by delegating them to

the container field, while the component methods will be implemented

by iterating through the elements of the container and applying the

method to each one.

5. Apply AbstractAccess to abstract the client class from the compo-

nent class, so that it now uses the component interface instead.

The result of this transformation is that the client class now uses the compo-

nent class through its interface. It is also easy to extend the client so that it

uses compositions of components in place of the single component instances

it was dealing with originally.

Overall Assessment : Excellent.

13Operations like addComponent are unintuitive for the component class and must be

implemented to do nothing. However, even if the pattern is being applied by hand, this is

necessary to achieve a transparent interface to both leaves and composites.

131

Decorator

The intent of the Decorator pattern [41, p.175] is to enable the dynamic ad-

dition and removal of responsibilities to/from an object. It allows the func-

tionality of an object to be transparently extended at runtime, by wrapping

the object with the appropriate decorator objects.

A transformation that introduces this pattern to a C++ program was

built as part of our earlier work [71]. The starting point for the transforma-

tion was taken to be where multiple inheritance had been used to provide the

multiply-decorated component class. This tends to lead to an explosion of

subclasses, where each subclass represents a certain combination of decorator

classes. The application of the Decorator pattern is valuable here to reduce

the number of classes in the program and to enable the dynamic creation of

new combinations of decorators.

Java does not support multiple inheritance, so this is not a possible pre-

cursor. The alternative precursor is where the component class achieves its

decoration by storing a list of decorator objects and iterating through them

whenever it receives a message. This is an implausible precursor, so we do

not consider it further.

The most suitable starting point for this transformation is close to the

green field situation. There are a number of client classes that use a com-

ponent class, and there are a number of decorator classes. There is as yet

no relationship between the component class and the decorator classes, but

there is commonality between the interfaces they present. Application of the

Decorator pattern means that this commonality can be exploited to allow

component objects be dynamically extended with new behaviour, by wrap-

ping them with the appropriate decorator objects.

The transformation to apply the Decorator pattern structure is then as

132

follows:

1. Apply Abstraction to the component class to produce the compo-

nent interface and AbstractAccess to the client classes to abstract

them from the concrete component class.

2. Apply Wrapper to a decorator class to create the abstract decorator

class that delegates all messages it receives to its component object.

3. Make each concrete decorator a subclass of the abstract decorator class

and update each method that is declared in the component interface so

that it first invokes the operation of the same name in its superclass.

The clients continue to use the same component objects as before, but access

them through the component interface; behaviour preservation is thus simple

to demonstrate. The Decorator structure is now present, so the client may

be easily updated to decorate these components as need be.

Overall Assessment : Partial.

Facade

The intent of the Facade pattern [41, p.185] is to provide a unified interface

to an existing set of classes in a subsystem. The natural precursor for this

pattern is stated clearly in the description of this pattern. A set of classes

(clients) use another set of classes (subsystem classes), and this interaction

should be encapsulated and directed through a single facade class.

However, apart from adding an empty facade class it is very difficult

to further automate this transformation in the general case. A client class

may create multiple instances of a subsystem class and interact with them

in different ways. The key aspect of the Facade pattern is that these inter-

actions must be understood in some way, grouped into cohesive units and

133

encapsulated in the interface to the facade class. Finding these groupings

involves sophisticated pattern recognition that is poorly supported by auto-

mated approaches. Packaging these groupings into cohesive methods in the

facade interface is likely to involve method splitting and low-level analysis

that other transformations do not need14.

So while a compelling precursor can be identified, our methodology can

achieve little by way of automating this transformation.

Overall Assessment : Impractical.

Flyweight

The intent of the Flyweight pattern [41, p.195] is to use sharing to support a

large number of fine-grained objects efficiently. The precursor for this pattern

is quite clear from the pattern description. A class exists that has a large

number instances and part of the state of these instances never changes after

construction. The immutable part of the state can be made intrinsic to the

flyweight and the mutable part stored in the context of the flyweight.

Not much of this transformation can be automated using the techniques

we have proposed. The structure of the Flyweight pattern can be built but

“populating” it and transforming the existing class into this structure has to

be done by the programmer. The number of flyweight objects, their initial

state, and a key for accessing them are all crucial aspects of this pattern

that cannot be determined from the program code using our techniques.

Also, determining how to integrate the extrinsic state into the context of the

flyweight is an issue requiring considerable design judgement.

14Bengtsson and Bosch describe an experience of reengineering the software system for

a dialysis machine [4]. They report applying the Facade pattern with enthusiasm and

finding that it resulted in unnecessary complexity. This suggests that even applying this

pattern by hand is not an easy task.

134

Overall Assessment : Impractical.

Proxy

The intent of the Proxy pattern [41, p.207] is allow one object to “stand

in” or act as a surrogate for another object. There are many reasons why

it may be desirable to proxy an object: the real object may reside on a

remote machine (remote proxy), or it may be necessary to restrict access to

certain operations (protection proxy), or constructing the entire object may

be expensive and a light proxy can be used in its place until full construction

becomes necessary (virtual proxy).

Regardless of the type of proxy, its essential structure can be achieved by

the application of the Wrapper minitransformation, to wrap the original

object with its proxy object. We will consider the transformation for the

virtual proxy further. The natural precursor is where a class has been de-

veloped but the programmer realises that the construction of objects of this

class is time-consuming (e.g., they may access an image across a network). It

may therefore be beneficial to postpone construction of the expensive parts

of this class until they are actually needed.

The parameter to this transformation is just the class to be proxied. The

transformation to apply a virtual proxy is as follows:

1. Apply Wrapper to the given class to create the proxy class.

2. Apply Abstraction to the given class and add an implements link

from the proxy class to the new interface.

3. Apply AbstractAccess so clients of the given class now access it

through the interface.

135

Now the essential pattern structure is available, the programmer can develop

the program further to achieve the relevant type of proxying. In the case of

the virtual proxy, the “cheap” fields of the class may be stored in the proxy

enabling certain requests to be met by the proxy alone. Other requests will

result in the creation of the proxied object and the delegation of the requests

to this object.

Overall Assessment : Partial.

5.6.3 The Gamma et al Behavioural Patterns

In this section we consider the application of our methodology to each of the

behavioural patterns of the Gamma et al catalogue [41]. If the pattern has

been dealt with before, we simply place the precursor and resulting transfor-

mation into one of the three categories listed on page 124. Before considering

the patterns themselves, we first deal with a difficult problem that arises in

several of the transformations for behavioural patterns.

Issues in Class-splitting Transformations

Many of the transformations in this section involve splitting an existing class.

In the simple case, e.g., Strategy, after the class is split one part retains a

reference to the other part. The relationship is reflected in the object struc-

ture in that what was originally a single object before the transformation,

will now become two objects, one with a reference to the other. This does

not present any particular problem to our approach. Given a reference to an

object, the part that has been split off can be accessed by traversing the link

to that object.

A much more serious issue arises when a class is split and the cardinality

of the relationship between the parts is made 1:N, but the traversal of this

136

relationship must only be available from the N side to the 1 side. In this case

it is up to the programmer to keep track of which object is related to which,

i.e., there is no explicit link between the objects. This occurs in a number of

design pattern transformations:

• Iterator. In the precursor the iteration is part of the composite class,

while in the design pattern structure it is moved to an object on its

own. A composite object may have many active iterations, but should

not know about them.

• Memento. In the precursor the originator class itself stores the me-

mento object, while in the design pattern structure it is stored in an

object on its own. An originator object may have many mementos, but

should not know about them.

Here is a concrete example of the problem, based on the design pattern

transformation for the Iterator pattern (see page 142):

Composite x = new Composite();

Composite y = new Composite();

Composite z;

x.startIteration();

y.startIteration();

...

if (someCondition)

z=x;

else

z=y;

...

return(z.getNextElement());

137

The Composite class provides the usual methods to add and remove ele-

ments, as well as methods to iterate through the elements of the composition.

The object reference z is assigned one of the two Composite objects that have

been created at the start of the block.

In applying the Iterator pattern to this program, the iteration part of

Composite will be split off into a class on its own. At points in the code where

an iteration is started, a new iteration object will be created, parameterised

with the composite object. In the above code, two new iteration objects will

be created, one for the iteration over x, and one for the iteration over y. The

problem faced here is how to work out which iterator object should be used

in the return statement.

In the original program, the fact that we had a reference to the object

meant that we knew which iterator it was connected to, since the iterator was

part of the object itself. In the transformed program, the iterator object holds

a reference to its composite object, but not vice versa. This means that code

in the original program that accesses the iteration interface of a composite

object cannot be easily transformed to use the appropriate iteration object.

In fact, this problem is not decidable in general, and could be a problem for

a programmer performing the task by hand.

If an iterator is initialised and used on a named object, not passed to

another context and not aliased, it will not be a problem to transform. Such

cases can be transformed automatically. More complicated cases cannot be

dealt with using our approach.

Chain of Responsibility

The intent of the Chain of Responsibility pattern [41, p.223] is to decouple

the sender of a request from the ultimate receiver of the request. The request

138

is passed along a chain of objects until one object finally handles it.

A starting point for this transformation that involves an object sending a

request to various other objects, and testing if they have handled it, is likely

to be an antipattern. A more suitable precursor starting point is where the

receiver object is known to the sender, but a requirement has emerged to

make this relationship more flexible. For example, in developing an applica-

tion a programmer may start with a simple interface where any help request

from the user is always handled by the same object. As the interface be-

comes more complicated, and a full graphical user interface is used, it will

be necessary to introduce context-sensitive help. In this case, a user help

request may be passed through several user interface objects until it reaches

the appropriate one that can handle it.

The input to this transformation is the sender class and the receiver class.

It proceeds then as follows:

1. Apply Wrapper to the receiver class to produce the chaining class.

2. Make the receiver class a subclass of the chaining class. This has the

effect of making the default behaviour for any undefined method in the

receiver class be delegation to the next object in the chain15.

3. Apply AbstractAccess to the sender class so it uses the chaining

class rather than the receiver class.

Any receiver object has now been made part of a null-terminated chain of

objects of length 1. To add a new receiver class that handles any foo requests,

the new receiver class should be made a subclass of the chaining class, the foo

method should be removed from the existing receiver class (thus causing the

15This is a surprising and valuable reuse of the class produced by the Wrapper mini-

transformation.

139

default delegation behaviour to come into play), and the required receiver

object should be constructed and added to the end of the current chain of

objects.

After application of this pattern, the programmer is left with some work

to do to exploit the flexibility of the pattern structure. The precursor for this

pattern is nevertheless plausible and the transformation does not present any

serious problems16.

Overall Assessment : Excellent.

Command

The intent of the Command pattern [41, p.233] is to encapsulate a request as

an object. This enables a client to be parameterised with different requests,

and supports queuing and logging of requests.

This pattern aims to loosen the coupling between the originator of a

request and the receiver of the request. The originator is initialised with a

command object that simply supports the operation execute. At some point

the originator invokes execute on its command object and this sends the

request to the receiver object.

The precursor is as follows. An instance of the originator class invokes

the parameterless operation foo on its receiver object. The receiver object

is passed to the originator class as an argument to its constructor (if it is

created within the constructor we can use the parameteriseField refactoring

to extract its construction). The only use the originator class makes of its

16Tokuda and Batory state of this pattern [96]: “there is no refactoring-enabled evolu-

tionary path which leads to [its] use.” We have nevertheless presented a successful trans-

formation for this pattern. The reason is that the precursor actually simplifies matters

by ensuring that the key behavioural abstractions are already packaged into methods so

what remains is a mainly structural transformation.

140

receiver field is to invoke foo on it. The transformation proceeds as follows:

1. The createWrapperClass refactoring is used to partially wrap the re-

ceiver class. This creates the concrete command class that stores a

reference to a receiver object and delegates the foo request to it.

2. Rename the foo method in the command class to execute.

3. Apply the Abstraction minitransformation to the command class to

produce the command interface.

4. The useWrapperClass refactoring is used to update all creations of orig-

inator objects to wrap the receiver parameter in a concrete command

object. This concrete command object is stored in the originator class

and any previous invocations of receiver.foo() are changed to com-

mand.execute().

5. Delete the receiver field from the originator class.

The precursor appears valuable, though quite constrained, and the transfor-

mation is satisfactory.

Overall Assessment : Partial.

Interpreter

The intent of the Interpreter pattern [41, p.243] is to enable the definition

of the representation of a grammar, along with an interpreter that uses this

representation to interpret sentences in the language defined by the grammar.

This pattern is useful when the program being developed has to interpret a

simple language that can be stored as an abstract syntax tree. Each grammar

rule in the language is represented as a class and an interpret method is added

141

to each class that defines how this part of the sentence is to be interpreted

and processed.

The natural precursor is where a problem is represented and solved in

some particular way, but it becomes necessary to deal with a more general

problem, one that can be usefully specified as a simple language. For exam-

ple, a program may allow the user to search for a string in a text file. A

natural evolution of this facility would be to allow the user to specify a more

general pattern to search for, and in this case it would be useful to specify

the problem using a regular expression grammar.

Although the precursor is plausible, it is too vague to serve as a concrete

starting point for an automated transformation. Nor does there appear to be

any obvious precursor that could serve as a starting point for a transformation

for this pattern17.

Overall Assessment : Impractical.

Iterator

The intent of the Iterator pattern [41, p.257] is to enable sequential access

to the elements of an aggregate object without exposing the underlying rep-

resentation of the object. It allows multiple concurrent iterations over the

aggregate object and does not expose the underlying structure of the aggre-

gation.

The ideal starting point for this transformation would be simply an ag-

gregate class that does not have any iterator yet. However, automatically

extracting the structure of the aggregate and how to iterate through it is not

feasible, so we seek a simpler precursor. A natural one is where the iterator

17In his work on automated pattern detection, Kyle Brown also classifies this pattern

as too general to be detectable by an automated tool [13].

142

has been built into the aggregate class itself through the use of a cursor.

This is common practice when prototyping an aggregate class initially, and

will allow a single iteration to be active at any one time18. If the aggregate

class becomes more widely used, the requirement for multiple concurrent it-

erations will surely arise, and this will require the application of the Iterator

pattern.

The parameters to this transformation are the aggregate class itself and

the iteration methods and fields that are part of this class. The iteration

fields should only be accessed by the iteration methods. The transformation

works as follows:

1. Copy the iteration methods and fields to the new iteration class, which

is parameterised with an instance of the aggregate class and delegates

any internally-generated, non-iterator requests to this instance. A form

of the Delegation minitransformation can be used here, but the orig-

inal aggregation class should remain unchanged for now.

2. Apply Abstraction to the iterator class to produce an iterator in-

terface. Apply EncapsulateConstruction to the aggregate class

with the iterator class as createe. This will add a construction method

for the iterator class to the aggregate class that returns an iterator

instance initialised with this.

3. Wherever in the program an instance of the aggregate class is iterated

over, replace this with access via an iterator object.

4. Delete the iteration methods from the aggregate class.

18It is also the solution used by Bertrand Meyer to enable iteration though the elements

of a list [66, p.192].

143

Step (3) may produce a clumsy result. If an aggregate object is partially

iterated over and then passed as an argument to another method, the iterator

will have to be passed in as well, and possibly then the aggregate object need

not be passed. This is an example of the class-splitting problem discussed on

page 136. Apart from this, the precursor for this transformation is plausible

and the transformation generally compelling.

Overall Assessment : Partial.

Mediator

The intent of the Mediator pattern [41, p.273] is to define an object that en-

capsulates how a set of objects communicate. By centralising communication

in the mediator object, coupling between the colleague objects is reduced,

and knowledge of how they communicate is defined in one place rather than

distributed across the colleague objects. This pattern works best when the

colleague objects communicate in a well-defined way.

This pattern is similar to Facade [41, p.185], except that it allows for

multidirectional communication between the colleague objects, rather than

the unidirectional communication that Facade supports. As with Facade,

there is little that can be done here by way of providing automated support.

A mediator class can be introduced, but the analysis of the inter-object

communication, so that it can be abstracted and centralised in the mediator,

is a task that has to be performed by hand.

Overall Assessment : Impractical.

Memento

The intent of the Memento pattern [41, p.283] is to make it possible to capture

and externalise the state of an object, and to restore the object to this state

144

at a later time. This must occur without violating the encapsulation of the

object.

A suitable precursor is as follows. The originator class supports two

operations, say store and reset. Store requests the originator to make a copy

of its state and store this internally in a field called state, while reset restores

the originator to its earlier state. This reflects the intent of the Memento

pattern, but not the flexibility. For example, a client (caretaker) cannot store

multiple mementos; the originator can only store one. The transformation

replaces the store and reset methods with createMemento and setMemento,

and updates the caretaker classes to use these methods. A green field starting

point for this design pattern transformation is possible as well, and would

also be a practical starting point.

The input to this transformation is the originator class, the memento

class, the store and reset methods and the state field.

1. The store and reset methods are copied to methods called createMe-

mento and setMemento in the originator class.

2. The createMemento method is updated to create a local object of the

class memento and to access this instead of the state field of the origina-

tor class. It returns this object at completion of the method’s execution.

3. The setMemento method is similarly updated to take an argument of

the class memento and to access this instead of the state field of the

originator class.

4. The memento class is given an empty interface and AbstractAccess

is used to update the createMemento and setMemento methods to use

this interface rather than the memento class.

145

5. All caretaker classes that use the store and reset methods are updated

to use createMemento and setMemento and to store the memento object

locally19.

6. The store and reset methods, and the state field are deleted from the

originator class.

The precursor is not that useful in that it assumes that the essential memento

aspects are present. The transformation then moves from a “one memento

per originator object” situation to a more flexible“many mementos per origi-

nator object” situation. We used a similar precursor for the Iterator pattern,

but it more likely that an aggregation class will provide an interface for iter-

ation than that a given class will provide a store/reset interface as we have

assumed here.

Overall Assessment : Partial.

Observer

The intent of the Observer pattern [41, p.293] is to define a dependency be-

tween a subject and a number of observer objects such that whenever the

subject changes state, all the observers are notified of the change and can

take appropriate action. A reasonable precursor would be where the relation-

ship is one-to-one, i.e., there is a single observer object and the dependency

between the subject and observer has been implemented in an ad hoc fashion.

This is a reasonable design, though in the presence of a requirement to add

19There is an issue here in that we must know which reset matches which store. An

invocation of reset will match the previous invocation of store, and while this is easy to

work out in many cases, it is not decidable in general. This is an example of the class-

splitting problem discussed on page 136.

146

more observers, it will be necessary to make the relationship more flexible

by applying the Observer pattern.

Automating this transformation is a problem as the precursor described

is too vague. The dependency between subject and observer could be imple-

mented in many different ways. We could make progress by assuming that

there is a single observer that uses the “attach/notify” protocol provided

by the subject, and build a transformation that allows multiple observers

to attach to the subject. We assess that this precursor is not a very likely

structure to occur in practice. It is possible to provide the basic Observer

structure for the programmer to work with, but we have not found a con-

vincing precursor and transformation for this pattern.

Overall Assessment : Impractical.

State

The intent of the State pattern [41, p.305] is to enable an object to undergo

a qualitative change in behaviour when its internal state changes. Rather

than expressing this as extensive and similar case analysis in each method,

this pattern defines a class to represent each possible state the object may

be in. For example, a stream object will behave very differently depending

on whether or not the file it is connected to is open or not. Rather than

having a single stream class whose methods test whether or not the file is

open, the State pattern would model this situation as two separate classes,

one representing an open file, the other a closed file.

There is a very compelling precursor for this pattern. A class defines

objects that can be in any one of a number of distinct states, and which

state an object is in has a qualitative effect on behaviour. This will be

evident because the methods of the class will contain a similar case analysis

147

structure, e.g.,

if (someCondition){
...

}
else{

...

}

A class that contains several methods that have this structure can be split

into two classes, one where someCondition is true and one where someCondi-

tion is false. The if...else statement can then be removed and simply replaced

by the appropriate body of code.

The input to this transformation is the context class to be split, the

condition that is to be used as a basis for the splitting, and the points in

the methods of the class where the value of this condition changes. The

transformation proceeds as follows:

1. Apply the Delegation minitransformation to the context class, so it

now delegates all requests to a component object of the newly-created

state class.

2. Apply Abstraction to the state class and AbstractAccess to the

context class, so the context class now only refers to the state class via

the state interface.

3. For each interesting value of the given condition, create a subclass of

the state interface. Simplify all case analysis in the methods of these

classes based on the value the given condition is known to have20.
20Opdyke presents a detailed description of how to simplify conditionals in [77, p.71].

148

4. Add a setState method to the context class that sets its local state field

to the given instance of one of the state subclasses. At each of the

points in the methods of the state subclasses where the given condition

may change value, add an invocation of the setState method to set the

new state object in the context class.

5. Update the creation of context objects to initialise them with the ap-

propriate state object.

6. Delete the original (unsplit) state class that was created in step 1.

The structural aspects of this transformation can be automated, but in gen-

eral user intervention is needed in assessing where a state change occurs.

Overall Assessment : Partial.

Strategy

This pattern has been fully dealt with in section 5.5.3. The precursor and

transformation are compelling, though a small amount of refactoring work is

left to the programmer at the end of the transformation.

Overall Assessment : Excellent.

Template Method

The intent of the Template Method pattern [41, p.325] is to enable a method

to be expressed as a skeleton algorithm, thus deferring the details of the

implementation to subclasses. Each subclass reuses the abstract algorithm

defined in its superclass, and supplies the details that are specific to itself.

For example, a search routine in an abstract container class could be described

as follows:

149

boolean search(Element e){
initSearch(e);

while(!exhausted() && !found(e))

advanceSearch(e);

return !exhausted();

}

This method is in effect a high-level algorithm that describes searching21.

Each concrete subclass of container will define initSearch, exhausted, found

and advanceSearch in its own way.

The natural precursor for this pattern is where a method has been im-

plemented in terms of the other concrete methods defined in its class. This

is a normal situation, but in the face of a requirement to reuse the algorithm

contained in the method, but not its detailed implementation in terms of

the other methods of the class, the weakness of this tight coupling becomes

clear. Applying the Template Method pattern in this situation separates the

essential algorithm of the method from the methods it invokes, and allows

the algorithmic abstraction to be reused.

The input to this transformation is the method to be templated. The

transformation proceeds as follows:

1. Apply partialAbstraction to the class of the method to produce an

abstract class where the methods used by the method to be templated

are defined to be abstract.

2. Update clients of the given class to use references to the abstract class

instead (uses a form of AbstractAccess).
21Instances of the Template Method pattern are also referred as hot spots, as they

describe a flexible part of the application that is open to change. An approach for auto-

matically detecting hot spots is described in [87].

150

The transformation is simple and straightforward. The only weakness is that

the precursor assumes that the components of the method to be templated

have been encapsulated as methods. If this is not the case, a refactoring

similar to Opdyke’s convert code segment to function [77, p.53] could be used

to encapsulate these code segments as methods.

Overall Assessment : Excellent.

Visitor

The intent of the Visitor pattern [41, p.331] is to enable an operation over an

object structure to be defined separately from the object structure itself. For

example, adding a new operation to a parse tree usually involves adding a

method to each class of node in the tree, to define how the operation works for

that type of node. This distributes a cohesive algorithm over several classes,

which is not in general a desirable design. The Visitor pattern enables such

an operation to be defined in one class, thus keeping all the details of the

operation in one place22.

The natural precursor for this pattern in where an operation has already

been implemented as part of the object structure, and the programmer now

wants to switch to a Visitor pattern solution to enable easy addition of other

operations. The transformation can easily create the visitor interface and a

concrete visitor class for the operation as well as adding the accept method to

the classes of the object structure. However, the key step of taking the oper-

ation that has been distributed across the classes of the object structure and

22This does not come for free of course; the principle disadvantage of the Visitor pattern

is that the class that defines the visitor operation must have knowledge of the classes

defining the object structure. If these classes change, so too must the visitor class itself.

This problem and the use of subject-oriented programming to resolve it are discussed in

[21].

151

centralising this in the concrete visitor subclass cannot be fully automated

using our techniques. The existing definition of the operation will probably

combine operation-related code with traversal code in various ways. Sepa-

rating out this code requires intervention from the programmer. So while

a small part of this transformation may be automated, the precursor is not

really being exploited to produce an interesting, behaviour-preserving trans-

formation.

Overall Assessment : Impractical.

5.7 Analysis of Results

The results from the previous sections of this chapter are presented in com-

plete form in table 5.1, and in summary form in table 5.2. These tables

indicate a very satisfactory result. An excellent transformation was achieved

for close to half the patterns considered, and in a further 26% of cases a

workable, though partial, transformation was found.

The methodology worked very well for the creational patterns, but not

so successfully for the structural patterns or behavioural patterns. It was

to be expected that behavioural patterns would cause problems, but it is

surprising that the results for the structural patterns were not better. Our

approach is based on static analysis of the program, and so deals more easily

with concrete program structure than with dynamic behaviour. The reason

for this apparent anomaly is that although a pattern is assigned one of three

categories, it may well contain elements from all three. For example, Ab-

stract Factory is a very static, creational pattern but Builder, although also

categorised as creational, has a distinct behavioural flavour as the objects in

question are created in a dynamic “piecemeal” fashion.

152

Pattern Name Purpose Assessment

Abstract Factory creational Excellent

Builder creational Excellent

Factory Method creational Excellent

Prototype creational Excellent

Singleton creational Excellent

Adapter structural Excellent

Bridge structural Excellent

Composite structural Excellent

Decorator structural Partial

Facade structural Impractical

Flyweight structural Impractical

Proxy structural Partial

Chain of Responsibility behavioural Excellent

Command behavioural Partial

Interpreter behavioural Impractical

Iterator behavioural Partial

Mediator behavioural Impractical

Memento behavioural Partial

Observer behavioural Impractical

State behavioural Partial

Strategy behavioural Excellent

Template Method behavioural Excellent

Visitor behavioural Impractical

Table 5.1: Assessment of Design Pattern Transformations

Assessment No. of Patterns Percentage

Excellent 11 48%

Partial 6 26%

Impractical 6 26%

Table 5.2: Summary of Assessments

153

Other initially surprising results were those for Strategy (a behavioural

pattern that worked well) and Facade (a structural pattern that failed). In

the case of the precursor for Strategy, the behavioural aspects of the pattern

are already encapsulated within methods. The transformation therefore just

has to deal with the structure of this pattern, and this proved straightforward

to handle. Facade presented the opposite problem. Its structure is easy to

deal with, but there is also a behavioural element in how the client classes

interact with the subsystem classes that are to be encapsulated, and this

behavioural element could not be extracted and transformed.

Reuse of minipatterns is another important issue to consider. We hoped

that the minipatterns uncovered during the development of the earlier design

pattern transformations would prove useful in later developments. In table

5.3 we depict the reuse of minipatterns across the design pattern transfor-

mations. Note that for simplicity, when one transformation reuses another

in its entirety (e.g., Abstract Factory uses Singleton), we depict this as reuse

of the component minitransformations. Also, we omit from the table design

patterns for which no satisfactory transformation was found.

It is clear from this table that we have achieved considerable reuse of

the set of six minitransformations that were uncovered during development

of transformations for the creational patterns and the sample structural and

behavioural pattern. The actual reuse achieved is even stronger, as this table

only depicts minitransformation reuse and ignores the reuse of refactorings

such as createExclusiveComponent.

154

Pattern Abs AbsAcc Encap Partial Wrap Deleg

Abstract Factory x x x x

Builder x x x

Factory Method x x x x

Prototype x x

Singleton x

Adapter x x x

Bridge x

Composite x x

Decorator x x x

Proxy x x x

Chain of Responsibility x x

Command x x

Iterator x x x

Memento x

State x x x

Strategy x x x

Template Method x x

Table 5.3: Reuse of Minitransformations

The abbreviations in the table are as follows. Abs:Abstraction,

AbsAcc:AbstractAccess, Encap:EncapsulateConstruction,

Partial:PartialAbstraction, Wrap:Wrapper, Deleg:Delegation.

155

5.7.1 Comments on the Development of the Transfor-

mations

Developing a transformation for a design pattern is not a trivial task. In-

sight and experience are necessary, and, as with any design task, many iter-

ations were usually required before a satisfactory solution was reached. Our

approach to demonstrating behaviour preservation demands that program

behaviour be maintained at every step. This constrains the type of transfor-

mations we can use, in that the following structure is not permitted:

transformationi // program behaviour is changed

...

transformationj // program behaviour is reinstated

Although this overall chain is a refactoring and could be permitted, it will

be disallowed because the application of transformationi will be deemed to

have changed program behaviour. It would be desirable to allow this type

of chaining, but it would be extremely difficult to extend our approach to

behaviour preservation so as to be able argue that a program has changed

behaviour, and then changed back to its earlier behaviour23. The reason why

we are able to reason about program behaviour so easily is that we need

never be concerned with what the behaviour actually is, only that it has not

been changed. To weaken this criterion would lose the relative simplicity of

the approach that we have used.

That this type of erroneous composition is tempting is evidenced in

Roberts’s work. In [84, p.40] he presents a composite refactoring chain that
23Tokuda and Batory call this type of refactoring a transactional refactoring [96]. They

propose allowing this type of refactoring but demanding that it operates in atomic mode,

thus ensuring behaviour preservation. However, producing a semi-formal argument of

behaviour preservation remains a problem.

156

creates a strategy object. Part of the composition involves the application

of the moveMethod and moveField refactorings to move the strategy methods

and fields from the context class to the strategy class. However, a precondi-

tion of his moveMethod refactoring is that the method must not access any

fields of its current class. Clearly then, the program will be in an illegal

state after the application of the moveMethod refactoring, and will only be

returned to a legal state when the moveField refactoring has been applied24.

We dealt with this problem by first “abstracting” the method from its class

so it could be moved away and still access fields in that class. See section 5.5

for more details.

Scanning our catalogue of design pattern transformations, we observe

that a transformation generally has three phases:

1. Applying the design pattern structure. This involves adding new classes,

interfaces, methods etc. to the program. They are just added, not used,

accessed or invoked, so arguing behaviour preservation for this stage is

quite trivial. The changes made by this stage typically set the scene

for the pattern, and would not make sense to perform on their own,

unless the following step was performed as well.

2. The operation-affecting step. This is the “big step” that switches the

program from its old inflexible structure to the more flexible pattern

structure set up in the previous step. The precondition for this step is

usually quite sophisticated, but has been largely set up by the previous

step if all has gone well. It is therefore common that the precondition

for this step does not contribute much to the precondition of the overall

transformation.

24At the point in the derivation of the preconditions for the chain [84, p.41] where this

should become apparent, the conflicting condition is omitted.

157

3. Tidying up. In this step any program elements that are no longer

needed are deleted. The postcondition of the previous step must make

it clear that they are no longer required. In many transformations,

there is no need for this step, as no program elements are made redun-

dant by the transformation.

There is a fractal element in this structure, in that a design pattern transfor-

mation may use a minitransformation that itself has this three-part structure.

The actual low-level refactorings that are the foundation of this work do not

have this structure however. They typically fit into one of the above three

categories. For example, addClass clearly belongs to the first, replaceObjCre-

ationWithMethInvocation to the second, and deleteClass to the third. Green

field approaches to design pattern application need only to use the first step,

that of setting up the pattern structure. The second and third steps are re-

quired in our approach as a direct result of our using a precursor as a starting

point for the transformation, and demanding that the transformation be be-

haviour preserving.

5.7.2 Comments on Precondition Computation

In this section we make some general observations about the process of pre-

condition computation.

• It is not a simple task.

• It can be applied rapidly with experience, though doing it step-by-step

as in chapter 3 is very tedious.

• Usually earlier refactorings set up the preconditions for later ones, so

even though the overall transformation can be quite complicated, the

precondition is usually not too extensive.

158

• Computing preconditions was a very useful process. Frequently it un-

covered aspects of the transformation that might otherwise have been

missed. For example, the fact that the Factory Method transforma-

tion cannot be applied if the Creator class uses a static method of the

Product class is not obvious in itself. However the process of comput-

ing the precondition for this transformation brought this aspect to the

foreground (see section 4.4.1).

5.8 Related Work

In chapter 4 we discussed related work in the general area of automated

design pattern transformations. Specific details of how other approaches

deal with particular patterns were considered in this chapter as part of the

analysis of the relevant pattern.

5.9 Summary

We have rigorously applied our proposed methodology to the entire set of

Gamma et al creational patterns, and to a sample structural and behavioural

pattern. For the remaining Gamma et al patterns, we assessed if they were

amenable to our approach and, where possible, proposed a precursor and

sketched a transformation. Our results were promising in that for most

patterns a workable solution could be found, and there proved to be extensive

reuse of the minitransformations that were developed during this work.

159

Chapter 6

Conclusions

This chapter concludes the thesis. In section 6.1 we state again the contri-

butions that have been made by this research. In section 6.2 we present a

number of proposals for future work that would extend this research, and

finally, in section 6.3, we make some concluding remarks.

6.1 Contributions

The principle contributions of this thesis were stated in chapter 1. Here we

restate them:

• A methodology for developing design pattern transformations. This is

the essential contribution of this work. The methodology we have de-

veloped has been applied with full rigour to seven common design pat-

terns1, and a prototype software tool has been built that can apply

these seven design patterns to Java programs. The methodology has

also been applied to the remaining patterns in the Gamma et al pat-

1The seven design patterns to which the methodology has been fully applied are Ab-

stract Factory, Factory Method, Singleton, Builder, Prototype, Bridge and Strategy [41].

160

tern catalogue [41], though these pattern transformations have not been

prototyped. The essence of our methodology has been published in

summary form in [74, 72], and more completely in [75].

• A minitransformation library. Design pattern transformations have a

strong degree of commonality and this has been captured in a set of

six minitransformations. These minitransformations have been imple-

mented and demonstrated to be widely applicable in developing design

pattern transformations.

• A model for behaviour-preservation proofs. The transformations we

develop must be invariant with respect to program behaviour. In order

to prove this rigorously for the sophisticated program transformations

that we develop, we have extended existing refactoring work by allowing

the transformation definition to contain not only simple sequences, but

also iteration and conditional statements. This model has been applied

in full rigour to several examples, and has been published in [76].

Other contributions are:

• The notion of Precursor. We introduced the notion of a precursor for a

design pattern, i.e., a design structure that expresses the intent of the

design pattern in a simple way, but that would not be regarded as an

example of poor design. We demonstrated the usefulness of this notion

by developing precursors for the Gamma et al design patterns, and

using them as starting points for our design pattern transformations.

This set of precursors provides an insight into the type of program to

which a given pattern can be applied.

• A refactory for Java. The lowest layer of transformations is a collection
of refactorings that can be applied to a Java program, and this can

161

serve as a basis for other transformation work. An extensive set has

been designed and implemented, and these are described in appendix

B. Some are naturally similar to existing refactorings, while others are

peculiar to the development of design pattern transformations.

• A Precondition Categorisation. In section 4.4.1 we described how each

clause of the precondition to a design pattern transformation can be put

into one of four categories. We also described how this categorisation

can be used in practice to decide how to deal with the failure of a

precondition clause.

6.2 Future Work

In the following subsections we consider possible future work in the area of

this thesis.

Practical Tests of the Design Pattern Tool (DPT)

The software prototype we have built as part of this work, DPT, has been

tested on several sample programs to establish a base-level confidence that it

operates correctly. Naturally, extensive further testing and updating would

be required to bring the quality of this prototype to production level.

A more interesting issue in this context relates to programmer acceptance

of the type of transformation DPT performs. DPT makes sweeping changes

to a program when it applies a pattern, and it is an open question whether

a programmer would be content to allow a large system to be updated in

this way. Indeed, a software tool can fail in practice for any number of

reasons [83], and arguing abstractly that it is nevertheless useful is futile.

The author’s position is that a programmer will use a software tool only

162

if they have a very clear mental model of what the tool does. Compilers,

debuggers and profilers all fit into this category. As design patterns become

more established, we can expect programmers to become more comfortable

with the type of transformations DPT applies.

One way to aid the programmer’s comprehension of the transformation

DPT has applied is to present each of the program changes to them and

ensure that they are satisfied with each one. If they are not, the whole pro-

gram can be rolled back to its pre-transformation state. A more ambitious

approach is to try to explain the pattern to the programmer (depending on

their pattern expertise), and put the changes in this context. Note that

existing work in the area of program comprehension has focused on compre-

hension as part of software maintenance (e.g., [86]). The problem described

here, that of presenting the effects of a large refactoring in a comprehensible

manner, is a future challenge for this field.

Further Construction of Pattern Transformations

Our refactorings and minitransformations provide a library of reusable com-

ponents for design pattern transformation development. As with any such

library, many iterations are required to fully comprehend the domain and

to provide a stable set of components. With each new design pattern de-

velopment, our understanding of the minitransformations was refined, and

frequently this resulted in the refactoring of the library itself. We do not

claim that this process is complete. As more design pattern transformations

are developed using this approach we can expect more minitransformations

to appear and the existing ones to require further work and refinement.

163

Automation

At present the construction of the behaviour preservation arguments is frag-

ile, in that any change made to a low-level refactoring or analysis function

requires that all proofs that use this refactoring or analysis function be

rechecked. This dependency itself is unavoidable, but automated software

support would be very useful to help manage it. A repository of refactorings,

analysis functions and helper functions could be created and this used in

performing syntax checking and typechecking of the behaviour preservation

arguments. For example, if testing of DPT reveals that the precondition of

a refactoring is not strong enough, the specification of this refactoring would

then be updated in the repository. The automated assistance software could

then highlight which minitransformations and design pattern transformations

have to be revisited.

More ambitiously, an attempt could be made to automate the construc-

tion of the behaviour preservation argument. This is a challenging task, as

we currently use semantic knowledge in building the behaviour preservation

arguments. To completely formalise this would involve working with a for-

mal semantics for Java (e.g., [47, 99]), and this would be likely to run into

tractability problems. Partial automation is a more promising approach to

take, and it would be interesting to see what contribution such an approach

could make to the computation of pre- and postconditions for a design pat-

tern transformation.

Pattern Maintenance

Applying a design pattern changes the program code, and some of these

changes must be maintained in order for the pattern to remain intact. This

means that certain constraints are put on the possible future evolutions of

164

the program. For example, in a program where the Factory Method pattern

has been applied, the addition of a new Product class means that a new

method must be added to the Creator class as well.

Developing tool support to manage and check these constraints is a valu-

able extension to our work. The postcondition for a design pattern trans-

formation provides a basis from which to develop the constraints associated

with a design pattern. These constraints can be defined using our analysis

functions. This enables a software tool to manage the constraints associ-

ated with patterns that have been applied to the program, and to notify the

programmer if they are updating code that relates to a pattern. The pro-

grammer may be advised that their updates are violating a pattern-related

constraint, and informed of what other changes are necessary in order to

re-establish the pattern constraints.

Language Independence

In our work we focused on the application of design patterns to Java pro-

grams. This raises the question of the extent to which our approach is ap-

plicable to other programming languages. Some refactorings and minitrans-

formations are applicable to any class-based, object-oriented language, while

others are quite Java-specific, for example, those that deal with interfaces.

One approach would be to use the Template Method pattern to describe

abstractly how the design pattern transformation operates, and provide the

language specific details in subclasses. This is certainly possible; whether

it is actually useful depends on the degree of commonality between a set

of design pattern transformations that each apply the same pattern, but to

programs written in different languages. All refactoring work to date has been

language-specific, so this direction would present an interesting challenge.

165

Pre-transformation Refactorings

For each design pattern transformation we compute its pre- and postcondi-

tions, and add its precursor precondition where necessary. This precondition

characterises the type of program to which the design pattern transformation

can be applied. In section 4.4.1 we categorised the different types of precon-

dition that a design pattern transformation can have. We stated that if a

refactoring precondition fails, the program can be automatically refactored

to correct the problem, and the transformation then applied.

We can view the design pattern transformation as describing a prototypi-

cal transformation. If a refactoring precondition fails, the program has to be

massaged into a suitable state so that the prototypical transformation can be

performed. This is an area for future investigation, and has the potential to

make the transformations we have developed applicable to a much broader

range of programs.

Pattern Applicability

Our current preconditions simply ensure that the design pattern transforma-

tion can be applied without changing program behaviour. It is left up to

the programmer to decide if applying the pattern is a good idea or not. We

argued strongly in section 2.2 that there are aspects of patterns that require

human insight, and that automated attempts to locate suitable places to

apply a pattern are of limited value.

However, a software tool could do more in terms of assessing whether

the pattern is applicable or not, by asking the programmer certain questions

about their intention. For example, in applying the Visitor pattern, the tool

might ask the programmer “Do you expect the classes in the object structure

to change often?” The answers from the programmer may cause the tool to

166

suggest that the pattern is not a suitable solution, or to configure the exact

manner in which the pattern is applied.

Pattern Removal

An over-zealous programmer might apply a pattern even though it is not

required, thus obscuring the program rather than enhancing its clarity [84,

p.23]. It might also be useful to optimise a program prior to compilation

by removing any unnecessary patterns, as they typically have a detrimen-

tal effect on runtime performance. An interesting extension to our work is

therefore to develop transformations that remove patterns, rather than apply

them. In this case, the design pattern structure is the starting point for the

transformation, and the corresponding precursor is the target. The informal

statement of the starting point for this type of transformation would be “the

design pattern structure is present, but its flexibility is not required.”

This is not as simple as defining an inverse for each refactoring, and

applying them in reverse order. Many refactorings require extra state to be

maintained in order to define their inverse. For example, the inverse of a

refactoring that deletes an unused class must have access to the deleted class

in order to restore it. Even if this extra state is maintained, any changes to

the program between the pattern being applied and it being removed might

render the inverse refactorings unusable. This area may be interesting to

look at, though it is obviously of less impact than the application of design

patterns2.

2Unless of course the current interest in design patterns turns to disdain, and the

software industry starts “reengineering to depatternise.”

167

6.3 To Conclude

We stated the fundamental thesis of this work in chapter 1 as follows:

Automating the application of design patterns to an existing pro-

gram in a behaviour preserving way is feasible.

The research presented in this dissertation has demonstrated the validity of

our original thesis. In section 5.7 we found that an excellent transformation

was constructed for close to half the patterns considered, and in only 26% of

cases could no useful precursor or transformation be found. For seven of the

design patterns considered, a rigorous argument of behaviour preservation

was also developed. We achieved strong reuse of the minitransformations, as

is depicted in figure 5.3 on page 155.

Design patterns have been gaining acceptance in the software engineering

community, though the lack of formalisation or automated support has been

a weakness of this field. Refactoring has also been gaining support, though

again, most of the recent interest has been in non-automated approaches. We

have contributed to the formalisation of the refactoring field, and used our

contribution to develop a rigorous and practical approach to the automated

application of design patterns.

168

Bibliography

[1] Christopher Alexander. The Timeless Way of Building. Oxford Uni-

versity Press, 1979.

[2] Ken Arnold and James Gosling. The Java Programming Language.

Addison-Wesley, Reading, Massachusetts, first edition, 1996.

[3] Kent Beck. Extreme Programming Explained. Addison Wesley Long-

man, Reading, Massachusetts, first edition, 2000.

[4] PerOlof Bengtsson and Jan Bosch. Haemo dialysis software architec-

ture design experiences. In Proceedings of the International Confer-

ence on Software Engineering, pages 516–525, Los Angeles, 1999. ACM

Press.

[5] Keith Bennett and Vaclaw Rajlich. Software maintenance and evo-

lution: A roadmap. In Anthony Finkelstein, editor, The Future of

Software Engineering, New York, 2000. ACM Press. Produced as part

of ICSE 2000, Limerick, Ireland.

[6] Keith H. Bennett. Do program transformations help reverse engineer-

ing? In Proceedings of the International Conference on Software Main-

tenance, Maryland, November 1998. IEEE Press.

169

[7] Paul Bergstein. Object-preserving class transformations. In Object-

Oriented Programming Systems, Languages and Applications Confer-

ence, pages 299–313, Phoenix, Arizona, 1991. ACM Press. SIGPLAN

Notices, Vol. 26, 11 (November).

[8] Lucy M. Berlin. When objects collide: experiences with reusing mul-

tiple class hierarchies. In Object-Oriented Programming Systems, Lan-

guages and Applications Conference, pages 181–193, Ottawa, Canada,

October 1990. ACM Press.

[9] Blueprint Technologies, McLean, VA. Framework Studio 1.5, 2000.

[10] Grady Booch. Object-oriented analysis and design with applications.

Benjamin/Cummings, Redwood City, California, second edition, 1994.

[11] John Brant, Brian Foote, Ralph Johnson, and Don Roberts. Wrappers

to the rescue. In Eric Jul, editor, Proceedings of the European Confer-

ence on Object-Oriented Programming, Brussels, July 1998. LNCS.

[12] Michael L. Brodie and Michael Stonebraker. Migrating Legacy Systems:

Gateways, Interfaces and the Incremental Approach. Morgan Kaufman,

San Francisco, 1995.

[13] Kyle Brown. Design reverse-engineering and automated design pat-

tern detection in smalltalk. Master’s thesis, North Carolina State

University, Computer Engineering Department, 1996. available from:

http://hometown.aol.com/kgb1001001/Articles/THESIS/thesis.htm.

[14] F. J. Budinsky et al. Automatic code generation from design patterns.

IBM Systems Journal, 35(2), 1996.

170

[15] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,

and Michael Stal. A System of Patterns: Pattern-Oriented Software

Architecture. John Wiley & Sons, Chicester, first edition, 1996.

[16] Eduardo Casais. Managing Evolution in Object Oriented Environ-

ments: an Algorithmic Approach. PhD dissertation, University of

Geneva, Faculty of Economic and Social Sciences, 1991.

[17] Eduardo Casais. An incremental class reorganization approach. In

O. Lehrmann Madsen, editor, Proceedings of the European Conference

on Object-Oriented Programming, pages 114–131, Utrecht, June 1992.

LNCS.

[18] Eduardo Casais. Automatic reorganization of object-oriented hierar-

chies: a case study. Object Oriented Systems, 1(2):95–115, December

1994.

[19] E. J. Chikofsky and J. H. Cross. Reverse engineering and design re-

covery - a taxonomy. IEEE Software, pages 13–17, January 1990.

[20] Franco Civello. Roles for composite objects in object-oriented analysis

and design. In Object-Oriented Programming Systems, Languages and

Applications Conference, Washington, September 1993. ACM Press.

[21] Siobhán Clarke, William Harrison, Harold Ossher, and Peri Tarr.

Subject-oriented design: Towards improved alignment of requirements,

design and code. In Object-Oriented Programming Systems, Languages

and Applications Conference, Denver, November 1999. ACM Press.

[22] J. Craig Cleaveland. An introduction to data types. Addison-Wesley,

Reading, Massachusetts, 1986.

171

[23] James O. Coplien. Software design patterns: Common questions &

answers. In Proceedings of Object Expo New York, pages 39–42, New

York, June 1994. SIGS Publications.

[24] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. A pattern

language for reverse engineering. In Fifth European Conference on Pat-

tern Languages of Programs (EuroPLoP), Irsee, Germany, July 2000.

[25] Serge Demeyer, T.D. Meijler, and Matthias Riegler. Towards de-

sign pattern transformations. In ECOOP Workshop Object-Oriented

Software Evolution and Re-Engineering, Finland, June 1997. Springer-

Verlag LNCS 1241.

[26] Rick Dewar et al. Identifying and communicating expertise in sys-

tems reengineering: a patterns approach. IEE Proceedings - Software,

146(3):145–152, 1999.

[27] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood

Cliffs, N.J., first edition, 1976.

[28] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language

independent approach for detecting duplicated code. In Hongji Yang

and Lee White, editors, Proceedings of the International Conference on

Software Maintenance, pages 109–118, Oxford, September 1999. IEEE

Press.

[29] Stéphane Ducasse, Matthias Rieger, and Georges Golomingi. Tool sup-

port for refactoring duplicated oo code. In Ana Moreira and Serge

Demeyer, editors, Object-Oriented Technology: ECOOP’99 Workshop

Reader, number 1743 in LNCS, Lisbon, June 1999. Springer Verlag.

172

[30] A. H. Eden, J. Gil, and A. Yehudai. Precise specification and automatic

application of design patterns. In Proceedings of the Twelfth IEEE In-

ternational Automated Software Engineering Conference, Nevada, No-

vember 1997. IEEE.

[31] A. H. Eden, Yossi Gil, Y. Hirshfeld, and A. Yehudai. Motifs

in object oriented architecture. Technical report, Uppsala Univer-

sity, Department of Information Technology, 1999. Available from:

http://www.cs.concordia.ca/̃faculty/eden.

[32] A. H. Eden, Y. Hirshfeld, and K. Lundqvist. LePUS - symbolic logic

modeling of object oriented architectures: A case study. In Proceedings

of the Second Nordic Workshop on Software Architecture (NOSA’99),

Ronneby, Sweden, August 1999.

[33] A. H. Eden, Y. Hirshfeld, and A. Yehudai. Towards a mathematical

foundation for design patterns. Technical report 1999-004, Uppsala

University, Department of Information Technology, 1999.

[34] A. H. Eden and A. Yehudai. Tricks generate patterns. Technical report

324, Tel Aviv University, Department of Computer Science, 1997.

[35] R. Fanta and V. Rájlich. Removing clones from the code. Journal of

Software Maintenance, 11(4):113–243, July 1999.

[36] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool support in

design patterns. In M. Aksit and S. Matsuoka, editors, Proceedings

of the European Conference on Object-Oriented Programming, pages

472–495. LNCS vol. 1241, June 1997.

173

[37] Brian Foote and William Opdyke. Lifecycle and refactoring patterns

that support evolution and reuse. In J.O. Coplien and D.C. Schmidt,

editors, Pattern Languages of Programming, Monticello, Illinois, 1995.

[38] Martin Fowler. Refactoring: improving the design of existing code.

Object Technology Series. Addison-Wesley Longman, Reading, Massa-

chusetts, first edition, 1999.

[39] Richard Gabriel. Pattern definitions. Available from:

http://hillside.net/patterns/definition.html, 1995+.

[40] John Gall. Systemantics: How systems work and especially how they

fail. Quadrangle/New York Times Book Company, New York, first

edition, 1977.

[41] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides. Design Patterns: Elements of Reusable Object-Oriented Soft-

ware. Addison-Wesley Professional Computing Series. Addison-Wesley,

Reading, Massachusetts, first edition, 1995.

[42] J. Paul Gibson, Thomas F. Dowling, and Brian A. Malloy. The applica-

tion of correctness preserving transformations to software maintenance.

In Lionel Briand and Jeffrey M. Voas, editors, Proceedings of the In-

ternational Conference on Software Maintenance, San José, October

2000. IEEE Press.

[43] Mark Grand. Patterns in Java, volume 1. Wiley, New York, 1998.

[44] Mark Grand. Patterns in Java, volume 2. Wiley, New York, 1999.

[45] Walter L. Hürsch and Linda M. Seiter. Automating the Evolution

of Object-Oriented Systems. In International Symposium on Object

174

Technologies for Advanced Software, pages 2–21, Kanazawa, Japan,

March 1996. Springer Verlag, Lecture Notes in Computer Science.

[46] Atsushi Igarashi and Benjamin C. Pierce. On inner classes. In Elisa

Bertino, editor, Proceedings of the European Conference on Object-

Oriented Programming, pages 129–153, Sophia Antoplis and Cannes,

June 2000. LNCS.

[47] Bart Jacobs, Joachim van den Berg, Marieke Huisman, and Martijn van

Berkum. Reasoning about java classes (prelimary report). In Object-

Oriented Programming Systems, Languages and Applications Confer-

ence, Vancouver, October 1998. ACM Press.

[48] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse:

Architecture, Process and Organization for Business Success. Addison-

Wesley, Reading, Massachusetts, 1997.

[49] Jens Jahnke and Albert Zündorf. Rewriting poor design patterns by

good design patterns. In Serge Demeyer and Harald Gall, editors,

ESEC/FSE Workshop on Object-Oriented Reengineering, Zürich, Sep-

tember 1997. University of Vienna technical report.

[50] Ralph Johnson and Brian Foote. Designing reusable classes. Journal

of Object-Oriented Programming, 1(2):22–35, June/July 1988.

[51] Ralph Johnson and William Opdyke. Refactoring and aggregation.

In S. Nishio and A. Yonezawa, editors, Proceedings of the JSSST In-

ternational Symposium on Object Technologies for Advanced Software,

Kanazawa, Japan, November 1993. LNCS vol. 742.

[52] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick

Pagé. Pattern-based reverse-engineering of design components. In Pro-

175

ceedings of the International Conference on Software Engineering, Los

Angeles, 1999. ACM Press.

[53] Andrew R. Koenig. Patterns and antipatterns. Journal of Object-

Oriented Programming, April 1995.

[54] Walter F. Korman. Elbereth: Tool support for refactoring java pro-

grams. Master’s project, University of California, San Diego, Depart-

ment of Computer Science and Engineering, June 1998.

[55] Alexej Kupin. Design and development of program transformation

tool. Master’s thesis, University of Munich, Department of Computer

Science, August 2000.

[56] Anthony Lauder and Stuart Kent. Precise visual specification of design

patterns. In Eric Jul, editor, Proceedings of the European Conference

on Object-Oriented Programming, Brussels, July 1998. LNCS.

[57] Anthony Lauder and Stuart Kent. Legacy System Anti-Patterns and

a Pattern-Oriented Migration Response. In P. Henderson, editor, Sys-

tems Engineering for Business Process Change. Springer Verlag, Jan-

uary 2000.

[58] H.K.N. Leung and L. White. A study of integration testing and soft-

ware regression at the integration level. In Proceedings of the Confer-

ence on Software Maintenance, pages 290–301, San Diego, November

1990.

[59] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From ob-

jects to classes: algorithms for optimal object-oriented design. Journal

of Software Engineering, 6(4):205–228, July 1991.

176

[60] Karl J. Lieberherr, Ian Holland, and Arthur Riel. Object-oriented pro-

gramming: An objective sense of style. In Norman K. Meyrowitz,

editor, Object-Oriented Programming Systems, Languages and Appli-

cations Conference, San Diego, September 1988. ACM Press.

[61] Karl J. Lieberherr and Cun Xiao. Minimizing depenency on class struc-

tures with adaptive programs. In S Nishio and A. Yonezawa, editors,

International Symposium on Object Technologies for Advanced Soft-

ware, Kanazawa,Japan, April 1993. Springer Verlag.

[62] Jaques Loeckx and Kurt Sieber. The Foundations of Program Verifi-

cation. Wiley&Sons, 1987.

[63] Katsuhisa Maruyama and Ken ichi Shima. Automatic method refac-

toring using weighted dependence graphs. In Proceedings of the In-

ternational Conference on Software Engineering, pages 236–245, Los

Angeles, 1999. ACM Press.

[64] Marco Meijers. Tool support for object-oriented design patterns. Mas-

ter’s project, Rijksuniversiteit Utrecht, Department of Computer Sci-

ence, August 1996.

[65] Metamata, Fremont, CA. JavaCC - The Java Parser Generator, 2000.

Available from: http://www.metamata.com/JavaCC/.

[66] Betrand Meyer. Object Oriented Software Construction. Prentice Hall,

Hemel Hempstead, first edition, 1988.

[67] Ivan R. Moore. Guru - a tool for automatic restructuring of self in-

heritance hierarchies. In TOOLS USA, pages 267–275. Prentice-Hall,

1995.

177

[68] Ivan R. Moore. Automatic inheritance hierarchy restructuring and

method refactoring. In Object-Oriented Programming Systems, Lan-

guages and Applications Conference, pages 235–50, San José, October

1996. ACM.

[69] Ivan R. Moore and Tim P. Clement. A simple and efficient algorithm

for inferring inheritance hierarchies. In TOOLS Europe, pages 173–184,

Paris, February 1996. Prentice-Hall.

[70] Thomas Mowbray et al. AntiPatterns: Refactoring Software, Archi-

tectures, and Projects in Crisis. The Art of Computer Programming.

John Wiley & Sons, March 1998.

[71] Mel Ó Cinnéide. Towards automating the introduction of the decorator

pattern to avoid subclass explosion. In OOPSLA Object-Oriented Evo-

lution and Re-engineering Workshop, San José, October 1996. ACM

Press. Available as TR-97-7, Department of Computer Science, Uni-

versity College Dublin, Ireland.

[72] Mel Ó Cinnéide. Automated refactoring to introduce design patterns.

In Jeff Magee and Mauro Pezzè, editors, Proceedings of the Interna-

tional Conference on Software Engineering (Doctoral Workshop), pages

722–724, Limerick, June 2000. ACM Press.

[73] Mel Ó Cinnéide and Paddy Nixon. Program restructuring to introduce

design patterns. In Serge Demeyer and Jan Bosch, editors, Object-

Oriented Technology: ECOOP’98 Workshop Reader, number 1543 in

LNCS, Brussels, July 1998. Springer Verlag.

[74] Mel Ó Cinnéide and Paddy Nixon. Automated application of design

patterns to legacy code. In Ana Moreira and Serge Demeyer, edi-

178

tors, Object-Oriented Technology: ECOOP’99 Workshop Reader, num-

ber 1743 in LNCS, Lisbon, June 1999. Springer Verlag.

[75] Mel Ó Cinnéide and Paddy Nixon. A methodology for the automated

introduction of design patterns. In Hongji Yang and Lee White, editors,

Proceedings of the International Conference on Software Maintenance,

pages 463–472, Oxford, September 1999. IEEE Press.

[76] Mel Ó Cinnéide and Paddy Nixon. Composite refactorings

for Java programs. In S. Drossopoulou, S. Eisenbach, B. Ja-

cobs, G. T. Leavens, P. Müller, and A. Poetzsch-Heffter, editors,

ECOOP Workshop on Formal Techniques for Java Programs. Tech-

nical Report 269, Fernuniversität Hagen, 2000. Available from

www.informatik.fernuni-hagen.de/pi5/publications.html.

[77] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD

dissertation, University of Illinois at Urbana-Champaign, Department

of Computer Science, 1992.

[78] William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in de-

signing application frameworks and evolving object-oriented systems.

In Proceedings of the Symposium on Object-Oriented Programming Em-

phasizing Practical Applications, New York, September 1990.

[79] Wolfgang Pree. Design patterns for object-oriented software develop-

ment. ACM Press books. Addison-Wesley, Wokingham, 1995.

[80] Winnie Pun and Russel Winder. Automating class hierarchy graph

construction. Research note RN/89/23, University College London,

Deptment of Computer Science, March 1989.

179

[81] Trygve Reenskaug. Working with Objects: The OOram Software Engi-

neering Method. Manning Publications Co., Greenwich, Connecticut,

1995.

[82] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley,

Reading, Massachusetts, first edition, 1996.

[83] Don Roberts and John Brant. “good enough” analysis for refactoring.

In Stéphane Ducasse and Joachim Weisbrod, editors, ECOOP Work-

shop on Experiences in Object-Oriented Re-Engineering, Brussels, July

1998. FZI Karlsruhe report.

[84] Donald Roberts. Eliminating Analysis in Refactoring. PhD disserta-

tion, University of Illinois at Urbana-Champaign, Department of Com-

puter Science, 1999.

[85] Donald Roberts, John Brant, and Ralph Johnson. A refactoring tool

for smalltalk. Theory and Practice of Object Systems, 3(4), 1997.

[86] Sébastien Robitaille, Reinhard Schauer, and Rudolf K. Keller. Bridging

program comprehension tools by design navigation. In Lionel Briand

and Jeffrey M. Voas, editors, Proceedings of the International Confer-

ence on Software Maintenance, San José, October 2000. IEEE Press.

[87] Reinhard Schauer, Sébastien Robitaille, Rudolf K. Keller, and François

Martel. Hot spot recovery in object-oriented software with inheritance

and composition template methods. In Hongji Yang and Lee White,

editors, Proceedings of the International Conference on Software Main-

tenance, pages 220–229, Oxford, September 1999. IEEE Press.

[88] Benedikt Schulz. Behaviour preserving reorganisation of object-

oriented systems and adaptive programming. In Serge Demeyer and

180

Harald Gall, editors, ESEC/FSE Workshop on Object-Oriented Reengi-

neering, Zürich, September 1997. University of Vienna technical report.

[89] Benedikt Schulz. Design patterns as operators implemented with refac-

torings. In Stéphane Ducasse and Joachim Weisbrod, editors, ECOOP

Workshop on Experiences in Object-Oriented Re-Engineering, Brussels,

July 1998. FZI Karlsruhe report.

[90] Benedikt Schulz, Thomas Genssler, Berthold Mohr, and Walter Zim-

mer. On the computer aided introduction of design patterns into object-

oriented systems. In Proceedings of the 27th TOOLS conference. IEEE

CS Press, 1998.

[91] Gregor Snelting and Frank Tip. Reengineering class hierarchies using

concept analysis. In Proceedings of the Sixth International Symposium

on the Foundations of Software Engineering (FSE-6), pages 99–110,

Lake Buena Vista, Florida, November 1998. ACM Press.

[92] Perdita Stevens and Rob Pooley. Systems reengineering patterns. In

Proceedings of the Sixth International Symposium on the Foundations

of Software Engineering (FSE-6), pages 17–23, Lake Buena Vista,

Florida, November 1998. ACM Press.

[93] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,

Reading, Massachusetts, third edition, 1997.

[94] Gerson Sunyé, Alain Le Guennec, and Jean-Marc Jézéquel. Design

patterns application in UML. In Elisa Bertino, editor, Proceedings of

the European Conference on Object-Oriented Programming, pages 44–

62, Sophia Antoplis and Cannes, June 2000. LNCS.

181

[95] Peter F. Sweeney and Frank Tip. A study of dead data members in

C++ applications. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), pages

324–332, Montreal, June 1998. ACM Press.

[96] Lance Tokuda and Don Batory. Evolving object-oriented designs with

refactorings. In Proceedings of the 14th IEEE International Confer-

ence on Automated Software Engineering, Florida, October 1999. IEEE

Press. An extended version will appear in the Journal of Automated

Software Engineering.

[97] Lance Aiji Tokuda. Evolving Object-Oriented Designs with Refactor-

ings. PhD dissertation, Department of Computer Sciences, University

of Texas at Austin, September 1999.

[98] Paolo Tonella and Giulio Antoniol. Object oriented design pattern in-

ference. In Hongji Yang and Lee White, editors, Proceedings of the In-

ternational Conference on Software Maintenence, pages 230–238, Ox-

ford, September 1999. IEEE Press.

[99] David von Oheimb and Tobias Nipkow. Machine-checking the Java

specification: Proving type-safety. In Jim Alves-Foss, editor, Formal

Syntax and Semantics of Java, volume 1523 of LNCS, pages 119–156.

Springer, 1999.

[100] Steven Woods, S. Jeromy Carriere, and Rick Kazman. A semantic

foundation for architectural re-engineering and interchange. In Hongji

Yang and Lee White, editors, Proceedings of the International Con-

ference on Software Maintenance, pages 391–398, Oxford, September

1999. IEEE Press.

182

[101] Walter Zimmer. Frameworks und Entwurfsmuster. PhD dissertation,

Forschungszentrum Informatik Karlsruhe, 1997.

183

Appendix A

The Factory Method Pattern

Design patterns were introduced in section 2.2. In this appendix we provide a

more detailed description of the Factory Method pattern, as a transformation

that introduces this pattern was developed in detail in chapter 4. For more

detail see [41], which is also the source of the example we use here.

The Factory Method pattern is used to loosen the coupling between a

class (Creator) and another class that it instantiates (Product). Specifically,

it enables the Creator class to defer instantiation to a subclass; in this way

it is easy to extend the Creator class to work with a new type of Product

class.

For example, consider a framework that can present multiple documents

to the user. Two key abstract classes in this domain are Application and

Document. The designer has to subclass these classes in order to realise the

required functionality. Consider for example using these classes to build a

drawing application. The designer would create a subclass of Application,

DrawingApplication, and a subclass of Document, DrawingDocument. The

Application class is responsible for creating and managing Documents, but

it only knows when it should create a Document; it does not know what kind

184

10..* Edits

Application

+createDoc:Document

+newDoc:void

+openDoc:void

interface

MyDocument
MyApplication

+createDoc:MyDocument return new MyDocument();

Document d=createDoc();
d.open();

interface

Document

+open:void

+close:void

+save:void

Figure A.1: The Factory Method pattern structure

of Document to create. This is the kernel of the problem: the framework

must create instances of Document, but it knows nothing of the concrete

Document classes it should instantiate.

The Factory Method pattern offers a solution to this problem (see figure

A.1). It encapsulates the knowledge of which Document to create and de-

fers this to a subclass. The abstract Application class invokes an abstract

method, createDoc, whenever it needs to create a Document object. Each

concrete subclass of Application must now override the createDoc method to

create and return an instance of the appropriate type of Document. In figure

A.1, the MyApplication class redefines the createDoc method to return an

instance of MyDocument. The other methods in Application work with this

instance through the Document interface.

185

Appendix B

Analysis Functions, Helper

Functions and Primitive

Refactorings

This appendix contains the complete specification of all analysis functions,

helper functions and primitive refactorings that are used in this work. These

topics were introduced in chapter 3. In section B.1 we detail the analysis

functions we have made use of. In section B.2 the helper functions are listed,

and finally, in section B.3, the primitive refactorings used in this work are

specified. As an aid to the reader, an alphabetical listing of all analysis

functions, helper functions and primitive refactorings, together with relevant

page numbers, is presented in table B.1 on page 187.

B.1 Analysis Functions

In this section we describe the analysis functions (section 3.1.2) that are used

to extract information from the program being transformed. They serve a

186

Name Kind Page Name Kind Page

absorbParameter AF 188 isClonable AF 191

abstractClass HF 197 isExclusiveComponent AF 192

addClass PR 204 isInterface AF 192

addGetMethod PR 206 isPrivate AF 192

addImplementsLink PR 207 isPublic AF 192

addInterface PR 208 isStatic AF 192

addMethod PR 209 isSubtype AF 193

addSingletonMethod PR 210 localVars AF 193

argument AF 188 makeAbstract HF 200

classCreated AF 188 makeConstructorProtected PR 213

classOf AF 188 methodsInvoked AF 193

constructorInvoked AF 189 moveMethod PR 214

containingClass AF 188 nameOf AF 193

containingMethod AF 189 noOfArguments AF 193

contextFree AF 189 noOfParameters AF 193

createEmptyClass HF 198 parameter AF 193

createExclusiveComponent PR 212 parameteriseField PR 216

createsSameObject AF 189 pullUpMethod PR 218

createWrapperClass HF 198 replaceClassWithInterface PR 221

declares AF 189 replaceObjCreationWith. . . PR 222

defines AF 190 returnsObject AF 193

equalInterface AF 190 returnsSameObject AF 194

exhibitSameBehaviour AF 190 returnType AF 194

hasSingleInstance AF 191 sigOf AF 194

implementsInterface AF 191 superclass AF 194

initialises AF 191 superclasses AF 194

isAbstract AF 191 typeOf AF 194

isClass AF 191 useWrapperClass PR 223

Table B.1: Alphebetical Listing of Analysis Functions (AF), Helper Functions

(HF) and Primitive Refactorings (PR), with relevant page numbers.

187

dual role, in that they are used both in specifying the preconditions to the

refactorings, and as a transformation programmer’s view of the program to

which a design pattern transformation is being applied.

Some of the analysis functions are obviously easy to evaluate, while oth-

ers are more difficult. A number are intractable in the general case, namely

contextFree, createsSameObject, hasSingleInstance, isClonable, isExclusive-

Component, returnsObject, returnsSameObject, and uses. In section 3.1.2

we described the possible ways in which intractable analysis functions can

be handled.

For each analysis function we specify its name, return type, argument

types, and provide a brief textual description of what its purpose is. The

listing is in alphabetical order.

Argument argument(MethodInvocation/ObjectCreationExprn invocation,

int i): Returns the ith argument to the given method invocation or object

creation expression, or ⊥ if no such argument exists.

Class classCreated(ObjectCreationExprn e): Returns the class of the ob-

jects that can be created by the given object creation expression.

Class classOf(Constructor/Method/Field a): Returns the class to which the

given constructor/method/field belongs. The condition classOf(a)=c is also

written as a ∈ c.

Class containingClass1(ObjectRef o): Returns the class that contains the

given object reference.

1We do not apply the analysis function classOf to an object reference, as this would

suggest its type rather than its containing class. The typeOf analysis function is used to

determine the type of an object reference.

188

Method containingMethod(ObjectRef/ObjectCreationExprn e): Returns

the method containing the given object reference or object creation expres-

sion.

Constructor constructorInvoked(ObjectCreationExprn e): Returns the

constructor that is invoked by the given object creation expression. In Java

this can be determined based on the static types of the arguments to the

constructor; a dynamic analysis is not required.

Boolean contextFree(Expression e): Returns true iff the expression e has

the same effect regardless of the context in which it is evaluated. It may

create a new object, or update a global object, but the effect must be the

same regardless of the method in which it is invoked. The impact of this is

that if this expression is passed as an argument to a method, we can move

the evaluation into the method without changing program behaviour.

Boolean creates(Class c1, Class c2): Returns true iff a method in the class

c1 creates an instance of the class c2.

Boolean createsSameObject(Constructor c, Method m): Returns true iff

the method m creates and returns a new object of the same class and in

precisely the same state as would be created by c, given the same argument

list. m must have no other side-effects; in particular it must neither access

any variables other than its parameters, nor send a message to another object.

See also the weaker condition, returnsSameObject.

Boolean declares(Class c, String n, String s): Returns true iff the class c

contains a method named n of signature s in its interface. An implementation

need not be provided, and the declaration of n(s) may appear as an abstract

189

method in a superclass or as an element of an interface that c (in)directly

implements. The parameter direct is added if the test is only to refer to the

class c itself, and, for simplicity, a method may be provided as parameter

instead of the method name and signature. The parameter c may also be an

interface, with the natural interpretation.

Boolean defines2(Class c, String n, Signature s): Returns true iff a concrete

method called n of signature s is contained in the class c or one of its su-

perclasses. If no signature is provided, it simply tests if a method named n

is contained in the class c or one of its superclasses. Again, the parameter

direct is added if the test is only to refer to the class c itself, and, for sim-

plicity, a method may be provided as parameter instead of the method name

and signature.

Boolean equalInterface(Class/Interface c1, Class/Interface c2): Returns

true iff c1 and c2 declare precisely the same public methods. Public fields

and static methods are not included in the comparison.

Boolean exhibitSameBehaviour(Method m1, Method m2): Returns true

iff m1 and m2 will, if invoked in the same program state, exhibit the same

external behaviour and lead to the same resulting program state. Note that

this relationship normally exists only when e1 and e2 are in a delegation

relationship3.

2The differentiation we make between declaration and definition is maintained rigor-

ously in C++ [93], but is not followed so strongly in Java [2]. For example, page 21 of [2]

the authors write of an interface defining a method. In this work we need clear terminology

to distinguish between the two situations.
3Assessing if two methods have the same behaviour is undecidable in general. For

example, in [67] equivalence is based on the very constrained criterion that the parse trees

of the methods must be identical.

190

Boolean exhibitSameBehaviour(ObjectCreationExprn e1, ObjectCreation-

Exprn e2): Returns true iff e1 and e2 will, in the same program state, create

objects that exhibit the same behaviour. Note that this condition is normally

established when e1 delegates all requests to a contained instance that is

identical to e2, so the objects need not even be of the same class.

Boolean hasSingleInstance(Class c): Returns true iff the program only

ever creates at most a single instance of the class c.

Boolean implementsInterface(Class/Interface e, Interface i): Returns true

iff there is an implements link from the class/interface e to the interface i.

Boolean initialises(Method/Constructor m, Field/Variable f, Exprn e): Re-

turns true iff the method/constructor m initialises the field/variable f to the

expression e.

Boolean isAbstract(Class/Method x): Returns true iff the class/method x

is declared to be abstract.

Boolean isClass(Class c): Returns true iff c is a class. If given a string as

argument, it tests if a class of the given name exists in the program.

Boolean isClonable(Class c): Returns true iff the class c can be cloned. All

classes in Java inherit a clone method from the Object class which performs

a bitwise copy of the object on which it is invoked. This is adequate in some

cases, but if objects of the class contains references to other objects, the

programmer will probably have to implement a class-specific clone method. If

objects of the class have circular references, or are part of a very complicated

structure, it may not be feasible to implement a clone method. This can be

tested automatically in simple cases, but in general the user must be queried

191

to assess if it is safe to clone a particular class.

Boolean isExclusiveComponent(Class c, Field f): Returns true iff f is a

field of the class c and the object referred to by f is an exclusive component

of c. By this we mean a total form of ownership4:

• f is initialised in all constructors of c.

• The object referred to by f is not referred to by any other reference in

the program.

• The object reference f may not refer to any other object during its

lifetime, nor may it ever be set to null.

Boolean isInterface(Interface i): Returns true iff i is an interface in the

program. If given a string as argument, it tests if an interface of the given

name exists in the program.

Boolean isPrivate(Method/Field e): Returns true iff the method/field e is

a private member of its class.

Boolean isPublic(Method/Field e): Returns true iff the method/field e is a

public member of its class.

Boolean isStatic(Method/Field e): Returns true iff the method/field e is a

static member of its class.

4In terms of the sophisticated categorisation of whole-part relationships described by

Franco Civello in [20], we are describing a whole-part relationship that is visible, encapsu-

lated, non-shared, part-whole inseparable, whole-part inseparable, immutable, owned and

collaborative.

192

Boolean isSubtype(Class/Interface e1, Class/Interface e2): Returns true iff

the type defined by the class/interface e1 is a subtype of the type defined by

the class/interface e2. This is based on the normal syntactic notion of subtyp-

ing [22], but does not depend on their being an explicit implements/extends

relationship between the entities. As a shorthand, isSubtype(e1, e2) will

normally be written e1 ≤ e2.

SetOfVariable localVars(Method/Constructor m): Returns the set of local

variables that are defined within the given method/constructor, regardless of

the block scope they are in.

SetOfMethod methodsInvoked(MethodInvocation i): Returns the set of

methods that could be invoked by the method invocation i.

String nameOf(Class/Interface/Method/Constructor x): Returns the name

of the given class/interface/method/constructor.

int noOfArguments(MethodInvocation/ObjectCreationExprn x): Returns

the number of arguments to the given method invocation or object creation

expression.

int noOfParameters(Method/Constructor m): Returns the number of pa-

rameters of the given method/constructor.

Parameter parameter(Method/Constructor m, int i): Returns the ith pa-

rameter of the given method/constructor, or ⊥ if the given parameter does

not exist.

Boolean returnsObject(Method m, ObjectRef o): Returns true iff the

method m returns the object referred to by the object reference o, and has

193

no other effects.

Boolean returnsSameObject(Constructor c, Method m): Returns true iff

the method m returns an object of the same class and in precisely the same

state as would be created by c, given the same argument list. m must have

no other side-effects; in particular it must neither access any variables other

than its parameters, nor send a message to another object. Note that the

method m need not actually create a new object. See also the stronger

condition, createsSameObject.

Class/Interface returnType(Method m): Returns the class/interface that

is the return type of the method m.

Signature sigOf(Method/Constructor x): Returns the signature of the given

method or constructor.

Class superclass(Class c): Returns the direct superclass (based on the ex-

tends relationship) of the class c, or ⊥ if none exists. It can be also applied

to a constructor, method or field, in which case the superclass of the class of

the given element is returned.

SetOfClass superclasses(Class c): Returns the set of (in)direct superclasses

(based on the extends relationship) of the class c. Note that the class c itself

is not a member of the set of classes returned.

Class/Interface typeOf(ObjectRef o): Returns the Class or Interface of the

given object reference (field, parameter or local variable).

Boolean uses(Method m, Field f): Returns true iff the method m directly

references the field f.

194

Boolean uses(Method m1, Method m2): Returns true iff the method m2 may

be directly invoked by the method m1
5.

Boolean uses(ObjectRef o, Method m): Returns true iff the method m may

be directly invoked through the object reference o.

Boolean uses(ObjectRef o, Field f): Returns true iff the field f is directly

accessed through the object reference o.

B.1.1 Relationships between Analysis Functions

The analysis functions are not completely orthogonal and this is unavoidable.

For example, it is important to know if one class defines a subtype of another

class, as this affects what type of refactorings are possible involving these

classes. It is also important to be able to determine if one class has an

extends link to another class. If we determine that the class B extends the

class A, then we know that B must also be a subtype of A. It is important

to note these relationships and to use them in proofs as necessary. The

relationships between the analysis function we use are as follows:

If a method is in a class, that class defines the method directly, and vice versa:

∀ c:Class, m:Method, classOf(m)=c ⇔
defines(c, nameOf(m), sigOf(m), direct)

If a class defines a method, it declares it as well:

∀ c:Class, m:Method, defines(c, nameOf(m), sigOf(m)) ⇒
declares(c, nameOf(m), sigOf(m))

5For this analysis function and the next, some false positives may be returned since

a static analysis cannot determine exactly what methods a particular method invocation

may bind to.

195

A class that defines a method of a given name and signature must also define

a method of that name:

∀ c:Class, n:String, s:Signature, defines(c, n, s) ⇒
defines(c, n)

If a method and constructor return the same object, they must have the

same signature:

∀ m:Method, c:Constructor, returnsSameObject(c, m) ⇒
sigOf(m)=sigOf(c)

Two classes/interfaces have the same interface iff each one is a subtype of

the other:

∀ e1:Class/Interface, e2:Class/Interface, equalInterface(e1, e2) ⇔
e1 ≤ e2 ∧ e2 ≤ e1

If a class/interface implements another interface, it must be a subtype of

that interface:

∀ e:Class/Interface, i:Interface, implementsInterface(e, i) ⇒ e ≤ i

If a class extends another class, it must be a subtype of that class:

∀ c1:Class, c2:Class, superclass(c1)=c2 ⇒ c1 ≤ c2

If a class is abstract, it must declare a method that it does not define:

∀ c:Class, isAbstract(c) ⇔ ∃ m:Method such that

declares(c, m) ∧ ¬ defines(c, m)

One class creates another iff there is an object creation expression contained

in the first class (or any superclass) that creates an instance of the second class:

creates(c1, c2) ⇔ ∃ o:ObjectCreationExprn, m:Method such that

classCreated(o)=c2 ∧ containingMethod(o)=m ∧
classOf(m) ∈ {c1} ⋃

superclasses(c1)

If a method creates and returns the same object as a constructor, it also

just returns it:

196

∀ c:Constructor, m:Method, createsSameObject(c, m) ⇒
returnsSameObject(c, m)

B.2 Helper Functions

In describing a refactoring it may be necessary to extract richer content

from the program code than is provided by the analysis functions. Helper

functions are used to perform this type of task. As they are not at the

primitive level of the analysis functions, we provide them with a pre- and

postcondition. Helper functions (3.1.3) are proper functions without side-

effects on the program, so the postcondition invariably involves the return

value of the helper function itself.

Interface abstractClass(Class c, String newName): Construct and return

an interface called newName that reflects all the public methods of the given

class c.

precondition:

The class c must exist:

isClass(c)

postcondition:

The returned interface inf declares the same public methods as the class c:

isInterface′ = isInterface[inf /true]

equalInterface′ = equalInterface[(c,inf)/true]

The name of the returned interface is newName:

nameOf′ = nameOf[inf /newName]

Method abstractMethod(Method m): Construct and return an abstract

method that has the same name and signature as the given method m.

precondition:

197

The method m must exist:

isMethod(m)

postcondition:

The returned method meth is abstract and has the same name and signature as

the given method m:

isAbstract′ = isAbstract[meth/true]

nameOf′ = nameOf[meth/nameOf(m)]

sigOf′ = sigOf[meth/sigOf(m)]

Class createEmptyClass(String name): Construct and return an empty

class called name.

precondition:

This may be used in any state:

true

postcondition:

An empty class called name is returned:

nameOf′ = nameOf[returned/name]

∀ e:Method/Field/Constructor • ¬ classOf(e)=returned

where returned is the class returned by this function.

Class createWrapperClass(Interface iface, String wrapperName, String field-

Name): Creates a class called wrapperName that provides the same interface

as iface and implements all its methods by delegating them to a private field

of the type iface, called fieldName. The class is given a constructor that

accepts an object of the type iface and initialises the field fieldName to this

object. A method called “get”+fieldName is also added that returns the

contents of this field (i.e., returns the wrapped object).

precondition:

The given interface must exist:

198

isInterface(iface)

The name of the class to be added is not in use:

¬ isClass(wrapperName) ∧ ¬ isInterface(wrapperName)

postcondition:

A class called wrapperName is returned:

nameOf′ = nameOf[returned/wrapperName]

The returned class has a field of type iface called fieldName:

∃ f:Field, such that

classOf′=classOf[f/returned]

typeOf′=typeOf[f/iface]

nameOf′=nameOf[f/fieldName]

The constructors of returned initialise this field with the first parameter:

∀ c:Constructor, classOf(c)=returned •
initialises′=initialises[c, f, parameter(c,1)]

The class wrapper has a method called “get”+fieldName:

∃ m:Method such that

classOf′=classOf[m/wrapper]

nameOf′=nameOf[m/“get”+fieldName]

This method returns the contents of the field fieldName:

returnsObject′=returnsObject[m/fieldName]

Any object of a concrete subclass of iface will exhibit the same behaviour

as an instance of returned that has been given this object as its construction

argument:

∀ c:Class, implementsInterface(c,iface) •
∀ e:ObjectCreationExprn, classCreated(e)=c •

exhibitSameBehaviour′ =

exhibitSameBehaviour[(e, new wrapperName(e))/true]

199

MethodmakeAbstract(Constructor c, String newName): Returns a method

called newName that, given the same arguments, will create the same object

as the constructor c. The method signature is obtained by copying that of

the constructor6, and the method is given a body that is simply an object

creation expression that invokes the given constructor, using the arguments

to the method as its own arguments.

precondition:

This may be used in any state:

true

postcondition:

A method called newName is returned that, given the same argument list,

creates the same object as the constructor c:

createsSameObject′ = createsSameObject[(c,returned)/true]

nameOf′ = nameOf[returned/newName]

where returned is the returned method.

B.3 Primitive Refactorings

The primitive refactorings (section 3.1.4) that are used in this work are de-

tailed in this section. As with the helper functions, a pre- and postcondition

is given in each case, and these may range over the arguments to the refac-

toring and the program itself that is being transformed. An argument that

the refactoring does not change the behaviour of the program is presented in

each case.

6This does not actually need to be stated explicitly in the postcondition, as from section

B.1.1 we know it can be derived from the first conjunct of the postcondition.

200

void absorbParameter7(Method/Constructor m, int paramNumber): Re-

move the specified parameter from the method/constructorm (assume method

from here on), converting the parameter into a local variable in the method,

and initialising it with the expression given for the argument.

precondition:

The parameter exists in the given method:

noOfParameters(m) ≥ paramNumber

All invocations of m take the same expression (which must be independent

of context) as an argument for the specified parameter:

∃ exprn:Exprn, contextFree(exprn) such that

∀ i:MethodInvocation, m ∈ methodsInvoked(i) •
argument(i, paramNumber) = exprn

postcondition:

The parameter list for m has been reduced by 1:

noOfParameters′ = noOfParameters[m/noOfParameters(m)-1]

m now defines a new local variable of the same name and type as the

parameter that has been removed:

localVars′ = localVars[m/localVars(m) ∪ v] where

nameOf(v) = nameOf(parameter(m, paramNumber)) ∧
typeOf(v) = typeOf(parameter(m, paramNumber))

This new local variable is initialised to the expression that was previously

passed in as an argument:

initialises′=initialises[(m, v, exprn)/true]

Behaviour preservation:

The expression that was originally passed as an argument is context free,

7This is similar to, but more flexible than, the removeParameter refactoring described

by Fowler in [38, p.277]. Fowler assumes the parameter is not in use; we allow it to be in

use once it is always passed the same argument.

201

so it evaluates to the same result for each method invocation, and will also

evaluate in the same way after being moved into the method itself. The

parameter it was originally bound to has been removed, and instead this

expression is evaluated and stored in a local variable of the same name and

type as the removed parameter. The method thus executes in the same

context, except that previous references to the removed parameter now bind

to the new variable. Since the new variable has been given the same initial

value, program behaviour will remain the same.

202

void abstractMethodFromClass(Method m): Makes public any method

or field that is (i) a member of the same class that m belongs to, or a

superclass, and (ii) is used by m8.

precondition:

The class referred to exists and m is a member of this class:

isClass(classOf(m)) ∧ m ∈ classOf(m)

postcondition:

All methods/fields defined directly or indirectly in classOf(m) that m uses

have been made public:

∀ x:Field/Method, defines(classOf(m), x), uses(m, x) •
isPublic′=isPublic[x/true]

Behaviour preservation:

Making a private or protected field/method public cannot affect compilation

or behaviour. It may appear that making a private member of a class public

or protected might cause a reference in a subclass to bind to the new public

member rather than one defined in a superclass. However in Java an over-

riding method cannot reduce the access level defined in its superclass, so if

a method is private in a class, making it public cannot cause it to override

a method in a superclass. Also, a reference to a field that is defined to be

protected in a superclass will not compile if there is a private definition of a

field of the same name in an intervening superclass, so again making a field

public cannot interfere in the binding of references in subclasses.

8This refactoring is usually used as a preparation for moving the method m to a com-

ponent of its current class. Prior to pulling out m, everything it refers to in its current

class must be made public. If m is in fact a cohesive member of its class, this refactoring

is likely to severely damage the encapsulation of the class and its superclasses.

203

void addClass(Class c, Class super, SetOfClass subclasses): Add the class

c to the program. If a superclass is given, an extends link is added from the

class c to this superclass. If subclasses are given, an extends link is added

from each one to the class c.

precondition:

The name of the class to be added is not in use:

¬ isClass(nameOf(c)) ∧ ¬ isInterface(nameOf(c))

Any given subclasses must exist:

∀ s ∈ subclasses • isClass(s)

If the superclass exists, it must be a superclass of all the subclasses:

if isClass(super) then ∀ s ∈ subclasses • superclass(s) = super

If c is a concrete class, then any abstract methods declared in super

or its superclasses must be defined in c:

if ¬ isAbstract(c) then

∀ m:Method, declares(super, m) ∧ ¬ defines(super, m) •
defines(c, nameOf(m), sigOf(m))

The class c must not contain any method that overrides one declared

(in)directly in the superclass:

∀ n:String, s:Signature • if declares(super, n, s) then

¬defines(c, n, s, direct)
The class c must not contain any field that redefines one declared in

any of its (in)direct superclasses:

∀ f:Field, f∈c, ¬isPrivate(f) •
∀ g:Field, g∈sup, where sup∈superclasses(c), ¬isPrivate(g) •
nameOf(f) 	= nameOf(g)

postcondition:

c is a class in the program:

204

isClass′ = isClass[c/true]

An extends link exists from the class c to the class super :

superclass′ = superclass[c/super]

All the given subclasses are now subclasses of c:

∀ s ∈ subclasses, superclass′ = superclass[s/c]

Behaviour preservation:

The class c did not exist, so no references can exist to this class. Consequently

the only threat to behaviour preservation is that a subclass may refer to a

method or field in a superclass, and this reference is now bound to a method

or field of c. The final two conjuncts of the precondition prevent this by

disallowing the class c from redefining any field or method that is already

defined in any of its superclasses9.

9This refactoring is an example of where our requirement for behaviour preservation

forces us to be very strict in defining preconditions. In the work of both Roberts [84, p.103]

and Sunyé et al [94, p.57], the last two conjuncts of the precondition for this refactoring

are omitted. Our approach is nevertheless conservative, since the class c can redefine fields

and methods in its superclasses once these are not used in any of the subclasses.

205

void addGetMethod(Class concrete, String fieldName): Add a “getter”

method to the concrete class that returns the contents of the field called

fieldName.

precondition:

The class concrete exists and has a field called fieldName:

isClass(concrete) ∧ classOf(fieldName)=concrete

The class concrete does not declare a method called “get”+fieldName:

∀ m:Method, declares(concrete, m) • nameOf(m) 	= “get”+fieldName

postcondition:

The class concrete has a method called “get”+fieldName:

∃ m:Method such that

classOf′=classOf[m/concrete]

nameOf′=nameOf[m/“get”+fieldName]

This method returns the contents of the field fieldName:

returnsObject′=returnsObject[m/fieldName]

Behaviour preservation:

Since a method with the same name as the method being added does not

already exist in the class, there can be no name clashes and no existing

invocations of this method.

206

void addImplementsLink(Class concrete, Interface inf): Add an imple-

ments link from the class concrete to the interface inf. The class concrete

must not be abstract, i.e., it must implement all the abstract methods that

are declared in inf.

precondition:

The class concrete and the interface inf must exist:

isClass(concrete) ∧ isInterface(inf)

The class concrete must be a subtype of the interface inf :

concrete ≤ inf

The class concrete must implement all the methods that are declared in inf :

∀ m:Method, declares(inf, m) • defines(concrete, m, direct)

postcondition:

An implements link had been added from the class concrete) to the interface inf :

implementsInterface′ = implementsInterface[(concrete, inf)/true]

Behaviour preservation:

Adding a implements link from a class to an interface may affect the legality of

the program, but cannot cause it to change its runtime behaviour. From the

precondition, we see that the class fully implements the interface10, so this

refactoring must result in a legal program and consequently it is behaviour

preserving.

10In the case of an abstract class, this part of the precondition could be safely weakened.

207

void addInterface(Interface i): Adds the interface i to the program. A

class or interface with this name must not already exist.

precondition:

No class or interface with the name nameOf(i) exists:

¬isClass(nameOf(i)) ∧ ¬isInterface(nameOf(i))
postcondition:

i is a new interface in the program:

isInterface′ = isInterface[i/true]

Behaviour preservation:

Adding an unreferenced interface to the program cannot affect its behaviour.

If a reference to the interface did exist before the refactoring, then the original

program would not be legal.

208

void addMethod(Class c, Method m): Adds the method m to the class

c. A method with this signature must not already exist in this class or its

superclasses. This refactoring extends the external interface of the class.

precondition:

The class c exists and does not define any method with the same name

and signature as m:

isClass(c) ∧ ¬defines(c, nameOf(m), sigOf(m))
postcondition:

The method m has been added to the class c:

classOf′ = classOf[m/c]

Any class or interface that previously had the same interface as c does not

have the same interface anymore:

∀ a:Class, a 	=c, if equalInterface(a,c) then
equalInterface′ = equalInterface[(a,c)/false].

Behaviour preservation:

Since a method with the same name and signature as the method being

added does not already exist in the class, there can be no name clashes and

no existing invocations of this method.

209

void addSingletonMethod(Class singletonClass, Class concreteSingleton,

String methodName, String fieldName): Adds a static field named fieldName

of type singletonClass to the class singletonClass. Also adds a static method

named methodName that gives access to this field and instantiates it lazily

as a concreteSingleton object when necessary (See [41, 43], both pp 127-133

for more detail). If the last two parameters are omitted, we assume them to

be named “getInstance” and “instance” respectively.

precondition:

The first two parameters must be classes and the class singletonClass must

be a superclass of concreteSingleton:

singletonClass ∈ superclasses(concreteSingleton)

The class singletonClass can have no field called fieldName:

∀ f:Field, f∈singletonClass • nameOf(f) 	= fieldName

A non-private field called fieldName cannot be defined in any superclass

of singletonClass :

if f:Field ∈ cls, cls ∈ superclasses(singletonClass),

nameOf(f)=fieldName then isPrivate(f)

A method called methodName cannot be defined in the class singletonClass :

¬defines(singletonClass, methodName)
The class concreteSingleton must have a no-arg constructor:

∃ c:Constructor ∈ concreteSingleton such that noOfParameters(c)=0

postcondition:

A new method m has been added to the class singletonClass, with certain

properties:

classOf′ = classOf[m/singletonClass]

The name of m is methodName:

nameOf′ = nameOf[m/methodName]

210

The method m returns an object of the class concreteSingleton, in the same

state as would be returned by the no-arg constructor:

returnsSameObject′ = returnsSameObject[(c,m)/true]

where c:Constructor ∈ concreteSingleton ∧ noOfParameters(c)=0

Behaviour preservation:

A new method and field are added to the class singletonClass. Since nei-

ther already exist, nor are they referenced in the existing program, program

behaviour cannot be affected.

211

void createExclusiveComponent(Class context, Class component, String

fieldName): Add a new component to the class context, called fieldName, of

type component. All constructors in context are updated to instantiate this

field as well.

precondition:

The classes must exist:

isClass(context) ∧ isClass(component)

Neither the class context nor any of its superclasses may have a non-private

field called fieldName:

∀ f:Field, f∈sup, where sup ∈ superclasses(context) ∪ context,
¬isPrivate(f) • nameOf(f) 	= fieldName

postcondition:

The class context has a field called fieldName of type component :

∃ f:Field, f ∈ context such that

typeOf′=typeOf[f/component]

nameOf′=nameOf[f/fieldName]

All constructors of context initialise this field:

∀ c:Constructor, c ∈ context •
initialises′=initialises[(c, fieldName, “new component()”)/true]

fieldName refers to an exclusive component of context :

isExclusiveComponent′=isExclusiveComponent[(context, fieldName)/true]

Behaviour preservation:

The name fieldName does not clash with any field defined in context, or any of

its superclasses, so it may be added to context safely. fieldName is initialised

in the constructor of context using the no-arg constructor of the component

class, so this has no observable effect on external program behaviour11.

11We assume that the no-arg constructor of the component class only initialises its own

internal data fields.

212

void makeConstructorProtected(Class c): Makes all constructors of the

class c protected. If the class has no explicit constructors, a no-arg one is

added and made protected.

precondition:

The class c exists:

isClass(c)

Creations of objects of the class c occur only in c and its subclasses:

∀ e:ObjectCreationExprn, classCreated(e)=c •
e ∈ c ∨ c ∈ superclasses(containingClass(e))

postcondition:

The method m has been added to the class c:

classOf′ = classOf[m/c]

Any class or interface that previously had the same interface as c does not

have the same interface anymore:

∀ a:Class, a 	=c, if equalInterface(a,c) then
equalInterface′ = equalInterface[(a,c)/false].

Behaviour preservation:

The behaviour of the constructors of the class c is not changed, and objects of

the class c are only created within c itself or its subclasses. Therefore, making

these constructors protected will have no effect on program behaviour.

213

void moveMethod(Class context, Field component, Method meth): Moves

the method meth from the class context to the class of the field component.

The existing method is replaced by one that delegates the same request to

the component field. The moved method is given an extra parameter that

refers to the context object it has been moved from, and any references it

makes to this (implicitly or explicitly) are sent back to this context object.

precondition:

The classes referred to exist:

isClass(context) ∧ isClass(typeOf(component))

meth is a method of the class context :

meth ∈ context
Every method/field in context that is used by meth must be public:

∀ x:Method/Field, x ∈ context, uses(meth, x) • isPublic(x)

The field component refers to an exclusive component of context :

isExclusiveComponent(component, context)

A similar method to meth cannot be defined in the component class:

∀ m:Method ∈ typeOf(component), nameOf(meth)=nameOf(m) •
sigOf(meth) 	=sigOf(m)

postcondition:

The method meth is now a member of the class of the component field:

classOf′=classOf[meth/classOf(component)]

The class context delegates invocations of the moved method to a method

that exhibits the same behaviour in the class of the component field:

∃ m:Method such that

classOf′ = classOf[m/context]

nameOf′ = nameOf[m/nameOf(meth)]

sigOf′=sigOf[m/sigOf(meth)]

214

uses′=uses[(m,meth)/true]

exhibitSameBehaviour′=exhibitSameBehaviour[m/meth]

Behaviour preservation:

The moved method is replaced by one of the same name and signature, so

compilation will not be affected. The replacement method delegates to the

moved method, and passes the context object as an extra argument. Any

references to the context object itself in the moved method are invoked on

the context object (from the precondition they must be public) and so will

bind in the same way as before.

215

void parameteriseField(Class client, Class/Interface product): Moves the

initialisation of the field of type product in the class client outside the con-

structor of the class, so the initial value for this field is now passed as an

argument to the client class constructor.

precondition:

The given interface/classes exist:

isClass(client) ∧ (isClass(product) ∨ isInterface(product))

The client class has a single field of type product :

∃! f:Field, f ∈ client such that typeOf(f)=product

This field is initialised to a context free expression, exprn, in all constructors:

∃ exprn:Exprn, contextFree(exprn) such that

∀ c:Constructor, c ∈ client •
initialises(c, f, exprn)

postcondition:

Each client constructor has a new parameter of type product :

∀ c:Constructor, c ∈ client •
noOfParameters′=noOfParameters[c/noOfParameters(c)+1]

typeOf′=typeOf[parameter(c,noOfParameters(c)+1)/product]

The field f is initialised with this parameter rather than exprn:

initialises′=initialises[(c, f, exprn)/false]

initialises′=initialises[(c, f, parameter(c,noOfParameters(c)+1))/true]

All creations of client objects now take the expression exprn as an extra

argument:

∀ e:ObjectCreationExprn, classCreated(e)=client •
noOfArguments′=noOfArguments[e/noOfArguments(e)+1]

argument′=argument[(e,noOfArguments(e)+1)/exprn]

Behaviour preservation:

Initially the product field in the client class was set to the expression exprn

216

in the constructor of the client class. After applying this transformation,

the expression exprn is evaluated outside the client class and passed in as a

parameter to the constructor. Within the constructor it is used to initialise

the field as before. Since exprn is context-free, it will evaluate the same way

in both cases, so the product field in the client class gets initialised to the

same value and program behaviour is therefore maintained.

217

void pullUpMethod(Method m): Move the method m from its current

class to its superclass12. All fields directly referenced by m are moved to the

superclass as well. An abstract method declaration is added to the super-

class for any method referenced by m that is not (in)directly declared in the

superclass.

precondition:

The method m must exist:

isMethod(m)

The class must have a superclass to which to move the method:

superclass(m) 	= ⊥
m must not be defined in the superclass:

¬ defines(superclass(m), nameOf(m), sigOf(m))

Any fields m uses must not be public and must not clash with fields in the superclass:

∀ f:Field, f ∈ classOf(m), if uses(m,f) then

(¬ isPublic(f) ∧ ∀ g:Field, g ∈ superclass(m), nameOf(f) 	= nameOf(g))

postcondition:

m is moved from its existing class to its superclass:

classOf′ = classOf[m/superclass(m)]

Any methods m uses that are not declared in its superclass are declared there now:

∀ n:Method, n ∈ classOf(m), m	=n,
if uses(m,n) ∧ ¬ declares(superclass(m),n) then

declares′ = declares[(superclass(m), n, direct)/true]

Any fields m uses are moved to the superclass:

∀ f:Field, f ∈ classOf(m) if uses(m,f) then

12Although it appears natural to decompose this refactoring into a chain of refactorings,

this is not useful for our present purposes. Opdyke [77] provides a partial solution, but

does not deal with the details of moving the referenced fields up to the superclass and

adding new abstract method declarations to the superclass for each referenced method.

218

classOf′ = classOf[f/superclass(m)]

Behaviour preservation:

The method m and the fields it uses have been moved, but not changed, so

the behaviour of the program could change in three possible ways:

1. An existing invocation of this method fails or invokes another method :

The existing method m could only be invoked on an object of the class

classOf(m) or a subclass of this class. In either case the search for the

method attempts to find it in the class classOf(m) and then moves to

the class superclass(m). The method m has been moved to this class

so it is found here.

2. An existing access to a moved field fails or finds another field : The

argument is similar to the previous case. The method m will find the

field in its own class as normal. Other references to a moved field can

only come from the class classOf(m) or its subclasses, and these will

bind correctly to the field in the superclass. Note that this argument

would fail if a field accessed by m was public.

3. An method invocation or field access in this method is bound to a dif-

ferent method/field : The existing method m was not defined in any

superclass of classOf(m), so it may only be invoked on an object of

classOf(m) or one of its subclasses. The search for a method invoked

in m will therefore commence at the same class as before, and will

find the same method (if the search somehow began at superclass(m),

a failure could occur). To highlight this, consider the following code

sketch:

class A{
public void foobar(){...}

219

}
class B extends A{

public void foo(){
...

foobar();

...

}
public void foobar(){...}

}

It may appear that moving foo from B to A will cause a problem in

that the invocation of foobar will now bind to the implementation of

foobar in A rather than that in B. However, since we have disallowed

situations where foo is defined in A or a superclass, invocations of foo

on an object of class A cannot exist. Invocations of foo on objects of

class B will now result in the foo in A being executed, but by dynamic

binding the subsequent invocation of foobar will bind correctly to the

implementation in B.

220

void replaceClassWithInterface(ObjectRef o, Interface inf): Change the

type of the object reference o to the interface inf .

precondition:

The interface inf exists:

isInterface(inf)

The class of the object reference o must have an implements link to the

interface inf :

implementsInterface(typeOf(o), inf)

Any static methods or fields in the class of the object reference o are not

accessed through the object reference o:

∀ m:Method, classOf(m)=typeOf(o), if isStatic(m) then ¬ uses(o,m) ∧
∀ f:field, classOf(f)=typeOf(o), ¬ uses(o,f)

postcondition:

The type of the object reference o is inf :

typeOf′ = typeOf[o/inf]

Behaviour preservation:

Changing the type of an object reference from a class to an interface may

affect the legality of the program, but cannot cause it to change its runtime

behaviour. From the precondition we see that the class of the object reference

implements the interface, and that no static methods or fields are accessed

through this reference, so this refactoring must result in a legal program and

consequently it is behaviour preserving.

221

void replaceObjCreationWithMethInvocation(ObjectCreationExprn e,

Method m): Replace the given object creation expression e with an invoca-

tion of the method m using the same argument list.

precondition:

The object creation expression e and the method m must both, given the

same argument list, create and return the same object, OR they must both

simply return the same object, and this must be the only instance of the class:

createsSameObject(constructorInvoked(e),m) ∨
(returnsSameObject(constructorInvoked(e),m) ∧
hasSingleInstance(classCreated(e)))

The object creation expression e must not be in the method m:

containingMethod(e) 	= m

postcondition:

The object creation expression e has been removed:

containingMethod′ = containingMethod[e/⊥]
Behaviour preservation:

The new method invocation returns the identical object to the same point

in the program as was returned by the original object creation expression

(the method either creates a new object or returns the only instance of the

class). The only risk to behaviour preservation therefore is that of an infinite

recursion occurring. The expression e is not contained in m so a direct

recursion cannot take place. The createsSameObject precondition demands

that m has no side-effects; in particular it cannot send any messages itself,

so an indirect recursion is also impossible.

222

void useWrapperClass(Class client, Class wrapper, Class receiver, String

getterMethod): Updates the client class so that any construction of the re-

ceiver class is replaced by a construction of the wrapper class, taking the

corresponding receiver object as an argument. All variables of type receiver

in the client classes are also renamed to wrapper. Any methods in client

whose return type is receiver are updated to return the wrapped receiver

object by delegating to the getterMethod in wrapper.

precondition:

The specified classes exist:

isClass(client) ∧ isClass(wrapper) ∧ isClass(receiver)

The classes wrapper and receiver support the same interface:

equalInterface(wrapper, receiver)

Any object of the class receiver will exhibit the same behaviour as an

instance of wrapper that has been given the corresponding receiver object

as its construction argument:

∀ e:ObjectCreationExprn, classCreated(e)=receiver •
exhibitSameBehaviour(e, new wrapper(e))

The method getterMethod in wrapper returns the wrapped receiver object:

returnsObject((new wrapper(e)).getterMethod(), e)

postcondition:

All object references to receiver in client have been changed to wrapper :

∀ o:ObjectRef ∈ client, typeOf(o)=receiver •
typeOf′=typeOf(o/wrapper)

Methods in client that return a receiver object are updated to return the

wrapped receiver object by delegating to the getterMethod :

∀ m:Method, m∈client, returnType(m)=receiver •
uses′=uses[m/getterMethod]

Behaviour preservation:

223

The wrapper class has the special property that when it is instantiated with

an instance of receiver, it stores this receiver object and delegates all the

requests it receives to this object. Thus the updating of the object creation

expressions does not affect behaviour13. The object references that store

these new objects are also updated to be of type wrapper, so they match the

type of the updated object creation expressions. Finally, since the receiver

and wrapper classes support the same interface, no type mismatch errors can

occur.

13The new objects are of a different type however, so any existing downcasts will fail.

224

Appendix C

Listing of Minitransformations

Six minitransformations were identified in the development of the design

pattern transformations. Each one has been analysed in detail in the body

of this thesis. In this appendix we describe each minitransformation briefly,

and provide a reference to the more detailed description in the main text.

1. The Abstraction minitransformation is used to add an interface to

a class. This enables another class to take a more abstract view of this

class by accessing it via this interface. See section 4.3.1.

2. The EncapsulateConstruction minitransformation is used when

one class creates instances of another, and it is required to weaken

the binding between the two classes by packaging the object creation

statements into dedicated methods. See section 4.3.2.

3. The AbstractAccess minitransformation is used when one class

uses, or has knowledge of, another class, and we want the relation-

ship between the classes to operate in a more abstract fashion via an

interface. See section 4.3.3.

225

4. The PartialAbstraction minitransformation is used to construct

an abstract class from an existing class and to create an extends rela-

tionship between the two classes. See section 4.3.4.

5. The Wrapper minitransformation is used to “wrap” an existing re-

ceiver class with another class, in such a way that all requests to an

object of the wrapper class are passed to the receiver object it wraps,

and similarly any results of such requests are passed back by the wrap-

per object. See section 5.4.2.

6. The Delegation minitransformation is used to move part of an exist-

ing class to a component class, and to set up a delegation relationship

from the existing class to its component. See section 5.5.2.

226

Appendix D

Architecture of the Software

Prototype

We have constructed a prototype software tool, DPT (Design Pattern Tool),

that implements seven of the design pattern transformations that have been

discussed in this thesis. In section D.1 we describe the architecture of this

prototype, while in section D.2 an example of the application of the prototype

to a Java program is presented.

D.1 Tool Architecture

DPT has a 4-tier architecture (see figure D.1) that matches the layers defined

in the structure of the behaviour preservation arguments:

1. Design Pattern transformations.

2. Minitransformations.

3. Analysis functions, helper functions and primitive refactorings.

4. AST operations.

227

Design Pattern

Transformations

Minitransformations

Helper functions, analysis

functions, refactorings

Abstract Syntax Trees,

Visitors

Figure D.1: Architecture of the Design Pattern Tool

The top layer implements the design pattern transformations we have

discussed1. The next layer comprises the implementations of the six mini-

transformations that emerged during the development of the design pattern

transformations. The third layer is the implementation of the supporting

analysis functions, helper functions and primitive refactorings described in

appendix B.

The bottom layer implements the actual changes to the program code by

performing surgery directly on the parse trees generated from the Java source

files. Visitors [41] are frequently used at this level to perform operations

that involve an entire parse tree. The parsing of the source files and the

construction of the parse trees were implemented using the parser generator

JavaCC [65].

1Seven design pattern transformations have been prototyped, namely, Abstract Factory,

Factory Method, Singleton, Builder, Prototype, Bridge and Strategy.

228

DPT does not extract an abstract model from the Java source code. This

would have made the high-level transformations such as addClass much easier,

but would have made the subsequent code regeneration much more difficult.

The program being transformed is stored internally as a set of parse trees, and

it is the operations provided in the top three layers of the architecture that

provide an abstract view of this program. A programmer building a design

pattern transformation need only be concerned with the minitransformation

layer, and some refactorings and helper functions, in order to complete their

task.

D.2 Sample Operation of DPT

We provide an example of the application of the Factory Method transfor-

mation to a generic program:

class Creator {
public void doIt() {

Product p = new Product(“some text”);

Product q = new Product(1234);

p.foo();

q.foo();

}
}
class Product {

public Product(int x){. . . }
public Product(String s){. . . }
public void foo() {. . . }

}

229

The Factory Method transformation (section 4.4) is now applied to the above

program as follows:

applyFactoryMethod(“Creator”, “Product”, “absProduct”,

“absCreator”, “createProduct”)

DPT applies the transformation and outputs the following code:

abstract class absCreator {
public void doIt (){

absProduct p = createProduct(“some text”);

absProduct q = createProduct(1234);

p.foo();

q.foo();

}
public abstract absProduct createProduct (int x);

public abstract absProduct createProduct (String s);

}
class Creator extends absCreator {

public absProduct createProduct (int x) {
return new Product(x);

}
public absProduct createProduct (String s) {

return new Product(s);

}
}
interface absProduct {

public void foo ();

}

230

class Product implements absProduct {
public absProduct (int x) {. . . }
public absProduct (String s) {. . . }
public void foo() {. . . }

}

Note how in the absCreator and Creator classes, all references to Product

have been changed to absProduct and instantiations of the Product class only

occur via invocations of the new construction methods, createProduct. The

only change to the Product class is that it now implements the new interface

absProduct, which describes the complete interface to the Product class. The

significance of these changes is that it is now easy to build a Creator class

that works with a new type of Product. This can be achieved in two steps as

follows:

1. Add an implements link from the new Product class that is being added

to the absProduct interface;

2. Subclass the absCreator class, overriding the createProduct methods to

instantiate the new type of Product class.

The new subclass of absCreator created in the second step will provide the

required functionality. No further changes are necessary.

231

